首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Metz MR  Sousa WP  Valencia R 《Ecology》2010,91(12):3675-3685
Negative density-dependent mortality can promote species coexistence through a spacing mechanism that prevents species from becoming too locally abundant. Negative density-dependent seedling mortality can be caused by interactions among seedlings or between seedlings and neighboring adults if the density of neighbors affects the strength of competition or facilitates the attack of natural enemies. We investigated the effects of seedling and adult neighborhoods on the survival of newly recruited seedlings for multiple cohorts of known age from 163 species in Yasuni National Park, Ecuador, an ever-wet, hyper-diverse lowland Amazonian rain forest. At local scales, we found a strong negative impact on first-year survival of conspecific seedling densities and adult abundance in multiple neighborhood sizes and a beneficial effect of a local tree neighborhood that is distantly related to the focal seedling. Once seedlings have survived their first year, they also benefit from a more phylogenetically dispersed seedling neighborhood. Across species, we did not find evidence that rare species have an advantage relative to more common species, or a community compensatory trend. These results suggest that the local biotic neighborhood is a strong influence on early seedling survival for species that range widely in their abundance and life history. These patterns in seedling survival demonstrate the role of density-dependent seedling dynamics in promoting and maintaining diversity in understory seedling assemblages. The assemblage-wide impacts of species abundance distributions may multiply with repeated cycles of recruitment and density-dependent seedling mortality and impact forest diversity or the abundance of individual species over longer time scales.  相似文献   

2.
Laird RA  Schamp BS 《Ecology》2008,89(1):237-247
Competitive intransitivity, a situation in which species' competitive ranks cannot be listed in a strict hierarchy, promotes species coexistence through "enemy's enemy indirect facilitation." Theory suggests that intransitivity-mediated coexistence is enhanced when competitive interactions occur at local spatial scales, although this hypothesis has not been thoroughly tested. Here, we use a lattice model to investigate the effect of local vs. global competition on intransitivity-mediated coexistence across a range of species richness values and levels of intransitivity. Our simulations show that local competition can enhance intransitivity-mediated coexistence in the short-term, yet hinder it in the long-term, when compared to global competition. This occurs because local competition slows species disaggregation, allowing weaker competitors to persist longer in the shifting spatial refuges of intransitive networks, enhancing short-term coexistence. Conversely, our simulations show that, in the long-term, local competition traps disaggregated species in unfavorable areas of the competitive arena, where they are excluded by superior competitors. As a result, in the long-term, global intransitive competition allows a greater number of species to coexist than local intransitive competition.  相似文献   

3.
Nonequilibrium coexistence in a competition model with nutrient storage   总被引:1,自引:0,他引:1  
Revilla T  Weissing FJ 《Ecology》2008,89(3):865-877
Resource competition theory predicts that, in equilibrium, the number of coexisting species cannot exceed the number of limiting resources. In some competition models, however, competitive interactions may result in nonequilibrium dynamics, allowing the coexistence of many species on few resources. The relevance of these findings is still unclear, since some assumptions of the underlying models are unrealistic. Most importantly, these models assume that individual growth directly reflects the availability of external resources, whereas real organisms can store resources, thereby decoupling their growth from external fluctuations. Here we study the effects of resource storage by extending the well-known Droop model to the context of multiple species and multiple resources. We demonstrate that the extended Droop model shows virtually the same complex dynamics as models without storage. Depending on the model parameters, one may obtain competitive exclusion, stable equilibrium coexistence, periodic and non-periodic oscillations, and chaos. Again, nonequilibrium dynamics allows for the coexistence of many species on few resources. We discuss our findings in the light of earlier work on resource competition, highlighting the role of luxury consumption, trade-offs in competitive abilities, and ecological stoichiometry.  相似文献   

