首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Results are described of a forest clearing experiment conducted in Tomé Acu, located approximately 250 km south of Belém, the capital of the Brazilian northern state of Pará. An area of 3 ha of virgin forest was cut in July 1994 and left to dry until October of the same year, when fire was set. Post burning was also performed 30 days after the main fire. The test location biomass content per hectare was measured by indirect methods using formulas with parameters of forest inventories. The carbon content of the several biomass compartments was determined in a CHN analyzer. The combustion completeness was estimated by selecting ten 2+2 m2 areas and 24 large trunks and examining their consumption rates by fire. The 2+2 m2 areas were used to determine the completeness of small parts of biomass (those whose characteristic diameters were lower than 10 cm) and the trunks to determine the efficiency of the larger parts (characteristic diameters larger than 10 cm). The overall process combustion completeness was estimated to be 20.1%. Considering that the combustion gases of carbon in open fires contain approximately 90% of CO2 and 10% of CO in volumetric basis, the emission rates of these gases by the burning process were estimated as 70.2 and 5.0 t ha-1, respectively.  相似文献   

2.
We estimate the contributions from biomass burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal and annual aerosol concentrations in the United States. Our approach is to use total carbonaceous (TC) and non-soil potassium (ns-K) aerosol mass concentrations for 2001–2004 from the nationwide IMPROVE network of surface sites, together with satellite fire data. We find that summer wildfires largely drive the observed interannual variability of TC aerosol concentrations in the United States. TC/ns-K mass enhancement ratios from fires range from 10 for grassland and shrub fires in the south to 130 for forest fires in the north. The resulting summer wildfire contributions to annual TC aerosol concentrations for 2001–2004 are 0.26 μg C m−3 in the west and 0.14 μg C m−3 in the east; Canadian fires are a major contributor in the east. Non-summer wildfires and prescribed burns contribute on an annual mean basis 0.27 and 0.31 μg C m−3 in the west and the east, highest in the southeast because of prescribed burning. Residential biofuel is a large contributor in the northeast with annual mean concentration of up to 2.2 μg C m−3 in Maine. Industrial biofuel (mainly paper and pulp mills) contributes up to 0.3 μg C m−3 in the southeast. Total annual mean fine aerosol concentrations from biomass burning average 1.2 and 1.6 μg m−3 in the west and east, respectively, contributing about 50% of observed annual mean TC concentrations in both regions and accounting for 30% (west) and 20% (east) of total observed fine aerosol concentrations. Our analysis supports bottom-up source estimates for the contiguous United States of 0.7–0.9 Tg C yr−1 from open fires (climatological) and 0.4 Tg C yr−1 from biofuel use. Biomass burning is thus an important contributor to US air quality degradation, which is likely to grow in the future.  相似文献   

3.
The long-range transported smokes emitted by biomass burning had a strong impact on the PM2.5 mass concentrations in Helsinki over the 12 days period in April and May 2006. To characterize aerosols during this period, the real-time measurements were done for PM2.5, PM2.5–10, common ions and black carbon. Moreover, the 24-h PM1 filter samples were analysed for organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), ions and levoglucosan. The Finnish emergency and air quality modelling system SILAM was used for the forecast of the PM2.5 concentration generated by biomass burning. According to the real-time PM2.5 data, the investigated period was divided into four types of PM situations: episode 1 (EPI-1; 25–29 April), episode 2 (EPI-2; 1–5 May), episode 3 (EPI-3; 5–6 May) and a reference period (REF; 24 March–24 April). EPI-3 included a local warehouse fire and therefore it is discussed separately. The PM1 mass concentrations of biomass burning tracers—levoglucosan, potassium and oxalate—increased during the two long-range transport episodes (EPI-1 and EPI-2). The most substantial difference between the episodes was exhibited by the sulphate concentration, which was 4.9 (±1.4) μg m−3 in EPI-2 but only 2.4 (±0.31) μg m−3 in EPI-1 being close to that of REF (1.8±0.54 μg m−3). The concentration of particulate organic matter in PM1 was clearly higher during EPI-1 (11±3.3 μg m−3) and EPI-2 (9.7±4.0 μg m−3) than REF (1.3±0.45 μg m−3). The long-range transported smoke had only a minor impact on the WSOC-to-OC ratio. According to the model simulations, MODIS detected the fires that caused the first set of concentration peaks (EPI-1) and the local warehouse fire (EPI-3), but missed the second one (EPI-2) probably due to dense frontal clouds.  相似文献   

