首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: A two-parameter farm pond storage index, FPSI, was Used to adjust computed surface. runoff using the partial area runoff contribution resulting from runoff captured by farm ponds. The validity of the index method was tested by fitting a continuous accounting version of the Soil Conservation Service curve number procedure to surface runoff data from each of three watersheds, first with and then without the FPSI routine. Evapotranspiration computed with the Jensen-Haise method and rainfall were input to the model. A linear relationship was assumed between the storage index and the portion of the controlled drainage area that was contributing to runoff. Adjusting the computed runoff with the FPSI reduced the coefficient of variation of monthly measured versus computed surface runoff for each of the three watersheds. The correlation coefficients for the same comparisons were increased. The annual predicted surface runoff Was improved for 12 of the 17 station years of data tested. The farm pond storage index could be used with any surface runoff model to improve the prediction of runoff from watersheds with drainage areas greater than 1 square mile and with about 20 percent or more of the drainage area controlled by farm ponds.  相似文献   

2.
A geospatial methodology has been developed that utilizes high resolution lidar‐derived DEMs to help track runoff from agricultural fields and identify areas of potential concentrated flow through vegetated riparian areas in the Coastal Plain of Virginia. Points of concentrated flow are identified across 74 agricultural fields within the Virginia portion of the Chesapeake Bay watershed. On average, 70% of the surface area of the agricultural fields analyzed drains through less than 20 m of the field margin, and on average 81% of the field surface area drains through 1% or less of the field margin. Within the riparian buffer, locations that were predicted by the geospatial model to have high levels of concentrated flow were found to exhibit evidence of channelization. Results indicate that flow concentration and channelized flow through vegetated riparian areas may be common along the margin of agricultural fields, resulting in vegetated riparian areas that are less effective at sediment trapping than assumed. Additional results suggest that the regulations governing the location and width of vegetated riparian may not be sufficient to achieve goals for reducing sediment and nutrient runoff from nonpoint agricultural sources. Combined with the increasing availability of lidar‐derived DEMs, the geospatial model presented has the potential to advance management practices aimed at reducing nonpoint source pollution leaving agricultural fields.  相似文献   

3.
This study used monitoring in the waterways of agricultural fields to understand the use of the runoff curve number (CN) in continuous simulation models. The CN has a long history as a design tool for estimating runoff volumes for large, single storms on small watersheds, but its use in continuous simulation models to describe runoff from smaller storms and relatively small areas is more recent and controversial. We examined 788 nonwinter rainfall events on four agricultural fields over five years (2004‐2008) during which runoff was generated in 87 events. The largest 20 runoff events on each field generated approximately 90% of the total runoff volume. The runoff event CNs showed an inverse correlation with storm depth that could not consistently be explained by previous precipitation. We review how small areas of higher runoff generation within larger areas will systematically increase the apparent CN of the larger area as the storm size decreases. If this variation is not incorporated into a model explicitly, continuous simulation modelers must understand that when source areas are aggregated or when runoff generation is spatially variable, the overall CN is not unique when smaller storms are included in the calibration set.  相似文献   

4.
Abstract: The summertime heating of runoff in urban areas is recognized as a common and consistent urban climatological phenomenon. In this study, a simple thermal urban runoff model (TURM) is presented for the net energy flux at the impervious surfaces of urban areas to account for the heat transferred to runoff. The first step in developing TURM consists of calculating the various factors that control how urban impervious areas absorb heat and transfer it to moving water on the surface. The runoff temperature is determined based on the interactions of the physical characteristics of the impervious areas, the weather, and the heat transfer between the moving film of runoff and the impervious surface common in urban areas. Key surface and weather factors that affect runoff temperature predictions are type of impervious surface, air temperature, humidity, solar radiation before and during rain, rainfall intensity, and rainfall temperature. Runoff from pervious areas is considered separately and estimated using the Green‐Ampt Mein‐Larson rainfall excess method. Pervious runoff temperature is estimated as the rainfall temperature. Field measurements indicate that wet bulb temperature can be used as a surrogate for rainfall temperature and that runoff temperatures from sod average just 2°C higher than rainfall temperatures. Differences between measured and predicted impervious runoff temperature average approximately 2°C, indicating that TURM is a useful tool for determining runoff temperatures for typical urban areas.  相似文献   

