首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Significant ecological, hydrologic, and geomorphic changes have occurred during the 20th century along many large floodplain rivers in the American Southwest. Native Populus forests have declined, while the exotic Eurasian shrub, Tamarix, has proliferated and now dominates most floodplain ecosystems. Photographs from late 19th and early 20th centuries illustrate wide river channels with largely bare in-channel landforms and shrubby higher channel margin floodplains. However, by the mid-20th century, floodplains supporting dense Tamarix stands had expanded, and river channels had narrowed. Along the lower Green River in eastern Utah, the causal mechanism of channel and floodplain changes remains ambiguous due to the confounding effects of climatically driven reductions in flood magnitude, river regulation by Flaming Gorge Dam, and Tamarix invasion. This study addressed whether Tamarix establishment and spread followed climate- or dam-induced reductions in annual peak flows or whether Tamarix was potentially a driver of floodplain changes. We aged 235 Tamarix and 57 Populus individuals, determined the hydrologic and geomorphic processes that controlled recruitment, identified the spatial relationships of germination sites within floodplain stratigraphic transects, and mapped woody riparian vegetation cohorts along three segments of the lower Green River. The oldest Tamarix established along several sampling reaches in 1938, and 1.50-2.25 m of alluvium has accreted above their germination surfaces. Nearly 90% of the Tamarix and Populus samples established during flood years that exceeded the 2.5-year recurrence interval. Recruitment was most common when large floods were followed by years with smaller peak flows. The majority of Tamarix establishment and Green River channel narrowing occurred long before river regulation by Flaming Gorge Dam. Tamarix initially colonized bare instream sand deposits (e.g., islands and bars), and most channel and floodplain changes followed the establishment of Tamarix. Our results suggest that Tamarix recruitment was triggered by large annual floods that were followed by years with lower peak flows, not by periods of low flow alone. Tamarix appears to have actively invaded floodplains, while Populus colonization has been limited. Thus, Tamarix invasion may have greatly influenced floodplain development and riparian vegetation composition along the lower Green River since the early 20th century.  相似文献   

2.
A decline in the stature and abundance of willows during the 20th century occurred throughout the northern range of Yellowstone National Park, where riparian woody-plant communities are key components in multiple-trophic-level interactions. The potential causes of willow decline include climate change, increased elk browsing coincident with the loss of an apex predator, the gray wolf, and an absence of habitat engineering by beavers. The goal of this study was to determine the spatial and temporal patterns of willow establishment through the 20th century and to identify causal processes. Sampled willows established from 1917 to 1999 and contained far fewer young individuals than was predicted from a modeled stable willow population, indicating reduced establishment during recent decades. Two hydrologically distinct willow establishment environments were identified: fine-grained beaver pond sediments and coarse-grained alluvium. Willows established on beaver pond sediment earlier in time, higher on floodplain surfaces, and farther from the current stream channel than did willows on alluvial sediment. Significant linear declines from the 1940s to the 1990s in alluvial willow establishment elevation and lateral distance from the stream channel resulted in a much reduced area of alluvial willow establishment. Willow establishment was not well correlated with climate-driven hydrologic variables, but the trends were consistent with the effects of stream channel incision initiated in ca. 1950, 20-30 years after beaver dam abandonment. Radiocarbon dates and floodplain stratigraphy indicate that stream incision of the present magnitude may be unprecedented in the past two millennia. We propose that hydrologic changes, stemming from competitive exclusion of beaver by elk overbrowsing, caused the landscape to transition from a historical beaver-pond and willow-mosaic state to its current alternative stable state where active beaver dams and many willow stands are absent. Because of hydrologic changes in streams, a rapid return to the historical state may not occur by reduction of elk browsing alone. Management intervention to restore the historical hydrologic regime may be necessary to recover willows and beavers across the landscape.  相似文献   