4.
Gundale MJ  Hyodo F  Nilsson MC  Wardle DA 《Ecology》2012,93(7):1695-1706
Most theories attempting to explain the coexistence of species in local communities make fundamental assumptions regarding whether neighbors exhibit competitive, neutral, or positive resource-use interactions; however, few long-term data from naturally assembled plant communities exist to test these assumptions. We utilized a 13-year experiment consisting of factorial removal of three shrub species (Vaccinium myrtillus, V. vitis-idaea, and Empetrum hermaphroditum) and factorial removal of two functional groups (tree roots and feather mosses) to assess how neighbors affect N acquisition and growth of each of the three shrub species. The removal plots were established on each of 30 lake islands in northern Sweden that form a natural gradient of resource availability. We tested the hypotheses that: (1) the presence of functionally similar neighbors would reduce shrub N acquisition through competition for a shared N resource; (2) the removal of functional groups would affect shrub N acquisition by altering the breadth of their niches; and (3) soil fertility would influence the effects of neighbor removals. We found that the removal of functionally similar neighbors (i.e., other shrub species) usually resulted in higher biomass and biomass N, with the strength of these effects varying strongly with site fertility. Shrub species removals never resulted in altered stable N isotope ratios (delta(15)N), suggesting that the niche breadth of the three shrubs was unaffected by the presence of neighboring shrub species. In the functional group removal experiment, we found positive effects of feather moss removal on V. myrtillus biomass and biomass N, and negative effects on E. hermaphrotium N concentration and V. vitis-idaea biomass and biomass N. Tree root removal also caused a significant shift in foliar delta(15)N of V. myrtillus and altered the delta(15)N, biomass, and biomass N of E. hermaphroditum. Collectively, these results show that the resource acquisition and niche breadth of the three shrub species are often affected by neighbors, and further that both the identity of neighbors and site fertility strongly determine whether these interactions are positive, negative, or neutral. These findings have implications for understanding species coexistence and the reciprocal relationships between productivity and species diversity in this ecosystem.  相似文献   

5.
Edwards KF  Stachowicz JJ 《Ecology》2011,92(5):1094-1103
For sessile organisms, dispersal and recruitment are typically spatially stochastic, but there is little understanding of how this variability scales up to influence processes such as competitive coexistence. Here we argue that coexistence of benthic marine animals is enhanced by stochastic differences between species in the spatial distribution of larval settlement. Differentiation of settlement distributions among competitors results in intraspecifically aggregated settlement, which can reduce overall interspecific competition and increase overall intraspecific competition. We test for the components of this mechanism using a pair of subtidal invertebrates, and we find that the mean interspecific effect of the dominant competitor is substantially reduced by natural settlement variability. Using a simulation parameterized with experimental data, we find that variable settlement could play an important role in long-term coexistence between these species. This mechanism may apply broadly to benthic marine communities, which can be highly diverse and typically exhibit large settlement fluctuation over a range of scales.  相似文献   

6.
Facilitation and competition are ecological interactions that are crucial for the organization of plant communities. Facilitative interactions tend to occur among distantly related species, while the strength of competition tends to decrease with phylogenetic distance. The balance between both types of interactions will ultimately determine the specific composition of multispecies associations. Although multispecies patches are the arena in which coexistence develops among different phylogenetic groups within communities, the specific processes that occur across life stages have not been explored. Here we study how different species, in composing discrete patches in central Mexico, exert competitive or facilitative effects on seeds and seedlings. We relate these interactions to phylogenetic relationships among nurse species and beneficiary species, and among members of the patches. Survivorship and growth rates of the columnar cactus Neobuxbaumia mezcalaensis were highly positively related to increasing phylogenetic distance to different nurse species, to the presence of related species in patches, and to mean phylogenetic distances to the rest of the species in the patch. Each of these three elements influenced N. mezcalaensis differently, with different nurse species varying substantially in their early effects on emergence, and the nearest relatives and species composition of patches varying in their late effects on survival and growth. Our results emphasize that evolutionary relationships among co-occurring species in vegetation clumps exert direct and indirect effects on plants, affecting individual performance and species coexistence.  相似文献   

7.
Yenni G  Adler PB  Ernest SK 《Ecology》2012,93(3):456-461
Theory has recognized a combination of niche and neutral processes each contributing, with varying importance, to species coexistence. However, long-term persistence of rare species has been difficult to produce in trait-based models of coexistence that incorporate stochastic dynamics, raising questions about how rare species persist despite such variability. Following recent evidence that rare species may experience significantly different population dynamics than dominant species, we use a plant community model to simulate the effect of disproportionately strong negative frequency dependence on the long-term persistence of the rare species in a simulated community. This strong self-limitation produces long persistence times for the rare competitors, which otherwise succumb quickly to stochastic extinction. The results suggest that the mechanism causing species to be rare in this case is the same mechanism allowing those species to persist.  相似文献   

