首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chondrus crispus (Stackhouse) is a perennial red seaweed, common in intertidal and shallow sublittoral communities throughout the North Atlantic Ocean. In the intertidal zone, C. crispus may experience rapid temperature changes of 10 to 20C° during a single immerison-emerision cycle, and may be exposed to temperatures that exceed the thermal limits for long-term survival. C. crispus collected year-round at Long Cove Point, Chamberlain, Maine, USA, during 1989 and 1990, underwent phenotypic acclimation to growth temperature in the laboratory. This phenotypic acclimation enhanced its ability to withstand brief exposure to extreme temperature. Plants grown at summer seawater temperature (20°C) were able to maintain constant rates of lightsaturated photosynthesis at 30°C for 9 h. In contrast, light-saturated photosynthetic rates of plants grown at winter seawater temperature (5°C) declined rapidly following exposure to 30°C, reached 20 to 25% of initial values within 10 min, and then remained constant at this level for 9 h. The degree of inhibition of photosynthesis at 30°C was also dependent upon light intensity. Inhibition was greatest in plants exposed to 30°C in darkness or high light (600 mol photons m-2s-1) than in plants maintained under moderate light levels (70 to 100 mol photons m-2s-1). Photosynthesis of 20°C-acclimated plants was inhibited by exposure to 30°C in darkness or high light, but the degree of inhibition was less than that exhibited by 5°C-grown plants. Not only was light-saturated photosynthesis of 20°C plants less severely inhibited by exposure to 30°C than that of 5°C plants, but the former also recovered faster when they were returned to growth conditions. The mechanistic basis of this acclimation to growth temperature is not clear. Our results indicate that there were no differences between 5 and 20°C-grown plants in the thermal stability of respiration, electron transport associated with Photosystems I or II, Rubisco or energy transfer between the phycobilisomes and Photosystem II. Overall, our results suggest that phenotypic acclimation to seawater temperature allows plants to tolerate higher temperatures, and may play an important role in the success of C. crispus in the intertidal environment.  相似文献   

2.
The net photosynthesis of intertidal, subtidal, carposporic, tetrasporic, and winter versus summer acclimatized plants of Chondrus crispus Stackhouse were evaluated under different temperatures and quantities of light. The optimum temperature and light conditions for net photosynthesis of C. crispus are seasonally and spatially variable, and there is an adaptive shift in the photosynthetic capacity at different seasons and positions on the shore. Plants collected during the fall and winter had lower light optima (465 to 747 ft-c) for net photosynthesis than spring and summer specimens (about 1000 ft-c). Intertidal populations exhibited a higher rate of net photosynthesis between 250 and 2819 ft-c than subtidal plants. Summer materials have a greater tolerance to high temperatures and a higher temperature optimum than winter materials. Shallow subtidal populations (-6m) exhibited a higher temperature optimum than deep subtidal plants (-12m). Tetrasporic plants (diploid) showed a higher rate of net photosynthesis than carposporic plants (haploid). It is suggested that the diploid plants of C. crispus may extend deeper in the subtidal zone, because they have a higher rate of net photosynthesis than carposporic plants. The results of the present studies are compared with previous physiological studies of C. crispus.Published with the approval of the Director of the New Hampshire Agriculture Experiment Station as Scientific Contribution Number 742.  相似文献   

3.
Photosynthesis in whole plants of Chondrus crispus   总被引:2,自引:0,他引:2  
Photosynthesis in whole plants of Chondrus crispus Stackhouse was measured by 14C uptake under various light intensities and temperature regimes. In plants collected from waters of 6° to 7°C, photosynthesis did not increase with light intensity over a range of 200 to 2400 foot candles (ft-c). However, in plants collected from waters of 10° to 12°C, the rate of photosynthesis was lower over the range 200 to 1400 ft-c but, at 2000 ft-c, increased to a level similar to that of the 6° to 7°C plants. Ethanol-soluble and insoluble fractions showed similar patterns.  相似文献   