3.
This study presents the modelling approach and impact assessment of different strategies for managing wetland water resources and groundwater dynamics of landscapes which are characterised by the hydrological interactions of floodplains and the adjacent lowlands. The assessment of such impacts is based on the analysis of simulation results of complex scenarios of land-use changes and changes of the density of the drainage-network. The method has been applied to the 198 km2 Lower Havel River catchment as a typical example of a lowland–floodplain landscape. The model used consists of a coupled soil water and groundwater model, where the latter one is additionally coupled to the surface channel network. Thus, the hydrological processes of the variable saturated soil zone as well as lateral groundwater flow and the interactions between surface water and groundwater are simulated in an integrated manner. The model was validated for several years of significantly different meteorological conditions. The comparison of lateral and vertical water balance components showed the dominance of lateral flow processes and the importance of the interactions between surface water and groundwater for the overall water balance and the hydrological state of that type of landscape.The simulation of land-use change scenarios showed only minor effects of land-use change on the water balance and groundwater recharge. Changes of groundwater recharge were particularly small within the wetland areas being part of the floodplain where interactions between surface water and groundwater are most pronounced. Alterations in vertical groundwater recharge were counter-balanced by the lateral interaction between groundwater and surface water. More significant deviations in groundwater recharge and storage were observed in the more peripheral areas towards the catchment boundaries which are characterised by greater groundwater distance from the surface and less intense of ground water–surface water interactions.However, the simulation results assuming a coarsening of the drainage network density showed the importance of drainage structure and geometry for the water balance: The removal of the artificial draining ditches in the floodplain would result in significant alterations of total groundwater recharge, i.e., less recharge from winter to early summer and an increase of groundwater recharge during summer and autumn. Furthermore the different effects of groundwater recharge alterations on the dynamics of groundwater stages within the wetland areas close to the floodplains compared to the more peripheral areas could be quantified. Finally, it will be discussed that a well-adjusted co-ordination of different management measures is required to reach a sustainable water resources management of such lowland–floodplain landscapes.  相似文献   

4.
To understand the consequences of human accelerated environmental change, it is important to document the effects on natural populations of an increasing frequency of extreme climatic events. In stream ecosystems, recent climate change has resulted in extreme variation in both thermal and hydrological regimes. From 2001 to 2004, a severe drought in western United States corresponded with earlier emergence of the adult stage of the high-altitude stream mayfly, Baetis bicaudatus. Using a long-term database from a western Colorado stream, the peak emergence date of this mayfly population was predicted by both the magnitude and date of peak stream flow, and by the mean daily water temperature, suggesting that Baetis may respond to declining stream flow or increasing water temperature as proximate cues for early metamorphosis. However, in a one-year survey of multiple streams from the same drainage basin, only water temperature predicted spatial variation in the onset of emergence of this mayfly. To decouple the effects of temperature and flow, we separately manipulated these factors in flow-through microcosms and measured the timing of B. bicaudatus metamorphosis to the adult stage. Mayflies emerged sooner in a warmed-water treatment than an ambient-water treatment; but reducing flow did not accelerate the onset of mayfly emergence. Nonetheless, using warming temperatures to cue metamorphosis enables mayflies to time their emergence during the descending limb of the hydrograph when oviposition sites (protruding rocks) are becoming available. We speculate that large-scale climate changes involving warming and stream drying could cause significant shifts in the timing of mayfly metamorphosis, thereby having negative effects on populations that play an important role in stream ecosystems.  相似文献   

5.
Fluvial processes such as flooding and sediment deposition play a crucial role in structuring riparian plant communities. In rivers throughout the world, these processes have been altered by channelization and other anthropogenic stresses. Yet despite increasing awareness of the need to restore natural flow regimes for the preservation of riparian biodiversity, few studies have examined the effects of river restoration on riparian ecosystems. In this study, we examined the effects of restoration in the Ume River system, northern Sweden, where tributaries were channelized to facilitate timber floating in the 19th and early 20th centuries. Restoration at these sites involved the use of heavy machinery to replace instream boulders and remove floatway structures that had previously lined stream banks and cut off secondary channels. We compared riparian plant communities along channelized stream reaches with those along reaches that had been restored 3-10 years prior to observation. Species richness and evenness were significantly increased at restored sites, as were floodplain inundation frequencies. These findings demonstrate how river restoration and associated changes in fluvial disturbance regimes can enhance riparian biodiversity. Given that riparian ecosystems tend to support a disproportionate share of regional species pools, these findings have potentially broad implications for biodiversity conservation at regional or landscape scales.  相似文献   