8.
Experimental evolution is relevant to ecology because it can connect physiology, and in particular metabolism, to questions in ecology. The investigation of the linkage between the environment and the evolution of metabolism is tractable because these experiments manipulate a very simple environment to produce predictable evolutionary outcomes. In doing so, microbial selection experiments can examine the causal elements of natural selection: how specific traits in varying environments will yield different fitnesses. Here, we review the methodology of microbial evolution experiments and address three issues that are relevant to ecologists: genotype-by-environment interactions, ecological diversification due to specialization, and negative frequency-dependent selection. First, we expect that genotype-by-environment interactions will be ubiquitous in biological systems. Second, while antagonistic pleiotropy is implicated in some cases of ecological specialization, other mechanisms also seem to be at work. Third, while negative frequency-dependent selection can maintain ecological diversity in laboratory systems, a mechanistic (biochemical) analysis of these systems suggests that negative frequency dependence may only apply within a narrow range of environments if resources are substitutable. Finally, we conclude that microbial experimental evolution needs to avail itself of molecular techniques that could enable a mechanistic understanding of ecological diversification in these simple systems.  相似文献   

9.
We use permanent-plot data from the USDA Forest Service's Forest Inventory and Analysis (FIA) program for an analysis of the effects of competition on tree growth along environmental gradients for the 14 most abundant tree species in forests of northern New England, USA. Our analysis estimates actual growth for each individual tree of a given species as a function of average potential diameter growth modified by three sets of scalars that quantify the effects on growth of (1) initial target tree size (dbh), (2) local environmental conditions, and (3) crowding by neighboring trees. Potential growth of seven of the 14 species varied along at least one of the two environmental axes identified by an ordination of relative abundance of species in plots. The relative abundances of a number of species were significantly displaced from sites where they showed maximum potential growth. In all of these cases, abundance was displaced to the more resource-poor end of the environmental gradient (either low fertility or low moisture). The pattern was most pronounced among early successional species, whereas late-successional species reached their greatest abundance on sites where they also showed the highest growth in the absence of competition. The analysis also provides empirical estimates of the strength of intraspecific and interspecific competitive effects of neighbors. For all but one of the species, our results led us to reject the hypothesis that all species of competitors have equivalent effects on a target species. Most of the individual pairwise interactions were strongly asymmetric. There was a clear competitive hierarchy among the four most shade-tolerant species, and a separate competitive hierarchy among the shade-intolerant species. Our results suggest that timber yield following selective logging will vary dramatically depending on the configuration of the residual canopy, because of interspecific variation in the magnitude of both the competitive effects of different species of neighbors and the competitive responses of different species of target trees to neighbors. The matrix of competition coefficients suggests that there may be clear benefits in managing for specific mixtures of species within local neighborhoods within stands.  相似文献   

10.
The coexistence of four cryptic species of Rhabditis (Pellioditis) marina (Nematoda: Rhabditidae) at small geographical scale challenges ecological competition theory and was therefore studied in the laboratory at two different salinities, where their performance in combined cultures was compared with that in monospecies cultures. We found that three of the four cryptic species were able to coexist, but that interspecific interactions (competition and facilitation) were common. Salinity had an effect on these interactions, with a shift from contest to scramble competition. This shift may result from an increased population development of two of the four species at the lower salinity in the monospecific cultures. This experiment demonstrates that abiotic conditions may play an important role in achieving coexistence between cryptic species and can alter the interspecific interactions between them.  相似文献   