4.
Growth rates of excised apical segments from three Chondrus crispus Stackhouse clones were rapid, reproducible and easily measured using simple equipment. Clonal segments exhibited a high degree of phenotypic stability, with coefficients of variation in growth rates being typically less than 5%. Sensitivity of the assay was demonstrated using 24-h pulses of the toxicants Cu2+ (10 to 150 ppb) and the molluscicide Bayluscide (100 to 500 ppb). As a further demonstration of applicability of this assay system, growth rates were measured over two consecutive 24-h photoperiods using a normally pigmented red gametophytic clone and a green colored mutant derived from it. Growth rates were highest in the first hours of the light phase for both clones, with growth of the green mutant being consistently inferior to that of the normally pigmented one. Significant changes were measured with intervals as short as 4 h using only five apical segments for each treatment. The C. crispus assay described is sensitive, relatively rapid, and statistically robust when applied to toxicant testing in seawater and to physiological studies.  相似文献   

5.
Marine macroalgae need carbon-concentrating mechanisms because they have only limited access to CO2 in their natural environment. Previous studies have shown that one important strategy common to many algae is the activity of periplasmic carbonic anhydrases that catalyse the dehydration of HCO3- into CO2. The latter can then cross the plasma membrane by passive diffusion. We hypothesised that an active (energy-consuming) mechanism might also be involved in the membrane transport of CO2, as is the case in a number of microalgae. Coccotylus truncatus was chosen as a model organism for this study because it belongs to a group of algae that usually lack direct HCO3- uptake: sublittoral red algae. The method used to study carbon uptake was pH drift of the seawater medium surrounding the algae in a closed vessel, with and without the addition of specific inhibitors or proton buffers. Measured parameters included pH, total inorganic carbon and alkalinity of the seawater medium. Our results suggest that, in C. truncatus, periplasmic carbonic anhydrase as well as H+ extrusion, probably driven by a vanadate-sensitive P-type H+-ATPase (proton pump), are involved in CO2 uptake. No direct uptake of HCO3- was discovered. This paper also presents data on the buffer capacity of several proton buffers and the carbon-uptake inhibitors acetazolamide, 4,4'-diisothiocyano-stilbene-2,2'-disulfonate (DIDS) and orthovanadate in Baltic Sea water with a salinity of 6.5 psu.  相似文献   

6.
Cross-infection experiments were performed to determine the influence of temperature on infection rate in the Chondrus crispus Stackhouse-Petersenia pollagaster (Petersen) Sparrow pathosystem. C. crispus thalli were collected at Pubnico Harbor, Nova Scotia, Canada in the fall of 1981 to 1984. Infective zoospores were used to inoculate healthy thalli at five different temperatures. The highest infection rate was obtained at 20°C, while significantly lower rates were obtained at temperature extremes. The parasite's life cycle, consisting of infection of healthy thalli, endobiotic development, and release of zoospores, was completed in 48 to 72 h at 15° to 20°C.  相似文献   

7.
The induction of in vivo chlorophyll a (chl a) fluorescence (change in fluorescence intensity during a time-scale of ms to s) was measured to determine the potential of this technique for assessing the physiological condition of the macroalgae Chondrus crispus and Ulva sp. A gradient in variable fluorescence (P-F 0 =peak minus initial fluorescence, a measure of Photosystem II activity) was found along the frond of C. crispus, the values increasing with distance from the thallus apex. No gradient was observed for Ulva sp. thalli. Nitrogen- or phosphorus-depleted Ulva sp. required a longer dark-conditioning period and had lower values of P-F 0 than did controls. In contrast, no differences were found in P-F 0 of N- or P-depleted C. crispus unless values were normalized to chl a. The irradiance history of C. crispus strongly influenced P-F 0 , even after dark-conditioning: P-F 0 declined by about 70% as the mean daily natural irradiance increased between 2 February and 14 March 1986; a negative correlation was observed between P-F 0 and the photon flux density 1 d prior to the measurement; P-F 0 remained elevated when C. crispus was grown under a low photon flux density; and P-F 0 decreased in thalli within 5 d of transfer from growth under natural irradiance to an incubator with artificial irradiance. Changes in variable fluorescence at different growth irradiances of C. crispus may be due to adaptive changes in the relative absorption cross-section of this alga. The influence of irradiance history on Ulva sp. was minimal in comparison.Issued as NRCC No. 28730Part of this study was carried out while employed by Focal Marine Ltd., Bedford, Nova Scotia, Canada  相似文献   