5.
ABSTRACT: ERTS-1 satellite imagery has been evaluated as a means of providing useful watershed physiography information. From these data physiographic parameters such as drainage basin area and shape, drainage density, stream length and sinuosity, and the percentage of a watershed occupied by major land use types were obtained in three study areas. The study areas were: (1) Southwestern Wisconsin; (2) Eastern Colorado; and (3) portions of the Middle Atlantic States Using ERTS-1 imagery at 1:250,000 and 1:100,000 scales it was found that drainage basin area and shape and stream sinuosity were comparable (within 10%) in all study areas to physiographic measurements derived from conventional topographic maps at the same scales Land use information can be usefully extracted for watersheds as small as 30 mi2(78 km2) in area. Improved drainage network and density information is obtained from ERTS-1 imagery in dissected areas such as Southwestern Wisconsin, but in heavily vegetated areas (Middle Atlantic States) or areas with little physical relief (Eastern Colorado) low order streams are difficult to detect and the derived drainage densities are significantly smaller than those obtained from standard maps. It is concluded that ERTS-1 imagery can be employed to advantage in mean annual runoff prediction techniques and in providing or maintaining land use information used in the calibration and operation of watershed models.  相似文献   

6.
ABSTRACT: Significant errors in estimating surface runoff and erosion rates are possible if a watershed is assumed to contribute runoff uniformly over the entire area, when actually only a portion of the entire area may be contributing. Generation of overland flow on portions of small semiarid watersheds was analyzed by three methods: an average loss rate procedure, a lumped-linear model, and a distributed-nonlinear model. These methods suggested that, on the average, 45, 60, and 50% of the drainage area was contributing runoff at the watershed outlet. Infiltrometer data support the partial area concept and indicate that the low infiltration zones are the runoff source areas as simulated with the distributed-nonlinear model.  相似文献   

7.
Macholl, Jacob A., Katherine A. Clancy, and Paul M. McGinley, 2011. Using a GIS Model to Identify Internally Drained Areas and Runoff Contribution in a Glaciated Watershed. Journal of the American Water Resources Association (JAWRA) 47(1):114‐125. DOI: 10.1111/j.1752‐1688.2010.00495.x Abstract: Glaciated watersheds are not easily delineated using geographic information systems’ elevation‐based algorithms, especially where stream networks are disconnected and there are large regions of internally drained areas. This paper presents the results of an analysis using the Potential Contributing Source Area (PCSA) model to identify potential contributing areas, defined as areas from which runoff is physically capable of reaching a drainage network. The investigation was conducted to define the potential contributing areas in a glaciated region of northwest Wisconsin. The curve number (CN) method was used to predict runoff volumes in the watershed. The streamflows of four tributaries were measured and the runoff portion of the hydrograph quantified to be compared with runoff estimates calculated using the potential contributing areas and the traditional catchment area. Runoff producing events occurred, but the use of area‐weighted CN values was unsuccessful in modeling runoff due to all precipitation depths during the study period falling below the initial abstraction. A distributed CN approach provided runoff estimates that were generally better using the potential contributing areas compared with using the traditional catchment area. The extent of the minimum contributing area, estimated for a range of precipitation events, was found to be substantially less than the potential contributing areas, suggesting that the PCSA model delimits the maximum boundary of potential contributing areas.  相似文献   

8.
Buchanan, Brian, Zachary M. Easton, Rebecca Schneider, and M. Todd Walter, 2011. Incorporating Variable Source Area Hydrology Into a Spatially Distributed Direct Runoff Model. Journal of the American Water Resources Association (JAWRA) 48(1): 43‐60. DOI: 10.1111/j.1752‐1688.2011.00594.x Abstract: Few hydrologic models simulate both variable source area (VSA) hydrology, and runoff‐routing at high enough spatial resolutions to capture fine‐scale hydrologic pathways connecting VSA to the stream network. This paper describes a geographic information system‐based operational model that simulates the spatio‐temporal dynamics of VSA runoff generation and distributed runoff‐routing, including through complex artificial drainage networks. The model combines the Natural Resource Conservation Service’s Curve Number (CN) equation for estimating storm runoff with the topographic index concept for predicting the locations of VSA and a runoff‐routing algorithm into a new spatially distributed direct hydrograph (SDDH) model (SDDH‐VSA). Using a small agricultural watershed in central New York, SDDH‐VSA results were compared to those from a SDDH model using the traditional land use assumptions for the CN (SDDH‐CN). The SDDH‐VSA model generally agreed better with observed discharge than the SDDH‐CN model (average, Nash‐Sutcliffe efficiency of 0.69 vs. 0.58, respectively) and resulted in more realistic spatial patterns of runoff‐generating areas. The SDDH approach did not correctly capture the timing of runoff from small storms in dry periods. Despite this type of limitation, SDDH‐VSA extends the applicability of the SDDH technique to VSA conditions, providing a basis for new tools to help identify critical management areas and assess water quality risks due to landscape alterations.  相似文献   