11.
Both intraspecific spatial aggregation and temporal priority effects have the potential to increase long-term species coexistence. Theory and models suggest that intraspecific aggregation can facilitate coexistence via limited dispersal or asymmetric interaction distances. During community assembly, intraspecific aggregation may also delay interactions between more and less competitive species, thus creating opportunities for priority effects to facilitate longer-term coexistence. Few empirical studies have tested predictions about aggregation and coexistence, especially in the context of community assembly or ecological restoration. We investigated (1) impacts of intraspecific aggregation on the assembly of eight-species communities over three years, (2) the scale dependence of these impacts, and (3) implications for California prairie restoration. We planted eight native species in each of 19, 5 m wide, octagonal plots. Species were either interspersed throughout the plot or aggregated into eight, 2.2-m(2), wedge-shaped, monospecific sectors. Over three years, species diversity declined more quickly in interspersed plots than in aggregated plots. Two species had higher cover or increased more in interspersed than aggregated plots and were identified as "aggressives." Four species had higher cover or increased more in aggregated than interspersed plots and were identified as "subordinates." Within aggregated plots, aggressive species expanded beyond the sector in which they were originally seeded. Cover of aggressive species increased faster and reached higher values in sectors that were adjacent to the originally planted sector, compared to nonadjacent sectors. Cover of aggressive species also increased more and faster near plot centers, compared to plot edges. Areas near plot centers were representative of smaller aggregation patches since species were planted closer to heterospecific neighbors. Two subordinate species maintained higher cover near plot edges than near plot centers. Moreover, two subordinate species maintained higher cover when seeded in sectors farther away from aggressive species. These results suggest that initial intraspecific aggregation can facilitate species coexistence for at least three years, and larger aggregation patches may be more effective than smaller ones in the face of dispersing dominants. The creation of temporal priority effects may represent an underappreciated pathway by which intraspecific aggregation can increase coexistence. Restorationists may be able to maintain more diverse communities by planting in a mosaic of monospecific patches.  相似文献   

12.
城市化正在全球范围内迅速发展,它对生物多样性的不利影响是明显的,但彼此之间的矛盾也不是不能协调解决。现代化与自然共存、经济建设与生物多样性共存,是人类追求的目标。本文从城市化的发展趋势、城市的生境特点、城市化对生物多样性的影响等方面,来探讨实现现代化与自然共存的途径。  相似文献   

13.
Schreiber SJ  Bürger R  Bolnick DI 《Ecology》2011,92(8):1582-1593
Natural populations are heterogeneous mixtures of individuals differing in physiology, morphology, and behavior. Despite the ubiquity of phenotypic variation within natural populations, its effects on the dynamics of ecological communities are not well understood. Here, we use a quantitative genetics framework to examine how phenotypic variation in a predator affects the outcome of apparent competition between its two prey species. Classical apparent competition theory predicts that prey have reciprocally negative effects on each other. The addition of phenotypic trait variation in predation can marginalize these negative effects, mediate coexistence, or generate positive indirect effects between the prey species. Long-term coexistence or facilitation, however, can be preceded by long transients of extinction risk whenever the heritability of phenotypic variation is low. Greater heritability can circumvent these ecological transients but also can generate oscillatory and chaotic dynamics. These dramatic changes in ecological outcomes, in the sign of indirect effects, and in stability suggest that studies which ignore intraspecific trait variation may reach fundamentally incorrect conclusions regarding ecological dynamics.  相似文献   

14.
To counteract global species decline, modern biodiversity conservation engages in large projects, spends billions of dollars, and includes many organizations working simultaneously within regions. To add to this complexity, the conservation sector has hierarchical structure, where conservation actions are often outsourced by funders (foundations, government, etc.) to local organizations that work on‐the‐ground. In contrast, conservation science usually assumes that a single organization makes resource allocation decisions. This discrepancy calls for theory to understand how the expected biodiversity outcomes change when interactions between organizations are accounted for. Here, we used a game theoretic model to explore how biodiversity outcomes are affected by vertical and horizontal interactions between 3 conservation organizations: a funder that outsourced its actions and 2 local conservation organizations that work on‐the‐ground. Interactions between the organizations changed the spending decisions made by individual organizations, and thereby the magnitude and direction of the conservation benefits. We showed that funders would struggle to incentivize recipient organizations with set priorities to perform desired actions, even when they control substantial amounts of the funding and employ common contracting approaches to enhance outcomes. Instead, biodiversity outcomes depended on priority alignment across the organizations. Conservation outcomes for the funder were improved by strategic interactions when organizational priorities were well aligned, but decreased when priorities were misaligned. Meanwhile, local organizations had improved outcomes regardless of alignment due to additional funding in the system. Given that conservation often involves the aggregate actions of multiple organizations with different objectives, strategic interactions between organizations need to be considered if we are to predict possible outcomes of conservation programs or costs of achieving conservation targets.  相似文献   