4.
Ozone peaks with mixing ratios as high as 138 ppbv were observed in the lower troposphere (2.5–4.5 km) over Hong Kong in spring. Simultaneously observed high humidity suggests that this enhanced ozone was not the result of transport from the upper troposphere. Back trajectory analysis suggests that these enhancements resulted from lateral transport. Air masses arriving at the altitude of the ozone peaks appear to have passed over continental Southeast Asia where the bulk of biomass burning occurs at this time of the year (February–April). We hypothesize that biomass burning in this region provided the necessary precursors for the observed ozone enhancement. As far as we know this is the first observation of highly enhanced ozone layers associated with biomass burning in continental Southeast Asia.  相似文献   

5.
A spatially resolved biomass burning data set, and related emissions of sulphur dioxide and aerosol chemical constituents was constructed for India, for 1996–1997 and extrapolated to the INDOEX period (1998–1999). Sources include biofuels (wood, crop waste and dung-cake) and forest fires (accidental, shifting cultivation and controlled burning). Particulate matter (PM) emission factors were compiled from studies of Indian cooking stoves and from literature for open burning. Black carbon (BC) and organic matter (OM) emissions were estimated from these, accounting for combustion temperatures in cooking stoves. Sulphur dioxide emission factors were based on fuel sulphur content and reported literature measurements. Biofuels accounted 93% of total biomass consumption (577 MT yr−1), with forest fires contributing only 7%. The national average biofuel mix was 56 : 21 : 23% of fuelwood, crop waste and dung-cake, respectively. Compared to fossil fuels, biomass combustion was a minor source of SO2 (7% of total), with higher emissions from dung-cake because of its higher sulphur content. PM2.5 emissions of 2.04 Tg yr−1 with an “inorganic fraction” of 0.86 Tg yr−1 were estimated. Biomass combustion was the major source of carbonaceous aerosols, accounting 0.25 Tg yr−1 of BC (72% of total) and 0.94 Tg yr−1 of OM (76% of total). Among biomass, fuelwood and crop waste were primary contributors to BC emissions, while dung-cake and forest fires were primary contributors to OM emissions. Northern and the east-coast India had high densities of biomass consumption and related emissions. Measurements of emission factors of SO2, size resolved aerosols and their chemical constituents for Indian cooking stoves are needed to refine the present estimates.  相似文献   

6.
Biomass quantities at three different sites in tropical moist mixed secondary deciduous forests before and after burning have been quantified in the forest patches cleared for shifting cultivation purposes. The main objective of the experiments was to study the spatial variability in the amount of biomass burnt and the contribution of different components viz., bole, branch, and mixed leaf litter in the burning process affecting the combustion factors. Species composition at the three sites varied with respect to each other. The total density of species before burning at the three sites for more than 10 cm diameter were found to be 3192 (site 1), 1194 (site 2) and 1444 (site 3) stems/area, respectively. Analysis of the results from girth-class and density relationships suggests that nearly 80% of the stems occurred in the range from 10–40 cm girth for site one, 64.2% in 10–55 cm girth class for the site two and more than 80% of stems in 10–40 cm girth class for the site three, indicating very poor and secondary nature of the forest. The fire intensity is found to be high for site one with 60 847 kJ s−1 m−1, when compared to 31 086 and 42 789 kJ s−1 m−1 for second and third sites, respectively. The values are comparatively higher than the mean value of 2566 kJ s−1 m−1 reported for savanna fires. The individual combustion completeness suggested that among the different components of biomass, branch material with less than 10 cm and upto 5 cm dbh contributed to more than 60% of combustion. Mixed leaf litter contributed to about more than 50% of individual combustion completeness at all the sites, with third site having the highest (84%). The contribution of dry biomass material having more than 70 cm diameter is found to be very low indicating that most of the trunks were burnt superficially. The overall combustion completeness suggested that mixed leaf litter and branch material contributed to most of the combustion. Of all the three sites, site three had been found to be having highest combustion completeness of about 30.04% when compared to 20.18% and 16.1% for first and second sites, respectively. In the study, comparison of combustion factors for different vegetation types has also been made.  相似文献   

