首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对β修正光度法测定废水中痕量银进行了研究,该方法能消除反应液中过量显色剂干扰,提高分析灵敏度和准确度。测定结果表明,银加标回收率93.0-106.0%,精密度RSD2.3%,银量低测定浓度0.02mg/L。该方法适合于印相,电镀等行业废水银分析。  相似文献   

2.
氢化物发生一原子荧光光谱法测定气田废水中的痕量砷   总被引:2,自引:0,他引:2  
采用氢化物发生-原子荧光光谱法测气田废水中的痕量砷。方法有取样量少,操作简单、灵敏度高、准确度高、重现性好等优点。砷的测定线性范围为1~200ng/mL,方法的检出限为0.0453ng/mL,相对标准偏差小于等于1.6%,加标回收率在96.0%~97.7%范围内。测定密码标样与气田废水中的痕量砷,获得了满意的结果。  相似文献   

3.
沉淀分离富集-分光光度法测定海水中痕量活性磷酸盐   总被引:1,自引:0,他引:1  
十六烷基三甲基溴化铵(cetyltrimethylammonium bromide,CTAB)可与磷钼蓝(phosphomolybdenum blue,PMB)生成水难溶的PMB-CTAB离子缔合物沉淀,从而分离富集水溶液中的PMB。该沉淀易溶于硫酸乙醇溶液,溶液在700 nm有强吸收,基于此建立了沉淀分离富集-分光光度法测定海水中痕量活性磷酸盐的新方法。对溶剂酸度、试剂用量、反应时间与温度等实验参数进行了优化选择,并考察了盐度对测定结果的影响。实验结果表明,PMB可被CTAB有效地定量沉淀;盐度在15~45范围内,对测定结果无影响。在优化的实验条件下,以盐度为35的人工海水为基底,做空白加P标实验,方法的线性范围为0.30~8.00μg/L,平均回收率为95.0%,方法检测限为0.10μg/L。对实际海水中痕量活性磷酸盐进行测定,相对标准偏差(RSD)为4.4%~7.1%,与广泛采用的MAGIC法比较,置信度为99%时结果无显著差异。新方法具有消耗试样体积少、测定速度快等优点。  相似文献   

4.
氢化物发生-原子荧光光谱法测定水中的砷、硒、汞   总被引:1,自引:0,他引:1  
自然水体中蕴涵着很多元素,尤其是自来水中的有些痕量元素对人体健康是必不可少的。自来水中的砷、硒、汞含量极低,火焰原子荧光和石墨炉原子荧光的检测能力无法满足测定的要求,运用氢化物发生-原子荧光光谱法对自来水中的砷、硒、汞三种元素进行分析测定,可以提高水中砷、硒、汞检出限,是测量痕量元素的有效方法。  相似文献   

5.
氢化物发生-原子荧光光谱法测定水中微量砷   总被引:8,自引:0,他引:8  
用氢化物发生-原子荧光光谱法测定天然水及废水中的微量砷,讨论并确定了试验的最佳测定条件。结果表明:砷的测定线性范围为1 ̄100ng/mL,回收率为96% ̄108%,对含0.5ng/mL砷溶液12次平行测定变异系数为1.9%,检出限为0.25ng/mL。  相似文献   

6.
氢化物发生—原子荧光法测定水中痕量砷   总被引:2,自引:0,他引:2  
李贵峰 《环境与开发》1999,14(3):29-29,32
报道应用氢化物原子荧光分析技术,测定废水中痕量砷的方法,通过实验提出了只应用低浓度KBH4溶液即可有效地减轻或消除多种金属元素对砷的干扰。此方法具有良好的选择性和再现性。  相似文献   

7.
单阀FIA氢化物发生分光光度法测定水中砷的研究   总被引:1,自引:0,他引:1  
刘国权  王春旭  赫元萍 《环境科学》1994,15(5):71-72,82
利用自行设计制造的新型氢化物发生及吸收装置,将流动注射技术同氢化物发生分光光度法有机地结合在一起。设计了一种单阀FIA氢化物发生分光光度测砷的流路系统,该系统不南非载气,选用AgNO3-HNO3-聚乙烯醇-乙醇混合液作为吸收液及KBH4溶液作生反应。瘫针该方法用各种水中痕量砷的测定,具有简便,快速(30次/h)、灵敏度高,重现性好(R.S.D=3.045)、检出限低(cL=1.82×10^-9g/  相似文献   

8.
研究了在聚乙稀醇存在下,砷锑钼三元杂多酸-孔雀绿离子缔合物的形成条件及其光度性质。结果表明:显色体系最大吸收位于波长600nm处,ε ̄1=1.16x10 ̄5L·mol ̄(-1)·cm ̄(-1),在室温下能稳定90min,砷量在0~2.5ug/10mL遵守比尔定律,r=0.9994.用丘氏定砷器使砷呈AsH_3逸出分离。  相似文献   

9.
依据离子浮选分离法的摹本原理,提出了用分光光度法测定水中痕量镉的方法。用聚氧化乙烯(23)月桂醚作镉离子的捕收剂,快速而选择性地富集于气液界面,在最佳的体系条件下,取水样1L,检测限可低至0.03μg,相对标准偏差为10.2%,标准加入回收率达90%~110%,分析一次样品仅需40min。   相似文献   