6.
《Ecological modelling》2005,186(1):3-15
The objective of this work is to analyze at a regional scale the hydrometeorological and hydrological characteristics of the Esteros del Ibera, a vast freshwater wetland located in NE Argentina. Since water is the main driving force in the inland wetlands and variations in water level impose conditions on the behavior of vegetation and animal populations, the knowledge of the main hydrometeorological variables that affect the hydrology is essential. Data correlation analysis makes it possible to evaluate the observed changes in the wetland and to infer its response to regional climatic change. As a first approach, the construction of a topo-bathymetric map provides a basic tool for developing a digital elevation model (DEM) using a geographic information system (GIS) and models that are based on a spatial scale.  相似文献   

7.
Shen C  Liu KB  Morrill C  Overpeck JT  Peng J  Tang L 《Ecology》2008,89(4):1079-1088
A well-dated pollen record from a large lake located on the meadow-steppe ecotone provides a history of ecotone shift in response to monsoonal climate changes over the last 6000 years in the central Tibetan Plateau. The pollen record indicates that the ecotone shifted eastward during 6000-4900, 4400-3900, and 2800-1600 cal. yr BP when steppes occupied this region, whereas it shifted westward during the other intervals when the steppes were replaced by meadows. The quantitative reconstruction of paleoclimate derived from the pollen record shows that monsoon precipitation fluctuated around the present level over the last 6000 years in the central Tibetan Plateau. Three major drought episodes of 5600-4900, 4400-3900, and 2800-2400 cal. yr BP are detected by pollen signals and lake sediments. Comparison of our record with other climatic proxy data from the Tibetan Plateau and other monsoonal regions shows that these episodes are three major centennial-scale monsoon weakening events.  相似文献   

8.
Knowledge of past fire regimes is crucial for understanding the changes in fire frequency that are likely to occur during the coming decades as a result of global warming and land-use change. This is a key issue for the sustainable management of forest biodiversity because fire regimes may be controlled by vegetation, human activities, and/or climate. The present paper aims to reconstruct the pattern of fire frequency over the Holocene at three sites located in the same region in the northern Swedish boreal forest. The fire regime is reconstructed from sedimentary charcoal analysis of small lakes or ponds. This method allows fire events to be characterized, after detrending the charcoal influx series, and allows estimation of the time elapsed between fires. The long-term fire regime, in terms of fire-free intervals, can thus be elucidated. At the three sites, the mean fire-free intervals through the Holocene were long and of similar magnitude (approximately 320 years). This similarity suggests that the ecological processes controlling fire ignition and spread were the same. At the three sites, the intervals were shorter before 8600 cal yr BP (calibrated years before present), between 7500 and 4500 cal yr BP, and after 2500 cal yr BP. Geomorphological and vegetation factors cannot explain the observed change, because the three sites are located in the same large ecological region characterized by Pinus sylvestris-Ericaceae mesic forests, established on morainic deposits at the same elevation. Archaeological chronologies also do not match the fire chronologies. A climatic interpretation is therefore the most likely explanation of the long-term regional pattern of fire. Although recent human activities between the 18th and the 20th centuries have clearly affected the fire regime, the dominant factor controlling it for 10000 years in northern Sweden has probably been climatic.  相似文献   