7.
Biomass consumption and CO2, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48% and the estimated average moisture content of fresh biomass was 42% on wet weight basis. The fresh biomass and the amount of carbon on the ground before burning were estimated as 528 t ha?1 and 147 t ha?1, respectively. The overall biomass consumption for the experiment was estimated as 23.9%. A series of experiment in the same region resulted in average efficiency of 40% for areas of same size and 50% for larger areas. The lower efficiency obtained in the burn reported here occurred possibly due to rain before the experiment. Excess mixing ratios were measured for CO2, CO, CH4, C2–C3 aliphatic hydrocarbons, and PM2.5. Excess mixing ratios of CH4 and C2–C3 hydrocarbons were linearly correlated with those of CO. The average emission factors of CO2, CO, CH4, NMHC, and PM2.5 were 1,599, 111.3, 9.2, 5.6, and 4.8 g kg?1 of burned dry biomass, respectively. One hectare of burned forest released about 117,000 kg of CO2, 8100 kg of CO, 675 kg of CH4, 407 kg of NMHC and 354 kg of PM2.5.  相似文献   

8.
The concentrations of total gaseous mercury (TGM) in air over the southern Baltic Sea and dissolved gaseous mercury (DGM) in the surface seawater were measured during summer and winter. The summer expedition was performed on 02–15 July 1997, and the winter expedition on 02–15 March 1998. Average TGM and DGM values obtained were 1.70 and 17.6 ng m−3 in the summer and 1.39 and 17.4 ng m−3 in the winter, respectively. Based on the TGM and DGM data, surface water saturation and air-water fluxes were calculated. The results indicate that the seawater was supersaturated with gaseous mercury during both seasons, with the highest values occurring in the summer. Flux estimates were made using the thin film gas-exchange model. The average Hg fluxes obtained for the summer and winter measurements were 38 and 20 ng m−2 d−1, respectively. The annual mercury flux from this area was estimated by a combination of the TGM and DGM data with monthly average water temperatures and wind velocities, resulting in an annual flux of 9.5 μg m−2 yr−1. This flux is of the same order of magnitude as the average wet deposition input of mercury in this area. This indicates that reemissions from the water surface need to be considered when making mass-balance estimates of mercury in the Baltic Sea as well as modelling calculations of long-range transboundary transport of mercury in northern Europe.  相似文献   

9.
This study investigated particle size distributions from the burning of several grass species, under controlled laboratory conditions, and also in the field, conducted during the dry season in the Northern Territory, Australia. The laboratory study simulated conditions such as burning phases and burning rate, and particle diameter differed depending on the burning conditions. Under fast burning conditions, smaller particles were produced with a diameter in the range of 30–60 nm, while larger particles, with a diameter between 60 and 210 nm, were produced during slow burning. The airborne field measurements of biomass particles found that under the boundary layer most of the early dry season (EDS) particles came from fresh smokes with a count median diameter (CMD) of 83±13 nm, and most of the late dry season (LDS) particles came from aged smokes with a CMD of 127±6 nm. Vertical profiles of CMD showed that smaller particles were found higher within the atmosphere. These measurements provide insight into the scientific understanding of the properties of biomass burning particles in the Northern Territory, Australia.  相似文献   

10.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

11.
Due to the high temporal and spatial variability of N2O fluxes, estimates of N2O emission from temperate forest ecosystems are still highly uncertain, particularly at larger scales. Although highest N2O emissions with up to 7.0 kg N ha−1 yr−1 were mainly reported for soils affected by stagnant water, most of the reported gas flux measurements were performed at forest sites with well-aerated soils yielding mostly to low mean annual emission rates less than 1.0 kg N ha−1 yr−1. This study compares N2O fluxes from upland (Cambisols) and temporally water-logged (Gleysols, Histosols) soils of the Central Black Forest (South-West Germany) over a period of 2 yr. Mean annual N2O fluxes from investigated soils ranged between 0.2 and 3.9 kg N ha−1 yr−1. The fluxes showed a large variability between the different soil types. Emissions could be clearly ranked in the following order: Cambisols (0.26–0.75 kg N ha−1 yr−1)<Gleysols (1.37–2.68 kg N ha−1 yr−1)<Histosol (3.66–3.95 kg N ha−1 yr−1). Although the Cambisols cover two-thirds of the investigated area, only about half of the overall N2O is emitted from this soil type. Therefore, regional or national N2O fluxes from temperate forest soils are underestimated if soils characterised by intermediate aeration conditions are disregarded.  相似文献   

