首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
生物技术在环境保护中的应用及前景   总被引:9,自引:1,他引:9  
本文从废水,废气,固体废弃物处理及环境监测等几个方面介绍了生物技术在环境保护中的应用和研究进展,分析了生物处理工艺的特点及优越性,展望了生物技术未来的发展方向和前景。  相似文献   

2.
介绍了现代生物技术及其在废水处理中的应用和发展 ,讨论了现代生物技术和环境工程技术相结合的环境生物技术的应用及其发展趋势  相似文献   

3.
介绍了现代生物技术的内容和特点,着重综述了现代生物技术在废水生物处理、生物修复以及微生物水处理剂等方面的研究与应用情况,展望了现代生物技术在今后的水污染控制领域中的研究方向。  相似文献   

4.
固定化生物技术在废水处理中的应用研究进展   总被引:2,自引:0,他引:2  
固定化生物技术是通过化学或物理的手段将游离细胞或酶定位于限定的空间区域内 ,使其保持活性并可反复利用。该技术具有生物密度高、反应迅速、生物流失量少、反应控制容易的优点。本文系统介绍了固定化生物技术在水处理中的最新应用情况。并且对固定化生物技术的发展、固定化方法以及固定化生物技术需解决的问题和该技术的应用前景作了阐述  相似文献   

5.
现代生物技术在废水处理中的应用进展   总被引:3,自引:0,他引:3  
介绍了现代生物技术及其在废水处理中的应用和发展,讨论了现代生物技术和环境工程技术相结合的环境生物技术的应用及其发展趋势。  相似文献   

6.
处理废水中有机污染物的生物技术   总被引:1,自引:0,他引:1  
介绍了治理有机废水的生物技术及发展动态,提出建议。  相似文献   

7.
环境生物技术的研究现状及发展前景   总被引:5,自引:0,他引:5  
环境生物技术(Environmental Biotechnology)简称EBT,是近20年来才定义的新型边缘学科。环境生物技术主要由生物技术、工程学、环境学和生态学组成。一般认为生物工程即生物技术,是指综合应用生物学、化学和工程学等手段,直接或间接地利用生物体本身,生物体某些组分或某些特殊机能,生产有用物质的一门综合性科学体系。它的产生和发展涉及多种学科,既反映了基础科学研究的最新成果,也体现了工程科学开拓出来的新技术和新工艺。  相似文献   

8.
环境生物技术信息学进展   总被引:1,自引:0,他引:1  
环境生物技术信息学通过计算机将生物信息学的技术与成果用于环境生物技术 ,控制污染。降解污染物基因DNA的碱基组成 -结构 -功能的核酸信息 ,降解污染物酶的氨基酸组成 -结构 -功能的蛋白多肽信息 ,为应用环境生物技术控制污染 ,注入了新的灵魂与力量。构建遗传工程特效菌株 ,高效降解危险有机污染物 ;创造高效工艺系统 ,去除危险有机污染物 ;有效降低或消除污染物对人体健康的危害 ,维护生态环境安全 ;是环境生物技术信息学的基本任务和光辉前景  相似文献   

9.
固定化生物技术在废水处理中的应用研究进展   总被引:15,自引:0,他引:15  
固定化生物技术是通过化学或物理的手段将游离细胞或酶定位于限定的空间区域内,使其保持活性并可反复利用。该技术具有生物密度高,反应迅速,生物流失量少,反应控制容易的优点,本文系统介绍了固定化生物技术在水处理中的最新应用情况,并且对固定化生物技术的发展,固定化方法以及固定化生物技术需解决的问题和该技术的应用前景作了阐述。  相似文献   

10.
生物技术在有机废气处理中的研究进展   总被引:1,自引:0,他引:1  
生物法净化有机废气主要有生物吸收法、生物滤池和生物滴滤池等几种形式。与传统的有机废气处理方法相比,生物技术具有费用低、处理效率高、安全性好及无二次污染等特点,在德国、荷兰、日本及北美等国得到广泛应用。  相似文献   

11.
目前分子生物技术发展日新月异,已渗透到各相关学科。本文综述了分子生物技术的基本原理与方法,及其在环境工程微生物领域的应用。讨论了分子生物技术在环境工程微生物的检测应用及在污泥、生物膜、底泥和土壤等微生物种群的多样性分析方面,以及环境工程菌的挑选和培养等方面的研究成果及其巨大研究前景,对该技术在环境工程领域的应用与发展提出了一些见解。  相似文献   