15.
Graff P  Aguiar MR  Chaneton EJ 《Ecology》2007,88(1):188-199
Isolating the single effects and net balance of negative and positive species effects in complex interaction networks is a necessary step for understanding community dynamics. Facilitation and competition have both been found to operate in harsh environments, but their relative strength may be predicted to change along gradients of herbivory. Moreover, facilitation effects through habitat amelioration and protection from herbivory may act together determining the outcome of neighborhood plant-plant interactions. We tested the hypothesis that grazing pressure alters the balance of positive and negative interactions between palatable and unpalatable species by increasing the strength of positive indirect effects mediated by associational resistance to herbivory. We conducted a two-year factorial experiment in which distance (i.e., spatial association) from the nearest unpalatable neighbor (Stipa speciosa) and root competition were manipulated for two palatable grasses (Poa ligularis and Bromus pictus), at three levels of sheep grazing (none, moderate, and high) in a Patagonian steppe community. We found that grazing shifted the effect of Stipa on both palatable grasses, from negative (competition) in the absence of grazing to positive (facilitation) under increasing herbivore pressure. In ungrazed sites, belowground competition was the dominant interaction, as shown by a significant reduction in performance of palatable grasses transplanted near to Stipa tussocks. In grazed sites, biomass of palatable plants was greater near than far from Stipa regardless of competition treatment. Proximity to Stipa reduced the amount of herbivory suffered by palatable grasses, an indirect effect that was stronger under moderate than under intense grazing. Our results demonstrate that facilitation, resulting mainly from protection against herbivory, is the overriding effect produced by unpalatable neighbors on palatable grasses in this rangeland community. This finding challenges the common view that abiotic stress amelioration should be the predominant type of facilitation in arid environments and highlights the role of herbivory in modulating complex neighborhood plant interactions in grazing systems.  相似文献   

16.
Acoustic territorial displays are common among birds but comparatively rare among mammals. An exceptionally vocal mammal well-known for its elaborate territorial displays is the polygynous greater sac-winged bat, Saccopteryx bilineata. Male S. bilineata are often philopatric and establish small territories in their birth colony in which females can roost during the day. During territorial defense, males produce complex territorial songs that are learned through vocal imitation. Territorial songs are mainly produced at dawn and dusk. We studied social influences on male vocal activity and the occurrence of vocal signatures in territorial songs of 27 male S. bilineata from 12 different-sized colonies in Panama. Males produced significantly more territorial songs when they had more territorial neighbors or when they had females roosting in their territories, indicating that male vocal activity rises with increasing male–male competition. Territorial songs are multisyllabic vocalizations with low-frequency buzz syllables being most prominent. We found statistical evidence for a pronounced individual signature encoded in the buzz syllables of territorial songs that could facilitate individual recognition among rival neighbors. Additionally, we found a vocal group signature in territorial songs, suggesting that young males may learn territorial songs from more than one tutor male. Resident male S. bilineata appear to cooperatively defend their colony against male intruders, making a group signature in territorial songs potentially advantageous.  相似文献   

17.
Achieving coexistence between large carnivores and humans in human-dominated landscapes (HDLs) is a key challenge for societies globally. This challenge cannot be adequately met with the current sectoral approaches to HDL governance and an academic community largely dominated by disciplinary sectors. Academia (universities and other research institutions and organizations) should take a more active role in embracing societal challenges around conservation of large carnivores in HDLs by facilitating cross-sectoral cooperation to mainstream coexistence of humans and large carnivores. Drawing on lessons from populated regions of Europe, Asia, and South America with substantial densities of large carnivores, we suggest academia should better embrace the principles and methods of sustainability sciences and create institutional spaces for the implementation of transdisciplinary curricula and projects; reflect on research approaches (i.e., disciplinary, interdisciplinary, or transdisciplinary) they apply and how their outcomes could aid leveraging institutional transformations for mainstreaming; and engage with various institutions and stakeholder groups to create novel institutional structures that can respond to multiple challenges of HDL management and human–large carnivore coexistence. Success in mainstreaming this coexistence in HDL will rest on the ability to think and act cooperatively. Such a conservation achievement, if realized, stands to have far-reaching benefits for people and biodiversity.  相似文献   