12.
During the 2003 Chinese Arctic Research Expedition from the Bohai Sea to the high Arctic (37–80°N) aboard the icebreaker Xuelong (Snow Dragon), air samples were collected using a modified high-volume sampler that pulls air through a quartz filter and a polyurethane foam plug (PUF). These filters and PUFs were analyzed for particulate phase and gas phase polycyclic aromatic hydrocarbons (PAHs), respectively, in the North Pacific Ocean and adjacent Arctic region. The ∑PAHs (where ∑=15 compounds) ranged from undetectable level to 4380 pg m−3 in the particulate phase and 928–92 600 pg m−3 in the gas phase, respectively. A decreasing latitudinal trend was observed for gas-phase PAHs, probably resulting from temperature effects, dilution and decomposition processes; particulate-phase PAHs, however, showed poor latitudinal trends, because the effects of temperature, dilution and photochemistry played different roles in different regions from middle-latitude source areas to the high latitudes. The ratios of PAH isomer pairs, either conservative or sensitive to degradation during long-range transport, were employed to interpret sources and chemical aging of PAHs in ocean air. In this present study the fluoranthene/pyrene and indeno[123-cd]pyrene/benzo[ghi]pyrene isomer pairs, whose ratios are conservative to photo-degradation, implies that biomass or coal burning might be the major sources of PAHs observed over the North Pacific Ocean and the Arctic region in the summer. The isomer ratios of 1,7/(1,7+2,6)-DMP (dimethylphenanthrene) and anthracene/phenanthrene, which are sensitive to aging of air masses, not only imply chemical evolving of PAHs over the North Pacific Ocean were different from those over the Arctic, but reveal that PAHs over the Arctic were mainly related to coal burning, and biomass burning might have a larger contribution to the PAHs over the North pacific ocean.  相似文献   

13.
While the existence of black carbon as part of dissolved organic matter (DOM) has been confirmed, quantitative determinations of dissolved black carbon (DBC) in freshwater ecosystem and information on factors controlling its concentration are scarce. In this study, stream surface water samples from a series of watersheds subject to different burn frequencies in Konza Prairie (Kansas, USA) were collected in order to determine if recent fire history has a noticeable effect on DBC concentration. The DBC levels detected ranged from 0.04 to 0.11 mg L?1, accounting for ca. 3.32 ± 0.51% of dissolved organic carbon (DOC). No correlation was found between DBC concentration and neither fire frequency nor time since last burn. We suggest that limited DBC flux is related to high burning efficiency, possibly greater export during periods of high discharge and/or the continuous export of DBC over long time scales. A linear correlation between DOC and DBC concentrations was observed, suggesting the export mechanisms determining DOC and DBC concentrations are likely coupled. The potential influence of fire history was less than the influence of other factors controlling the DOC and DBC dynamics in this ecosystem. Assuming similar conditions and processes apply in grasslands elsewhere, extrapolation to a global scale would suggest a global grasslands flux of DBC on the order of 0.14 Mt carbon year?1.  相似文献   

14.
Outdoor fires, such as wildfires and prescribed burns, can emit substantial amounts of particulate matter and other pollutants into the atmosphere. In Texas, an inventory of forest, grassland and agricultural burning activities revealed that fires consumed vegetation on 1.6 and 1.7 million acres of land, in 1996 and 1997, respectively. Emissions from the fires were estimated based on survey and field data on acres burned and land cover and literature data on fuel consumption and emission factors. Fire data were allocated spatially by county and temporally by month. While fire events can cause high transient air pollutant concentrations, for most criteria pollutants, the fire emissions were a relatively small fraction of the annual emission inventory for the State. For fine particulate matter, however, the annual emission estimates were 40,000 tons/yr, which is likely to represent a significant fraction of the State's emission inventory, especially in the counties where the emissions are concentrated.  相似文献   

15.
Holocene biomass burning and global dynamics of the carbon cycle   总被引:10,自引:0,他引:10  
Fire regimes have changed during the Holocene due to changes in climate, vegetation, and in human practices. Here, we hypothesise that changes in fire regime may have affected the global CO2 concentration in the atmosphere through the Holocene. Our data are based on quantitative reconstructions of biomass burning deduced from stratified charcoal records from Europe, and South-, Central- and North America, and Oceania to test the fire-carbon release hypothesis. In Europe the significant increase of fire activity is dated approximately 6000 cal. yr ago. In north-eastern North America burning activity was greatest before 7500 years ago, very low between 7500-3000 years, and has been increasing since 3000 years ago. In tropical America, the pattern is more complex and apparently latitudinally zonal. Maximum burning occurred in the southern Amazon basin and in Central America during the middle Holocene, and during the last 2000 years in the northern Amazon basin. In Oceania, biomass burning has decreased since a maximum 5000 years ago. Biomass burning has broadly increased in the Northern and Southern hemispheres throughout the second half of the Holocene associated with changes in climate and human practices. Global fire indices parallel the increase of atmospheric CO2 concentration recorded in Antarctic ice cores. Future issues on carbon dynamics relatively to biomass burning are discussed to improve the quantitative reconstructions.  相似文献   