12.
GOAL, SCOPE AND BACKGROUND: Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compound in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of ever-increasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. MAIN FEATURES: China is the world's largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. RESULTS: Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. DISCUSSION: The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites' conditions and financial status as well as by weighing the advantages and disadvantages of each system. Strategies and perspectives for sustainable aquaculture development are proposed, with the emphasis on environmental protection. CONCLUSIONS: Negative effects of waste from aquaculture to aquatic environment are increasingly recognized, though they were just a small proportion to land-based pollutants. Properly planned use of aquaculture waste alleviates water pollution problems and not only conserves valuable water resources but also takes advantage of the nutrients contained in effluent. It is highly demanding to develop sustainable aquaculture which keeps stocking density and pollution loadings under environmental capacity. RECOMMENDATIONS AND PERSPECTIVES: The traditional procedures for aquaculture waste treatment, mainly based on physical and chemical means, should be overcome by more site-specific approaches, taking into account the characteristics and resistibility of the aquatic environment. Further research needs to improve or optimize the current methods of wastewater treatment and reuse. Proposed new treatment technology should evaluate their feasibility at a larger scale for practical application.  相似文献   

13.
Goal, Scope and Background  Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compounds in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of everincreasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. Main Features  China is the world’s largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. Results  Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. Discussion  The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites’ conditions and financial status as well as by weighing the advantages and disadvantages of each system. Strategies and perspectives for sustainable aquaculture development are proposed, with the emphasis on environmental protection. Conclusions  Negative effects of waste from aquaculture to aquatic environment are increasingly recognized, though they were just a small proportion to land-based pollutants. Properly planned use of aquaculture waste alleviates water pollution problems and not only conserves valuable water resources but also takes advantage of the nutrients contained in effluent. It is highly demanding to develop sustainable aquaculture which keeps stocking density and pollution loadings under environmental capacity. Recommendations and Perspectives  The traditional procedures for aquaculture waste treatment, mainly based on physical and chemical means, should be overcome by more site-specific approaches, taking into account the characteristics and resistibility of the aquatic environment. Further research needs to improve or optimize the current methods of wastewater treatment and reuse. Proposed new treatment technology should evaluate their feasibility at a larger scale for practical application. ESS-Submission Editor: Dr. Ding Wang (wangd@ihb.ac.cn)  相似文献   

14.
有机固体废物堆肥化处理的微生物学机理研究   总被引:9,自引:0,他引:9  
由于符合持续发展的理念 ,利用微生物技术处理有机固体废物越来越受到人们的重视 ,其核心问题则是木质纤维素的生物降解。随着园林废物等高木质纤维素含量的城市生活垃圾的不断增加 ,以及对农业固体废物和食品工业废物再利用的需要 ,这一领域的研究取得了很大的进展。在研究中 ,针对好氧堆肥和厌氧发酵 2项主要的微生物处理技术 ,对其优势微生物菌群、不同降解底物和微生物降解动力学方面的最新研究进展进行了回顾和总结 ,并对环境微生物制剂的应用以及有机固体废物的微生物处理技术的发展做了合理的展望。  相似文献   

15.
The United Nations Framework Conventions on Climate Change (UNFCCC) asks their Parties to submit a National Inventory Report (NIR) for greenhouse gas (GHG) emissions on an annual basis. However, when many countries are quickly growing their economy, resulting in substantial GHG emissions, their inventory reporting systems either have not been established or been able to be linked to planning of mitigation measures at national administration levels. The present research was aimed to quantify the GHG emissions from an environmental sector in Taiwan and also to establish a linkage between the developed inventories and development of mitigation plans. The "environmental sector" consists of public service under jurisdiction of the Taiwan Environmental Protection Administration: landfilling, composting, waste transportation, wastewater treatment, night soil treatment, and solid waste incineration. The preliminary results were compared with that of the United States, Germany, Japan, United Kingdom, and Korea, considering the gaps in the scopes of the sectors. The GHG emissions from the Taiwanese environmental sector were mostly estimated by following the default methodology in the Intergovernmental Panel on Climate Change guideline, except that of night soil treatment and waste transportation that were modified or newly developed. The GHG emissions from the environmental sectors in 2004 were 10,225 kilotons of CO2 equivalent (kt CO2 Eq.). Landfilling (48.86%), solid waste incineration (27%), and wastewater treatment (21.5%) were the major contributors. Methane was the most significant GHG (70.6%), followed by carbon dioxide (27.8%) and nitrous oxide (1.6%). In summary, the GHG emissions estimated for the environmental sector in Taiwan provided reasonable preliminary results that were consistent and comparable with the existing authorized data. On the basis of the inventory results and the comparisons with the other countries, recommendations of mitigation plans were made, including wastewater and solid waste recycling, methane recovery for energy, and waste reduction/sorting.  相似文献   