8.
Siderastrea siderea and Montastrea annularis were labeled in situ with NaH14CO3. The corals were sampled over a period of 11 days and the radioactivity remaining in the ethanolsoluble and ammonia-soluble fractions measured. Total radioactivity in the corals fell to about 1/3 after one night and then to about 1/3 in the next 10 days. The ethanol-soluble radioactivity is probably converted to the less soluble, ammonia-extractable, material in the dark.Contribution No. 1514 from the University of Miami, Rosenstiel School of Marine and Atmospheric Science, 10 Rickenbacker Causeway, Miami, Florida 33149, USA.  相似文献   

9.
The bioavailability of iron in seawater filtered through a 0.025-m filter was investigated using 59Fe-labeled iron uptake by the macroalga Laminaria japonica (Areschoug: Phaeophyta) (collected in the northern Japan Sea 1993) as an assay. About 80% of the iron in the 0.025-m filtered coastal seawater was soluble and/or small colloidal organically bound iron, associated with natural organic ligands forming complexes with ferric ion. After decomposition of the organic matter by ultraviolet (UV) irradiation, 55% of the iron addition [or 0.6 nM, nearly the concentration of Fe(OH) 2 + in equilibrium with amorphous hydrous ferric oxide in seawater at pH 8.0] in the 0.025-m filtered coastal seawater was taken up by the macroalga. Since the iron concentrations in the 0.025-m filtered coastal seawater are 0.1 to 2.0 nM and only 0.6 nM of the iron is likely available to biota over 1 to 2 d, we suggest that only small amounts of bioavailable iron exist in coastal seawater not affected by inflow from land and that a significant fraction of dissolved (<0.025 ) iron occurs in forms, such as organic iron complexes, other than the simple hydroxo-complex species predicted by thermodynamic models.  相似文献   

10.
The effect of freezing on photosynthetic metabolism was studied in the red algae, Chondrus crispus and Mastocarpus stellatus. Plants of both species were collected from the intertidal at Chamberlain or Kresge Point, Maine, USA (43°56N, 69°54W) between February and March 1987. Photosynthetic rates were measured immediately after freezing at-20°C and following recovery periods in seawater. Photosynthesis in C. crispus declined rapidly following freezing, falling to 70% of control values within 1 h and 30% after 3 h exposure. Minimum photosynthetic rates (7 to 9% of controls) occurred following freezing exposures of 12 h or more. Full photosynthetic recovery in C. crispus after 3 h at-20°C required 48 h. Photosynthesis in C. crispus did not fully recover in plants frozen for 6 h or more. In contrast, photosynthesis in M. stellatus was relatively unaffected by freezing exposures of <12 h. Twelve hours or more at-20°C reduced photosynthesis to 55% of controls. Photosynthesis in M. stellatus fully recovered from 24 h at-20°C within 24 h. In both species the reduction of photosynthesis by freezing was associated with damage to the plasma membrane and reduced efficiency of energy transfer from phycobilisomes to chlorophyll a, but did not appear to involve ribulose-1,5-bisphosphate carboxylase oxygenase activity. The freezing tolerance of C. crispus and M. stellatus positively correlates with their respective intertidal distributions, suggesting that freezing may be involved in controlling the distributions of these species on the shore.  相似文献   

11.
The estuarine macroalga Enteromorpha prolifera was collected from Coos Bay, Oregon, USA during 1981, and its release of photosynthate as dissolved organic carbon (DOC) was studied using 14C as a tracer. During photosynthesis in 30 S sea water, with a fixation rate averaging 7.37 mg C g-1 dry wt h-1, release ranged from 0.13 to 0.57 mg C g-1 dry wt h-1 and from 1.65 to 6.23% of total fixed carbon. Release of DOC appears to be linear with time over 3 h. As exposed algae become increasingly desiccated, their photosynthetic rates decline dramatically, but upon reimmersion the highly desiccated algae lose a larger fraction of their fixed carbon than the slightly desiccated algae. This loss comes in a pulse release of DOC over the initial 15 min, followed by declining release rates. The pulse loss due to rainfall is 5 times greater than that due to tidal resubmergence, and may briefly exceed the prior photosynthetic rate. Although lowering the salinity from 30 to 5 does not substantially alter photosynthetic rates, it does increase the DOC release range up to 1.02 mg C g-1 dry wt h-1 and 16.10% of fixed carbon. Heterotrophic microbes from the algal habitat readily use the available DOC at about 15% h-1.  相似文献   