9.
Weak climatic control of stand-scale fire history during the late holocene   总被引:1,自引:0,他引:1  
Gavin DG  Hu FS  Lertzman K  Corbett P 《Ecology》2006,87(7):1722-1732
Forest fire occurrence is affected by multiple controls that operate at local to regional scales. At the spatial scale of forest stands, regional climatic controls may be obscured by local controls (e.g., stochastic ignitions, topography, and fuel loads), but the long-term role of such local controls is poorly understood. We report here stand-scale (<100 ha) fire histories of the past 5000 years based on the analysis of sediment charcoal at two lakes 11 km apart in southeastern British Columbia. The two lakes are today located in similar subalpine forests, and they likely have experienced the same late-Holocene climatic changes because of their close proximity. We evaluated two independent properties of fire history: (1) fire-interval distribution, a measure of the overall incidence of fire, and (2) fire synchroneity, a measure of the co-occurrence of fire (here, assessed at centennial to millennial time scales due to the resolution of sediment records). Fire-interval distributions differed between the sites prior to, but not after, 2500 yr before present. When the entire 5000-yr period is considered, no statistical synchrony between fire-episode dates existed between the two sites at any temporal scale, but for the last 2500 yr marginal levels of synchrony occurred at centennial scales. Each individual fire record exhibited little coherency with regional climate changes. In contrast, variations in the composite record (average of both sites) matched variations in climate evidenced by late-Holocene glacial advances. This was probably due to the increased sample size and spatial extent represented by the composite record (up to 200 ha) plus increased regional climatic variability over the last several millennia, which may have partially overridden local, non-climatic controls. We conclude that (1) over past millennia, neighboring stands with similar modern conditions may have experienced different fire intervals and asynchronous patterns in fire episodes, likely because local controls outweighed the synchronizing effect of climate; (2) the influence of climate on fire occurrence is more strongly expressed when climatic variability is relatively great; and (3) multiple records from a region are essential if climate-fire relations are to be reliably described.  相似文献   

10.
Large logs, important agents of biophysical heterogeneity in temperate floodplain rivers, have been virtually eliminated from modified systems. Our purpose was to quantify the sources and dynamics of large logs (> or = 1 m diameter) in the mainstem of a nearly pristine system: the Queets River, Washington, USA. Erosion of forests by the river supplies 0.40 logs x (100 m)(-1) x yr(-1) to the channel. Most (72%) are new logs entering the river for the first time as the river undercuts mature fluvial terraces dominated by large conifers. Retrospective airphoto analyses demonstrate that, over 63 years, the Queets River recruits 95% of new logs from a riparian corridor extending 265 m laterally on both banks, mostly through channel meandering. However, input rates are patchy, with 10% of the valley length supplying 38% of the new logs. As the river moves laterally, remnant logs are left on channel surfaces that later develop riparian forests and reenter the river when those forests erode. Remnant logs lying on the floodplain forest floor surface or buried in alluvium constitute 21% and 7% of the annual inputs from bank erosion, respectively. We estimate that 50% of logs deposited in the channel in a given year, including those underpinning logjams, are transported downriver within five years. Over the next 55 years, bank erosion reclaims an additional 23%, leaving 27% of the logs stable for > 60 years. Simulations indicate that recurrent transport is common, with half of the large conifers being deposited in > or = 3 locations and transported > or = 1.5 km prior to disintegrating. One in ten logs links distant reaches by occupying > or = 7 locations spanning > or = 12.0 km. Instream supplies are therefore a mixture of new and old logs from nearby and upstream forests, sustained by the recapture and transport of stockpiled remnant logs during periods when new inputs are low. We propose that patchy input rates and the periodic rearrangement of large logs are important drivers of temporal variation in river valley habitats, adding to the spatial complexity created by stable logs. These findings underscore the importance of extensive mature forests and connectivity in temperate floodplain rivers.  相似文献   