18.
Boege K 《Ecology》2010,91(9):2628-2637
Herbivory and competition are two of the most common biotic stressors for plants. When occurring simultaneously, responses to one interaction can constrain the induction of responses to the other interaction due to resource limitation and other interactive effects. Thus, to maximize fitness when interacting with competitors and herbivores, plants are likely to express particular combinations of plastic responses. This study reports the interactive effects of herbivory and competition on responses induced in Tithonia tubaeformis plants and describes how natural selection acts on particular plastic responses and on their different combinations. Competition induced a stem elongation response, expressed through an increase in height and mean internode length, together with a decrease in basal diameter. Interestingly, realized resistance increased in both competition and herbivory treatments, suggesting a plastic response in both constitutive and induced resistance traits. Particular combinations of plastic responses defined three plant phenotypes: vigorous, elongated, and resistant plants. The ecological context in which plants grew modified the traits and the particular combinations of plastic responses that were favored by selection. Vigorous plants were favored by selection in all environments, except when they were damaged by herbivores in the absence of neighbors. The combination of responses defining an elongated plant phenotype was favored by selection in crowded conditions. Resistance was negatively selected in the absence of competition and herbivory but favored in the presence of both interactions. In addition, contextual analyses detected that population structure in heterogeneous environments can also influence the outcomes of selection. These findings suggest that natural selection can act on particular combinations of plastic responses, which may allow plants to adjust their phenotypes to those that promote greater fitness under particular ecological conditions.  相似文献   

19.
Summary Previous theory and research have suggested that bird species with song repertoires in general, and song sparrows (Melospiza melodia) in particular, cannot readily discriminate between the songs of neighbors and strangers. In a recent study (Stoddard et al. 1991) we showed that song sparrows can in fact discriminate neighbors from strangers on the basis of song. In this study we sought to demonstrate that song sparrows can make the finer discrimination between individual neighbors and that they can do so on the basis of a single song type. We compared the response of territorial males to song playback of neighbors and strangers at three locations: the neighbor's regular boundary, the opposite boundary, and the center of the territory. The birds showed strong neighbor-stranger discrimination at the regular boundary but not at the opposite boundary, nor in the center of the territory. The differences in song discrimination between different boundary locations indicate that song sparrows associate particular songs with particular territories, effectively discriminating between individual neighbors on the basis of song. Song repertoires themselves do not interfere with neighbor recognition to the extent originally postulated. As speakers are moved inside the territory from the border, however, the degree of discrimination diminishes. We believe that differences in speaker placement may have contributed to the variability in neighbor-stranger discrimination observed in previous studies of the song sparrow and perhaps other repertoire species as well. This interpretation is consistent with data from another song sparrow population showing that half the territory takeovers are by immediate neighbors.  相似文献   

20.
Boyden S  Binkley D  Stape JL 《Ecology》2008,89(10):2850-2859
Genetic variation and environmental heterogeneity fundamentally shape the interactions between plants of the same species. According to the resource partitioning hypothesis, competition between neighbors intensifies as their similarity increases. Such competition may change in response to increasing supplies of limiting resources. We tested the resource partitioning hypothesis in stands of genetically identical (clone-origin) and genetically diverse (seed-origin) Eucalyptus trees with different water and nutrient supplies, using individual-based tree growth models. We found that genetic variation greatly reduced competitive interactions between neighboring trees, supporting the resource partitioning hypothesis. The importance of genetic variation for Eucalyptus growth patterns depended strongly on local stand structure and focal tree size. This suggests that spatial and temporal variation in the strength of species interactions leads to reversals in the growth rank of seed-origin and clone-origin trees. This study is one of the first to experimentally test the resource partitioning hypothesis for intergenotypic vs. intragenotypic interactions in trees. We provide evidence that variation at the level of genes, and not just species, is functionally important for driving individual and community-level processes in forested ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号