12.
Five seagrass species [Halophila ovalis (R.Br) Hook. f., Halodule uninervis (Forsk.) Aschers., Zostera capricorni Aschers., Cymodocea serrulata (R.Br) Aschers. (ed.) and Syringodium isoetifolium (Aschers.) Dandy] from Moreton Bay, Australia, were grown under increased (+25%) and ambient levels of ultraviolet (UV) radiation and photosynthetically active radiation (PAR), and various morphological and physiological responses were examined. Leaf fluorescence ratio (variable:maximum fluorescence) in conjunction with xanthophyll pigment content (violaxanthin, antheraxanthin and zeaxanthin) were used as a measure of photosynthetic efficiency. In addition, absorbance in the UV spectrum, chlorophyll content and chloroplast density were used as indicators of photosynthetic capacity. The seagrass species examined had varying degrees of sensitivity to UV radiation. Halophila ovalis and Halodule uninervis were the most sensitive species, exhibiting the largest decrease in photosynthetic efficiency and chloroplast density and the smallest increase in UV-blocking pigments in response to UV radiation. The more UV-tolerant species, Z. capricorni, C. serrulata and S. isoetifolium, were only significantly affected by increased levels of UV radiation, showing a gradual decline in photosynthetic efficiency and chloroplast density and the largest increases in UV-blocking pigment. UV sensitivity corresponded with leaf morphology, with thicker leaves (as in Z. capricorni, C. serrulata and S. isoetifolium) providing greater morphological protection for UV-sensitive organelles. Not all species were significantly affected by increasing PAR, with decreases in fluorescence ratio and increases in zeaxanthin content observed only in C. serrulata and S. isoetifolium. Sensitivity to PAR corresponded with morphological plasticity; species exhibiting a wide range of growth forms (e.g. Halophila ovalis, Halodule uninervis and Z. capricorni) were the least sensitive to increases in PAR. Seagrass depth-distributions in Moreton Bay appear to be influenced by species sensitivity to UV radiation and PAR, with other factors such as epiphytes, shading and nutrients also affecting species' tolerance. All species were affected to some degree by UV radiation, thus future changes in UV intensity may have repercussions on the distribution of seagrasses.  相似文献   

13.
High-frequency fluctuations due to wavefocusing are prominent characteristics of light in shallow marine environments. Effects of high-frequency (0.01 to 1 Hz) fluctuating light on growth rates of the red algaChondrus crispus Stackh., collected from Crane Neck Point, New York, USA, during July 1988, were determined by comparing plants grown under fluctuating and constant light regimes with similar daily irradiances. At high daily irradiance, growth rates were higher under fluctuating light than under constant light. Fluctuating light effects were frequency-dependent; growth was enhanced by fluctuations at 0.1 and 1 Hz, but not by fluctuations at 0.01 Hz. At low daily irradiance, growth rates were not affected by fluctuating light at any frequency tested. Enhancement of growth was not due to effects of high-frequency light fluctuations on photoacclimation responses ofC. crispus. Plants grown under fluctuating light at high daily irradiance actually exhibited lower photosynthetic capacity and efficiency (determined under constant light) than plants grown under constant light. These differences were attributable to variation in the density of Photosystem II reaction centers, which was low in plants grown under fluctuating light. Maximum turnover rate of whole-chain electron transport and activity of ribulose-1,5-bisphosphate carboxylase were affected by total daily irradiance, but not by high-frequency light fluctuations. Enhancement of growth under fluctuating light was partly attributable to reduced rates of dark respiration compared to rates of plants grown under constant light. The results also provided indirect evidence that high-frequency light fluctuations may enhance instantaneous photosynthetic rates. This effect could increase daily carbon gain and, therefore, stimulate growth ofC. crispus under high-frequency light fluctuations.  相似文献   