11.
The present study was aimed at analyzing chromium concentrations in water column and bottom sediments in the main channel of Northern Salado River (tributary of Middle Parana River) and its floodplain. The main changes caused by human activities and hydrological disturbances on benthic invertebrate structure were also analyzed. Sediment concentrations of the reference area varied between 44.2 and 97.1 microg Crg(-1) (dw), and in the impacted zone, between 85.5 and 209 microg Cr g(-1) (dw) reaching the highest values in the wetland floodplain. Alfa, beta and gamma diversities in the reference section have been 33, 9 and 66 species, and in the disturbed section, they have been 37, 8.33 and 74 species, respectively The species dominant in the disturbed habitats were characterized by a small body size and short life cycles, as the species of olig chaetes Naidinae. The extreme flooding produced a rejuvenation of the area with the consequent physical re-structuration produced by flooding, showing: a marked decrease in chromium levels in sediments and in organic matter content, which allowed the colonization of insects (Ephemeroptera and Trichoptera).  相似文献   

12.
Overbank and stream sediments have been studied in the Community of Madrid. Four vertical profiles have been sampled corresponding to Guadarrama, Jarama, and finally Manzanares River, where two profiles have been studied upstream (El Pardo profile) and downstream (Rivas profile) Madrid city. Sieved samples (<63 µm) were subjected to total (ICP-MS/ICP-OES and INAA) and partial analysis (ICP-MS). AMS radiocarbon dating techniques revealed a young age (170 ± 40 years BP) at 2.40–2.65 m depth for Rivas profile. It has not been possible to detect pristine or pre-industrial overbank sediments, since in the rest of the studied profiles, anthropogenic wastes were found even in the lower levels. Three main sources of sediment have been detected in the area. Granitic and arkosic geology, located in the northern part of Madrid (U, Th, W, K, Na, or rare earth elements); clays located in the southeast of Madrid (Ni, Cr, or V), and finally an anthropogenic source has been identified (Au, Ag, Pb, Zn, or Sb) in Rivas profile. The influence of the anthropogenic activity has been established based on the contents distribution of contaminant elements in the profile. This can be associated to the growth of industrial activities and population in the city of Madrid during the last decades. The comparison of the profiles by a k-means cluster analysis showed some similarities for these samples that could have analogous sources (anthropogenic and geological).  相似文献   

13.
Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ 15N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 microg N x (kg sediment)(-1) x d(-1). Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 +/- 12.6 microg N x kg(-1) x d(-1) (mean +/- SE) as compared to the unrestored reach at 34.8 +/- 8.0 microg N x kg(-1) x d(-1). Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO3(-)-N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams.  相似文献   

14.
The curvature-driven secondary flow in sinuous submarine channels has been a subject of considerable interest and controversy. Here, results from numerical model studies involving saline flow in laboratory-scale channels are presented. A 3D finite volume model of density and turbidity currents is used and simulations are run with different inflow discharges and channel-axis slopes. The simulation results show strong influence of bend wave length, channel gradient, confinement and cross sectional shape on the structure of secondary flow in submarine channels. Major findings are: (i) reversal of secondary flow in submarine channels is strongly associated with a tight bend characterized by a smaller wave length to width ratio or larger wave number, (ii) for the same inflow condition and planform characteristics, a trapezoidal channel cross section is more favorable to secondary flow reversal than a rectangular cross section, (iii) lateral convection resulting from the interaction between in-channel and overbank flows leads to the reversal of secondary flow in an unconfined channel at a lower channel slope than in a confined channel with the same dimensions, (iv) flow discharge has only nominal effect on the secondary flow in submarine channels.  相似文献   