9.
Abstract: Runoff from urban catchments depends largely on the amount of impervious surface and the connectivity of these surfaces to the storm sewer drainage system. In residential areas, pervious lawns can be used to help manage stormwater runoff by intercepting and infiltrating runoff from impervious surfaces. The goal of this research was to develop and evaluate a simple method for estimating the reduction in stormwater runoff that results when runoff from an impervious surface (e.g., rooftop) is directed onto a pervious surface (e.g., lawn). Fifty‐two stormwater runoff reduction tests were conducted on six residential lawns in Madison, Wisconsin during the summer of 2004. An infiltration‐loss model that requires inputs of steady‐state infiltration rate, abstraction (defined here as surface storage, vegetation interception and cumulative total infiltration minus steady‐state infiltration during the period prior to steady‐state), and inundated area was evaluated using experimental data. The most accurate results were obtained using the observed steady‐state infiltration rates and inundated areas for each test, combined with a constant abstraction for all tests [root mean squared (RMS) difference = 1.0 cm]. A second case utilized lawn‐averaged steady‐state infiltration rates, a regression estimate of inundated area based on flow‐path length, and lawn‐specific abstractions based on infiltration rate (RMS difference = 2.2 cm). In practice, infiltration rates will likely be determined using double‐ring infiltration measurements (RMS difference = 3.1 cm) or soil texture (RMS difference = 5.7 cm). A generalized form of the model is presented and used to estimate annual stormwater runoff volume reductions for Madison. Results indicate the usefulness of urban lawns as a stormwater management practice and could be used to improve urban runoff models that incorporate indirectly connected impervious areas.  相似文献   

10.
Watershed models often estimate annual nitrogen (N) or phosphorus (P) pollutant loads in rural areas with export coefficient (EC) (kg/ha/yr) values based on land cover, and in urban areas as the product of spatially uniform event mean concentration (EMC) (mg/L) values and runoff volume. Actual N and P nonpoint source (NPS) pollutant loading has more spatial complexity due to watershed variation in runoff likelihood and buffering likelihood along surface and subsurface pathways, which can be represented in a contributing area dispersal area (CADA) NPS model. This research develops a CADA NPS model to simulate how watershed properties of elevation, land cover, and soils upslope and downslope of each watershed pixel influence nutrient loading. The model uses both surface and subsurface runoff indices (RI), and surface and subsurface buffer indices (BI), to quantify the runoff and buffering likelihood for each watershed pixel, and generate maps of weighted EC and EMC values that identify NPS pollutant loading hotspots. The research illustrates how CADA NPS model maps and pixel loading values are sensitive to the spatial resolution and accuracy of elevation and land cover data, and model predictions can represent the lower and upper bounds of NPS loading. The model provides managers with a tool to rapidly visualize, rank, and investigate likely areas of high nutrient export.  相似文献   

11.
Rainfall can transport herbicides from agricultural land to surface waters, where they become an environmental concern. Tile drainage can benefit crop production by removing excess soil water but tile drainage may also aggravate herbicide and nutrient movement into surface waters. Water management of tile drains after planting may reduce tile drainage and thereby reduce herbicide losses to surface water. To test this hypothesis we calculated the loss of three herbicides from a field with three water management systems: free drainage (D), controlled drainage (CD), and controlled drainage with subsurface irrigation (CDS). The effect of water management systems on the dissipation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] in soil was also monitored. Less herbicide was lost by surface runoff from the D and CD treatments than from CDS. The CDS treatment increased surface runoff, which transported more herbicide than that from D or CD treatments. In one year, the time for metribuzin residue to dissipate to half its initial value was shorter for CDS (33 d) than for D (43 d) and CD (46 d). The half-life of atrazine and metolachlor were not affected by water management. Controlled drainage with subsurface irrigation may increase herbicide loss through increased surface runoff when excessive rain is received soon after herbicide application. However, increasing soil water content in CDS may decrease herbicide persistence, resulting in less residual herbicide available for aqueous transport.  相似文献   