14.
The effect of repeated daily freezing on photosynthesis, growth and phenotypic acclimation to freezing was studied in the red algaeChondrus crispus Stackhouse andMastocarpus stellatus (Stackhouse in With.) Guiry. Algae used for experiments were collected from Chamberlain, Maine, between March and August 1987, and field observations and experiments were carried out at Chamberlain and Kresge Point, Maine between March 1987 and March 1989. After ca 30 d of daily freezing for 3 h at –5°C photosynthesis ofC. crispus was reduced to 55% of control values. Growth rates ofC. crispus were also reduced in fronds frozen daily compared to unfrozen controls, and eventually fronds became bleached and fragmented resulting in biomass losses. Fronds ofC. crispus, frozen daily, had higher photosynthetic rates following freezing events than unfrozen controls indicating that this species can acclimate to freezing conditions. Acclimation to freezing involves the light-harvesting reactions of photosynthesis. In contrast, photosynthesis and growth inM. stellatus were unaffected by repeated daily freezing for 3 h at –5°C for 36 d. No differences in photosynthesis following freezing were observed between frozen and control fronds suggesting thatM. stellatus does not phenotypically acclimate to freezing. The greater freezing tolerance ofM. stellatus relative toC. crispus results, in part, from genetic adaptations associated with plasma membranes and the light-harvesting reactions of photosynthesis.  相似文献   

15.
The mechanisms for uptake of inorganic carbon (Ci) for photosynthesis and calcification of a perforate foraminifer, Amphistegina lobifera Larsen, and an imperforate species, Amphisorus hemprichii Ehrenberg, from the Gulf of Eilat, Red Sea were studied in 1986–1987 using 14C tracer techniques. Total Ci uptake of A. lobifera and photosynthetic carbon uptake of A. hemprichii fit the Hill-Whittingham equation that describes the overall rate of enzymatic reactions that are provided with their substrate through a diffusion barrier. This suggests that diffusion is the rate limiting step for total Ci uptake in A. lobifera. Photosynthesis by the isolated symbionts and uptake of CO3 2- for calcification obey Michaelis-Menten kinetics indicating that enzymatic reactions determine the rate of the separate processes. Both photosynthesis and calcification can be inhibited without affecting each other. Calcification rates in A. lobifera were optimal at Ca levels around normal seawater concentration and were sensitive to inhibitors of respiratory adenosine triphosphate (ATP) generation and Ca-ATP-ase. This indicates that Ca uptake is also active. Calcification rates of A. hemprichii increased linearly as a function of external Ci concentration over the entire experimental range (0 to 4 mM Ci). In contrast, photosynthetic rates showed Hill-Whittingham type kinetics. The dependence of calcification on the CO3 2- concentration was also linear, suggesting that its diffusion is the rate limiting step for calcification in A. hemprichii. Increasing Ca concentrations yielded higher calcification rates over the entire range measured (0 to 40 mM Ca). Calcification in A. hemprichii was less sensitive to inhibitors of ATP generation than in A. lobifera, suggesting that in A. hemprichii energy supply is less important for this process.  相似文献   

16.
17.
Fresh snow and streamwater samples were collected on a daily basis throughout the winter and spring periods of 1984 and 1985 at a remote, upland catchment located within the Cairngorm Mountains, Scotland. Laboratory based partial-melt experiments undertaken on the snow samples demonstrated that both fractionation and preferential elution of trace-elements occur during melting, with the concentrations being 1.3 to 5.4 times greater than in the first 10 percent meltwater fractions than in the bulk snow (Abrahamset al., in press). At the onset of snowpack melting, the ions may be mobilised and redistributed within the snow profile, concentrating at depths from where they may be quickly removed during the early spring run-offf. The raised major- (Ca, Mg, Na, Cl, NO3 and SO4) and trace-element (Al, Cd, Cu, Fe, Mn and Pb) concentrations recorded in the streamwaters during the acid-flush episodes at the time of the first major periods of snow-melt, reflect both the meltwater composition and the influence of the catchment soils (Abrahamset al., submitted for publication). Differences in streamwater chemistry during the two periods of snow-melt which were studies can probably be related to the fact that snow-melt occurs under a variety of circumstances with significant variations in the sequence of precipitation, melt-events, temperature and snowcover occurring from year to year, even in the same catchment. The high concentrations of Al (up to 330 g L–1) in the sireamwaters at the time of snow-melt, probably reflect leaching of this element from the soil. These elevated concentrations, in combination with other streamwater parameters, may prove toxic to aquatic life-forms at this time of year.  相似文献   