15.
The degradation of headwater streams is common in urbanized coastal areas, and the role these streams play in contributing to downstream pollution is a concern among natural resource managers and policy makers. Thus, many urban stream restoration efforts are increasingly focused on reducing the downstream flux of pollutants. In regions that suffer from coastal eutrophication, it is unclear whether stream restoration does in fact reduce nitrogen (N) flux to downstream waters and, if so, by how much and at what cost. In this paper, we evaluate whether stream restoration implemented to improve water quality of urban and suburban streams in the Chesapeake Bay region, USA, is effective at reducing the export of N in stream flow to downstream waters. We assessed the effectiveness of restored streams positioned in the upland vs. lowland regions of Coastal Plain watershed during both average and stormflow conditions. We found that, during periods of low discharge, lowland streams that receive minor N inputs from groundwater or bank seepage reduced in-stream N fluxes. Furthermore, lowland streams with the highest N concentrations and lowest discharge were the most effective. During periods of high flow, only those restoration projects that converted lowland streams to stream-wetland complexes seemed to be effective at reducing N fluxes, presumably because the design promoted the spillover of stream flow onto adjacent floodplains and wetlands. The observed N-removal rates were relatively high for stream ecosystems, and on the order of 5% of the inputs to the watershed. The dominant forms of N entering restored reaches varied during low and high flows, indicating that N uptake and retention were controlled by distinctive processes during different hydrological conditions. Therefore, in order for stream restoration to effectively reduce N fluxes exported to downstream waters, restoration design should include features that enhance the processing and retention of different forms of N, and for a wide range of flow conditions. The use of strategic designs that match the dominant attributes of a stream such as position in the watershed, influence of groundwater, dominant flow conditions, and N concentrations is crucial to assure the success of restoration.  相似文献   

16.
The Indian Bend Wash (IBW) flood-control project relies on a greenbelt to carry floods through Scottsdale, Arizona, USA. The greenbelt is characterized by a chain of shallow artificial lakes in a larger floodplain of irrigated turf, which has been protected from encroaching urban development. As such, this urban stream-floodplain complex can be divided into three subsystems: artificial lakes, channelized stream segments, and floodplain. We conducted experiments to evaluate which, if any, of these subsystems were important sites of denitrification, and to explore factors controlling denitrification rates. Denitrification enzyme activity (DEA) bioassays were conducted on sediments from eight lake and six stream segments as well as soil samples from eight floodplain transects. Mass-specific potential denitrification rates were significantly higher in lakes than in streams or floodplains. Nutrient limitation bioassays revealed that nitrate (NO3-) limited denitrification in lake sediments, a surprising finding given that NO3(-)-rich groundwater additions frequently raised lake NO3(-) concentration above 1 mg N/L. Experiments on intact lake cores suggested that denitrification was limited by the rate NO3(-) diffused into sediments, rather than its availability in overlying water. Floodplain denitrification was limited by water content, not NO3(-) or C, and irrigation of soils stimulated denitrification. We constructed a N budget for the IBW stream-floodplain complex based on our experimental results. We found that both lakes and floodplains removed large quantities of N, with denitrification removing 261 and 133 kg N ha(-1) yr(-1) from lake sediments and floodplain soils, respectively, indicating that lakes are hotspots for denitrification. Nevertheless, because floodplain area was >4.5 times that of lakes, floodplain soils removed nearly 2.5 times as much N as lake sediments. Given the desert's low annual precipitation, a finding that floodplain soils are active sites of denitrification might seem implausible; however, irrigation is common in urban landscapes, and it elevated annual denitrification in IBW. Based on our results, we conclude that construction of artificial lakes created hotspots while application of irrigation water created hot moments for denitrification in the stream-floodplain complex, demonstrating that management decisions can improve the ability of urban streams to provide critical ecosystem services like N retention.  相似文献   