12.
We present estimates of the volumetric storage capacities of currently drained upland depressions and catchment depressional specific storage and runoff storage indices for the Des Moines Lobe of Iowa (DML‐IA) subregion of the Prairie Pothole Region of North America. Storage capacities were determined using hydrologically enforced Light Detection and Ranging‐derived digital elevation models, and a unique geoprocessing algorithm. Depressional specific storage was estimated for each 12‐digit Hydrologic Unit Code (HUC12) watershed in the region from total catchment‐specific depressional storage volume and catchment area. Runoff storage indices were calculated using catchment depressional specific storage values and estimates of the amount of rainfall likely to fall within each watershed during sub‐annual and 1‐, 2‐, 5‐, and 10‐year 24‐h events. The 173,171 identified drained depressions in the DML‐IA can store up to 903.5 Mm3 of runoff. Most of this capacity is in depressions located in the north of the region. Specific storage varies from nearly 109 mm in the younger landscapes to <10 mm in older more eroded areas. For 95% of the HUC12 watersheds comprising the region, depressional storage will likely be exhausted by rainfall‐derived runoff in excess of a 1‐year 24‐h event. Rainfall amounts greater than a 5‐year 24‐h event will exceed all available depressional storage. Therefore, the capacity of drained depressions in the DML‐IA to mitigate flooding resulting from infrequent, but large, storm events is limited.  相似文献   

13.
Antibiotic Transport via Runoff and Soil Loss   总被引:1,自引:0,他引:1  
Research has verified the occurrence of veterinary antibiotics in manure, agricultural fields, and surface water bodies, yet little research has evaluated antibiotic runoff from agricultural fields. The objective of this study was to evaluate the potential for agricultural runoff to contribute antibiotics to surface water bodies in a worst-case scenario. Our hypothesis was that there would be significant differences in antibiotic concentrations, partitioning of losses between runoff and sediment, and pseudo-partitioning coefficients (ratio of sediment concentration to runoff concentration) among antibiotics. An antibiotic solution including tetracycline (TC), chlortetracycline (CTC), sulfathiazole (STZ), sulfamethazine (SMZ), erythromycin (ERY), tylosin (TYL), and monensin (MNS) was sprayed on the soil surface 1 h before rainfall simulation (average intensity = 60 mm h(-1) for 1 h). Runoff samples were collected continuously and analyzed for aqueous and sediment antibiotic concentrations. MNS had the highest concentration in runoff, resulting in the highest absolute loss, although the amount of loss associated with sediment transport was <10%. ERY had the highest concentrations in sediment and had a relative loss associated with sediment >50%. TYL also had >50% relative loss associated with sediment, and its pseudo-partitioning coefficient (P-PC) was very high. The tetracyclines (TC and CTC) had very low aqueous concentrations and had the lowest absolute losses. If agricultural runoff is proven to result in development of resistance genes or toxicity to aquatic organisms, then erosion control practices could be used to reduce TC, ERY, and TYL losses leaving agricultural fields. Other methods will be needed to reduce transport of other antibiotics.  相似文献   

14.
Epps et al. (2013) derived Curve Number (CN) values for two forested headwater watersheds in the Lower Coastal Plain of South Carolina during the 2008‐2011 period from rainfall‐runoff data, resulting in 23 events for the Upper Debidue Creek (UDC) watershed and in 20 events for Watershed 80 (WS80). D'Asaro and Grillone analyzed the P, CN data of the UDC watershed finding an evident “complacent” behavior, characterized by a declining CN with increasing P but without approaching a stable value at large storms. In this case, the traditional runoff CN equation does not fit well with the rainfall‐runoff data that indicate a partial source area watershed behavior and are more aptly modeled by the equation introduced by D'Asaro and Grillone (2012), who introduced a C parameter in the well‐known runoff CN formula. The C value, that represents the source area (fraction of drainage area) of the basin that produces runoff with a fixed CN < 100, is here considered to vary with the water table elevation (WTE), to which it is well correlated.  相似文献   