18.
A. Israel  S. Beer  G. Bowes 《Marine Biology》1991,110(2):195-198
Photosynthetic properties of the common red algaGracilaria conferta, collected from the eastern Mediterranean Sea were investigated in 1989, in order to begin evaluating its adaptative strategies with regard to the inorganic carbon composition of seawater, and to test whether the alleged C4 photosynthesis of anotherGracilaria species is common within the genus. Net photosynthetic rates ofG. conferta were, under ambient conditions of inorganic carbon (ca. 10µM, CO2 and 2.2 mM HCO 3 - ), not sensitive to O2 over the range 10 to 300µM, and the CO2 compensation point was low (ca. 0.005µM). Ribulose-1,5-bisphosphate carboxylase/oxygenase was the major carboxylating enzyme, with a crude extract activity of 175µmol CO2 g–1 fresh wt h–1 while phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase were present at 70 and 20%, respectively, of that activity. No activities of the decarboxylases NAD-and NADP-malic enzyme could be detected. The14C pulse-chase incorporation pattern showed thatG. conferta fixes inorganic carbon via the photosynthetic carbon reduction cycle only, with no evidence for photosynthetic C4 acid metabolism. Photosynthesis at the natural seawater pH of 8.2 was, at 25°C and saturating light, saturated at the ambient inorganic carbon concentration of 2.5 mM. It is proposed that, under ambient inorganic carbon conditions, a CO2 concentrating system other than C4 metabolism provides an internal CO2 concentration sufficient to suppress the O2 effect on ribulose-1,5-bisphosphate carboxylase/oxygenase and, thus, on photorespiration, in a medium where the external free CO2 concentration is lower than theK m(CO2) of the carboxylating enzyme. Since inorganic carbon, under natural saturating light conditions, seems not to be a limiting factor for photosynthesis ofG. conferta, it likely follows that other nutrients limit the growth of this alga in nature.  相似文献   

19.
To evaluate the influence of waste products from coal- and oil-fired power plants on the inorganic element content of plants, barley was grown in pots each with 22 kg of sandy loam supplied with increasing amounts of six waste products. The plants were harvested at maturity and analysed for a number of inorganic elements. The salinity of the soil was the limiting factor for the amount added in terms of plant growth. Concerning the quality of the plants as fodder, addition of the waste to the soil at levels of about 0.5% by weight increased the Se concentration of the barley from a level deficient for animals to that approaching sufficiency for animals. The increase in Cd from the flue gas desulphurization (FGD) products was deemed undesirable, even though the concentrations following this single addition were far from toxic. All other increases in element concentrations were without any biological significance.Environmental Geochemistry and Health, 1988,10(1), 21–25  相似文献   

20.
A. Israel  S. Beer 《Marine Biology》1992,112(4):697-700
In this continuing study on photosynthesis of the marine red alga Gracilaria conferta, it was found that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in crude extracts had a K m (CO2) of 85 M. Since seawater contains only ca. 10 M CO2, it appears that this alga must possess a CO2 concetrating system in order to supply sufficient CO2 to the vicinity of the enzyme. Because this species is a C3 plant (and thus lacks the C4 system for concentrating CO2), but can utilize HCO3 - as an exogenous carbon source, we examined whether HCO3 - uptake could be the initial step of such a CO2 concetrating system. The surface pH of G. conferta thalli was 9.4 during photosynthesis. At this pH, estimated maximal uncatalyzed HCO3 - dehydration (CO2 formation) within the unstirred layer was too slow to account for measured phostosynthetic rates, even in the presence of an external carbonic anhydrase inhibitor. This observation, and the marked pH increase in the unstirred layer following the onset of light, suggests that a HCO3 - transport system (probably coupled to transmembrane H+/OH- fluxes) operates at the plasmalemma level. The involvement of surface-bound carbonic anhydrase in such a system remains, however, obscure. The apparent need of marine macroalgae such as G. conferta for CO2 concentrating mechanisms is discussed with regard to their low affinity of Rubisco to CO2 and the low rate of CO2 supply in water. The close similarity between rates of Rubisco carboxylation and measured photosynthesis further suggests that the carboxylase activity, rather than inorganic carbon transport and intercoversion events, could be an internal limiting factor for photosynthetic rates of G. conferta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号