17.
As catchments become increasingly urban, the streams that drain them become increasingly degraded. Urban streams are typically characterized by high-magnitude storm flows, homogeneous habitats, disconnected riparian zones, and elevated nitrogen concentrations. To reverse the degradation of urban water quality, watershed managers and regulators are increasingly turning to stream restoration approaches. By reshaping the channel and reconnecting the surface waters with their riparian zone, practitioners intend to enhance the natural nutrient retention capacity of the restored stream ecosystem. Despite the exponential growth in stream restoration projects and expenditures, there has been no evaluation to date of the efficacy of urban stream restoration projects in enhancing nitrogen retention or in altering the underlying ecosystem metabolism that controls instream nitrogen consumption. In this study, we compared ecosystem metabolism and nitrate uptake kinetics in four stream restoration projects within urban watersheds to ecosystem functions measured in four unrestored urban stream segments and four streams draining minimally impacted forested watersheds in central North Carolina, U.S.A. All 12 sites were surveyed in June through August of 2006 and again in January through March of 2007. We anticipated that urban streams would have enhanced rates of ecosystem metabolism and nitrate uptake relative to forested streams due to the increases in nutrient loads and temperature associated with urbanization, and we predicted that restored streams would have further enhanced rates for these ecosystem functions by virtue of their increased habitat heterogeneity and water residence times. Contrary to our predictions we found that stream metabolism did not differ between stream types in either season and that nitrate uptake kinetics were not different between stream types in the winter. During the summer, restored stream reaches had substantially higher rates of nitrate uptake than unrestored or forested stream reaches; however, we found that variation in stream temperature and canopy cover explained 80% of the variation across streams in nitrate uptake. Because the riparian trees are removed during the first stage of natural channel design projects, the restored streams in this study had significantly less canopy cover and higher summer temperatures than the urban and forested streams with which they were compared.  相似文献   

18.
Prairie Landscape Change and Flooding in the Mississippi River Valley   总被引:1,自引:0,他引:1  
Extensive landscape alteration of prairie in the U.S. from agricultural expansion has reduced waterfowl populations and increased precipitation runoff into regional river basins. Satellite imagery shows that prairie landscapes have been less altered in Canada than in the U.S. Long-term, broad-scale precipitation data indicate that in both countries precipitation has varied widely but has not increased over time. Nevertheless, flow rates of unregulated U.S. rivers have increased, but there have been no detectable changes in flow rates of Canadian rivers. Neither of two competing hypotheses advanced to explain increasing flood magnitudes—climate change and channel confinement—can account for these results. Thus, the increased magnitudes of floods in the Mississippi River Valley over the last several decades may be at least partially related to extensive changes in agricultural land use resulting in reduction of natural upland vegetation and wetland drainage in the upper reaches of this watershed.  相似文献   

19.
To determine the feasibility of using a dam-break generated flow from the sea into a storm-drain to aid in the regeneration of iron particles that control the production of H2S in the storm-drain, a laboratory experimental investigation is carried out to measure the regeneration potential and the detailed hydrodynamics of the dam-break generated flow that causes the regeneration. The experiments are carried out using a reservoir of essentially infinite size, the sea, and a channel of limited width and adverse slope 1:20, the storm-drain. The regeneration experiments confirmed the ability of the dam-break generated flow to aid in the regeneration of the iron particles, however the regeneration potential varies from good to poor with distance away from the gate into the channel. The detailed measurements of the hydrodynamics highlighted that the dam-break generated flow from an infinite reservoir diverges little during the first uprush, has much smaller velocities during the first backwash and includes significant free surface waves. An initially wet channel bed reduces the flux into the channel. Close to the gate the flow depth increases more quickly but the velocity, and therefore the regeneration potential, is smaller.  相似文献   

20.
River restoration is an increasingly common approach utilized to reverse past degradation of freshwater ecosystems and to mitigate the anticipated damage to freshwaters from future development and resource-extraction activities. While the practice of river restoration has grown exponentially over the last several decades, there has been little empirical evaluation of whether restoration projects individually or cumulatively achieve the legally mandated goals of improving the structure and function of streams and rivers. New efforts to evaluate river restoration projects that use channel reconfiguration as a methodology for improving stream ecosystem structure and function are finding little evidence for measurable ecological improvement. While designed channels may have less-incised banks and greater sinuousity than the degraded streams they replace, these reach-scale efforts do not appear to be effectively mitigating the physical, hydrological, or chemical alterations that are responsible for the loss of sensitive taxa and the declines in water quality that typically motivate restoration efforts. Here we briefly summarize this new literature, including the collection of papers within this Invited Feature, and provide our perspective on the limitations of current restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号