15.
Abstract: The capacity of a watershed to urbanize without changing its hydrologic response and the relationship between that response and the spatial configuration of the developed areas was studied. The study was conducted in the Whiteoak Bayou watershed (223 km2), located northwest of Houston, Texas, over an analysis period from 1949 to 2000. Annual development data were derived from parcel data collected by the Harris County Appraisal District. Using these data, measures of the spatial configuration of the watershed urban areas were calculated for each year. Based on regression models, it was determined that the annual runoff depths and annual peak flows depended on the annual precipitation depth, the developed area and the maximum 12‐h precipitation depth on the day and day before the peak flow took place. It was found that, since the early 1970s, when the watershed reached a 10% impervious area, annual runoff depths and peak flows have increased by 146% and 159%, respectively. However, urbanization is responsible for only 77% and 32% of the increase, respectively, while precipitation changes are responsible for the remaining 39% and 96%, respectively. Likewise, an analysis of the development data showed that, starting in the early 1970s, urbanization in the watershed consisted more of connecting already developed areas than of creating new ones, which increases the watershed’s conveyance capacity and explains the change in its response. Before generalizing conclusions, though, further research on other urban watersheds with different urbanization models appears to be necessary.  相似文献   

16.
ABSTRACT: The St. Johns River Water Management District (SJR-WMD) is using a Geographic Information System (GIS) screening model to estimate annual nonpoint source pollution loads to surface waters and determine nonpoint source pollution problem areas within the SJRWMD. The model is a significant improvement over current practice because it is contained entirely within the district's GIS software, resulting in greater flexibility and efficiency, and useful visualization capabilities. Model inputs consist of five spatial data layers, runoff coefficients, mean runoff concentrations, and stormwater treatment efficiencies. The spatial data layers are: existing land use, future land use, soils, rainfall, and hydrologic boundaries. These data layers are processed using the analytical capabilities of a cell-based GIS. Model output consists of seven spatial data layers: runoff, total nitrogen, total phosphorous, suspended solids, biochemical oxygen demand, lead, and zinc. Model output can be examined visually or summarized numerically by drainage basin. Results are reported for only one of the SJRWMD's ten major drainage basins, the lower St. Johns River basin. The model was created to serve a major planning effort at the SJRWMD; results are being actively used to address nonpoint source pollution problems.  相似文献   

17.
We test the use of a mixed‐effects model for estimating lag to peak for small basins in Maine (drainage areas from 0.8 to 78 km2). Lag to peak is defined as the time between the center of volume of the excess rainfall during a storm event and the resulting peak streamflow. A mixed‐effects model allows for multiple observations at sites without violating model assumptions inherent in traditional ordinary least squares models, which assume each observation is independent. The mixed model includes basin drainage area and maximum 15‐min rainfall depth for individual storms as explanatory features. Based on a remove‐one‐site cross‐validation analysis, the prediction errors of this model ranged from ?42% to +73%. The mixed model substantially outperformed three published models for lag to peak and one published model for centroid lag for estimating lag to peak for small basins in Maine. Lag to peak estimates are a key input to rainfall–runoff models used to design hydraulic infrastructure. The improved accuracy and consistency with model assumptions indicates that mixed models may provide increased data utilization that could enhance models and estimates of lag to peak in other regions.  相似文献   

18.
The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001‐2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.  相似文献   

19.
ABSTRACT: West Bitter Creek floodwater retarding structure site 3 in South Central Oklahoma was instrumented and records obtained and analyzed to obtain information concerning an impoundment water budget that is useful to landowners and designers of these impoundments. On-site loss of water from the impoundment was only 17 percent of the inflow during three years when the annual precipitation averaged 26 inches and the annual inflow averaged 1.4 inches. Runoff from an eroded area with no farm ponds was about 70 percent greater per unit area than from a portion of the watershed where 71 percent of the drainage area was controlled by farm ponds. A previous study indicated, however, that the ponds were reducing runoff only 13 percent. Loss of top soil increases runoff considerably. Only 24 percent of the total runoff into the impoundment was base flow. The flow rate into the impoundment was less than 0.05 cfs 70 percent of the time, and the inflow rate exceeded 10 cfs only 1 percent of the time. SCS runoff curve numbers varied between 57 and 96 for the impoundment watershed with an inverse relation between precipitation amount and curve number apprently caused by partial area runoff from impervious and semi-impervious areas. A comparison of measured event runoff versus event runoff computed by the SCS curve numbers gave an r2 of only 0.44. However, the total computed surface runoff for eight years of record was less than 1 percent below the measured runoff which indicated the curve number method was a good tool for predicting long term runoff for the watershed.  相似文献   

20.
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65–85% and sedimentation by 58–69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号