16.
The development of a special (hazardous) waste management system is well under way in Alberta, Canada, and completion of an integrated treatment and disposal facility near Swan Hills is expected in 1988. The facility will handle both inorganic and organic waste streams in a physical/chemical treatment plant and high temperature incinerator. Treated liquid residues will be disposed of in a deep well, and treated solid residues in a secure landfill. The chosen treatment technology and the established hydrogeological conditions of the site ensure the maintenance of environmental quality. An intensive site selection and public participation program provided that only locations which were environmentally and socially suitable for this development were considered. Through awareness of the problems of waste and the solutions for its management, and full citizen involvement in the site selection process, the siting and public participation programs accomplished the difficult task of selecting a location for North America’s first fully integrated special waste treatment and disposal facility.  相似文献   

17.
生物过滤技术在恶臭污染治理中的应用研究   总被引:5,自引:3,他引:2  
利用生物技术治理恶臭污染是一项有效经济的环境友好技术,生物技术目前正成为一种处理各种废气的有效的选择.研究了生物过滤技术在不同恶臭环境中的应用效果,分析了应用过程中出现的一些问题,介绍了生物过滤技术治理恶臭气体的原理和过程.研究结果表明,生物过滤设备在生活污水厂和垃圾压缩站具有理想的恶臭净化效果,但不能满足挥发性有机废气的净化需求,仍然需要工艺的改进和完善.  相似文献   

18.
In response to a growing societal mandate, land disposal of hazardous wastes is gradually being replaced by treatment technologies. This shift to "alternative technologies" is the result of the impacts of past land disposal practices on other environmental media (groundwater, surface water, and air). A prime motivation for adopting alternatives to land disposal is to eliminate these cross-media impacts. Alternative technologies, however, can themselves have cross-media environmental impacts which must be recognized and addressed before such technologies are extensively applied. This paper discusses hazardous waste constituents, common disposal practices, alternative technologies currently being applied, possible cross-media environmental impacts of the alternative technologies, and proposed methods of mitigating these environmental impacts. Case studies from uncontrolled hazardous waste sites and industrial operations are used to illustrate the application of alternative technologies. Case studies include the application of waste treatment technologies as well as the adoption of waste minimization techniques.  相似文献   

19.
基于因特网的危险废物转移联单系统研究与开发   总被引:1,自引:0,他引:1  
危险废物转移联单是跟踪危险废物转移和处理处置的基本方法 ,也是实施危险废物全过程管理的有效工具。然而 ,目前使用的纸质联单系统 ,运行过程繁杂、周期长、耗费人力和物力 ,与现代化管理不相适应。本文提出了符合中国国情的电子化转移联单解决方案 ,论述了系统的设计开发过程和运行情况。这一系统采用了因特网技术 ,能实现联单运行的电子化和自动化 ,简化运行过程 ,提高效率 ,为我国危险废物转移的电子化管理奠定了基础  相似文献   

20.
The aim of this paper is to apply life cycle assessment in the waste management sector, in order to compare the environmental performance of different waste management methods. The methods that are studied are: landfilling, aerobic and anaerobic biological treatment, incineration and recycling, focusing on mass and energy balances and the environmental performance of each applied scenario. The Peloponnese Region in Greece was selected as a case for the application of this methodology and more specifically its largest municipalities, where a significant amount of waste is presented. The conducted LCA study proves the necessity of the adoption of an integrated waste management system and indicates its principal objectives by measuring environmental impacts. Thermal scenario contributes significant to the mitigation on the Greenhouse Gases. On the other hand, separation at source and recycling practices provides significant benefits to the abiotic depletion impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号