10.
氢化物发生-原子荧光光谱法测定海水中痕量硒   总被引:1,自引:0,他引:1  
采用氢化物发生-原子荧光光谱法定量测定海水中痕量Se,讨论了测定的最佳分析条件.结果表面该方法简便、实用,准确度和灵敏度令人满意.方法的检出限为0.0845 μg/L相对标准偏差≤2.9%加标回收率在96.3%~103.5%.  相似文献   

11.
本文研究了孔雀绿与磷(砷)酸钼的离子对膜的形成条件。并依此与共存元素分离,进行痕量磷酸根、亚砷酸根和砷酸根的浮膜分光光度法测定。选用硫酸为介质,考察了25种共存离子对测定的影响。拟定了天然水中痕量磷酸根、亚砷酸根和砷酸根的分析方法.操作简便,结果令人满意。  相似文献   

12.
砷是对人体有害的元素,当人体每天的摄入量超过100ug或更高时,对人体就会产生严重的危害,而有些工业废水中合有一定量的砷元素,如果这些工业废水不经处理排放到水中会我们的身体造成很大程度的伤害,所以我对某工厂的工业废水进行检测,检测其排放废水中所含有砷元素的多少。火焰原子荧光和石墨炉原子荧光的检测能力无法满足测定的要求,...  相似文献   

13.
<正> 江、河中硒的含量很低,为0.07~0.5~ug/l,用分光光度法及微分脉冲极谱法测定水中痕量的硒有过报道,但这些方法灵敏度难于达到分析河水中低含量硒的要求。关于荧光法测定水中痕量硒有人作过尝试,通过大体积浓缩或用离子交换树脂富集,疏基棉富集等方法处理后,再作荧光测定,费时又易造成分析误差。笔者试验直接取水样  相似文献   

14.
吴仪贞 《环境保护》1991,(12):19-21
本文介绍的氢化物分析技术其装置由进样、排气、清洗、排液方便的半自动氢化物发生器,活动式电热原子化器和随时可更换的石英吸收池等所组成。此法用惰性气体氮气(或氩气)作载气、将发生器中的氢化物送入原子化吸收池,直接测得饮用水中痕量砷。达到方法简便快速,易于消除干扰,灵敏度比火焰法约提高2~3个数量级,满足了饮用水中痕量砷的测定。  相似文献   

15.
16.
本文实验了Pb~(2+)—kI—丁基罗丹明B显色体系在阿拉伯胶和聚乙烯醇共同存在时的超高灵敏显色反应。缔合物最大吸收波长605nm,表观摩尔吸光系数ε=1.04×10~6L·mol~(-1)·cm~(-1)。结合巯基棉分离技术,测定了尿液和城市废水、嘉陵江水中的痕量铅,结果满意。  相似文献   

17.
用磷锑钼三元杂多酸比色测定磷已有报导,但灵敏度低(ε=2.4×10~4),在检测ppb级可溶性磷酸盐时必须萃取分离,手续麻烦。近来,有人用磷钼兰或磷钒钼兰与碱性染料形成离子缔合作用比色测定微量磷,灵敏度较高。但用磷锑钼酸——孔雀绿在非离子表面活性剂存在下比色测磷的报导却不多见。我们在前文工作的基础上,利用磷和砷的相似性,在非离子表面活性剂做增溶剂存在下,先以磷锑钼兰作基核,后加孔雀绿发色,可不经萃取分  相似文献   

18.
离子浮选-分光光度法测定水中痕量亚硝酸盐氮   总被引:1,自引:0,他引:1  
水中的亚硝酸氮在人的胃肠中易形成亚硝胺而致癌,已愈来愈被人们所重视。因此有些国家已将饮用水中亚硝酸盐氮限制在0.005mg/l以下。虽然目前测定水中痕量亚硝酸盐氮已有很多方法,但灵敏度还不够高,有些方法检测限虽然较低,但富集时间较长,影响了分析速度。我们在前人工作的基础上,应用离子浮选技术选择性地富集亚硝酸根离子,用分光光度法测定其含量,取样1000ml,检测限可达0.0003mg/l,分析一次样品仅需40min。浮选应用对氨基苯磺酸-盐酸萘乙二胺/十二烷基硫酸钠/空气体系,使水中NO_2~-选择性地生成偶氮染料,与阴离  相似文献   

19.
在氨水介质中,痕量 Cu(Ⅱ)对 H_2O_2氧化曙红 y 的反应有强烈的催化作用。由此建立的痕量 Cu(Ⅱ)的催化光度分析法的检测限为0.192μg/L,可用于环境水样中 Cu(Ⅱ)的分析。本法操作简单,易于推广应用。  相似文献   

20.
文章研究了用SK-2002 AFS analyser氢化物发生原子荧光法测定地表水和饮用水中的砷、汞、硒的测定。在5%的酸度条件下加入5%硫脲+5%抗坏血酸,20g/L的硼氢化钾为还原剂,调整仪器的空气和辅气流量及分析条件为文中条件,取水样中分别添加砷,汞,硒,使它们的浓度分别为2μg/L,0.4μg/L,4μg/L,连续测定12次,以砷,汞,硒的相对标准偏差分别为0.4%,1.1%,1.2%。取水样加入As,Hg,Se标准分别为2.0ng,0.6ng,4.0ng,测定的添加标准回收率分别为99.5%,97.5%,95.8%。研究结果表明,该方法操作简便,快速,灵敏,干扰少,检出限低等特点,适合于测定地表水和饮用水中砷,汞,硒的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号