16.
Urban areas are significant contributors to global carbon dioxide emissions. Vehicle emissions and other anthropogenic related activities are a frequent source of CO2 to the atmosphere, contributing to global warming. Micrometeorological techniques used for observations in Northern Hemisphere cities have found that urban CO2 fluxes are consistently a source. This study investigates CO2 fluxes in an Australian city, adding to the global database of CO2 fluxes in a bid to aid in future development of planning policies concerning reductions in CO2 emissions. Using the eddy covariance approach, fluxes of CO2 were measured at a suburban site (Preston) in Melbourne, Australia from February 2004 to June 2005 to investigate temporal variability. A second site (Surrey Hills) with differing surface characteristics (in particular, greater vegetation cover) was also established in Melbourne and ran simultaneously for 6 months (February 2004–July 2004). Results showed that both sites were a net source of CO2 to the atmosphere. Diurnal patterns of fluxes were largely influenced by traffic volumes, with two distinct peaks occurring at the morning and evening traffic peak hours, with the winter morning peak averaging 10.9 μmol m−2 s−1 at Preston. Summer time fluxes were lower than during winter due to greater vegetative influence and reduced natural gas combustion. Vegetation limited the source of CO2 in the afternoon, yet was not enough to combat the strong local anthropogenic emissions. Surrey Hills showed higher fluxes of CO2 despite greater vegetation cover because of higher local traffic volumes. Annual emissions from Preston were estimated at 84.9 t CO2 ha−1 yr−1. Magnitudes and patterns of suburban CO2 fluxes in Melbourne were similar to those observed in Northern Hemisphere suburban areas.  相似文献   

17.
A comprehensive, spatially resolved (0.25°×0.25°) fossil fuel consumption database and emissions inventory was constructed, for India, for the first time. Emissions of sulphur dioxide and aerosol chemical constituents were estimated for 1996–1997 and extrapolated to the Indian Ocean Experiment (INDOEX) study period (1998–1999). District level consumption of coal/lignite, petroleum and natural gas in power plants, industrial, transportation and domestic sectors was 9411 PJ, with major contributions from coal (54%) followed by diesel (18%). Emission factors for various pollutants were derived using India specific fuel characteristics and information on combustion/air pollution control technologies for the power and industrial sectors. Domestic and transportation emission factors, appropriate for Indian source characteristics, were compiled from literature. SO2 emissions from fossil fuel combustion for 1996–1997 were 4.0 Tg SO2 yr−1, with 756 large point sources (e.g. utilities, iron and steel, fertilisers, cement, refineries and petrochemicals and non-ferrous metals), accounting for 62%. PM2.5 emitted was 0.5 and 2.0 Tg yr−1 for the 100% and the 50% control scenario, respectively, applied to coal burning in the power and industrial sectors. Coal combustion was the major source of PM2.5 (92%) primarily consisting of fly ash, accounting for 98% of the “inorganic fraction” emissions (difference between PM2.5 and black carbon+organic matter) of 1.6 Tg yr−1. Black carbon emissions were estimated at 0.1 Tg yr−1, with 58% from diesel transport, and organic matter emissions at 0.3 Tg yr−1, with 48% from brick-kilns. Fossil fuel consumption and emissions peaked at the large point industrial sources and 22 cities, with elevated area fluxes in northern and western India. The spatial resolution of this inventory makes it suitable for regional-scale aerosol-climate studies. These results are compared to previous studies and differences discussed. Measurements of emission factors for Indian sources are needed to further refine these estimates.  相似文献   

18.
The estimated annual throughfall deposition flux of Hg in a northern mixed-hardwood forest in the Lake Huron Watershed was 10.5±1.0 μg m−2 compared to an annual precipitation Hg flux of 8.7±0.5 μg m−2 (June 1996–June 1997). The source of this additional Hg in throughfall is often attributed to wash-off of dry deposition, but foliar leaching of Hg may also be important. To determine the influence of both dry deposition and foliar leaching of Hg and other elements in throughfall, we measured a suite of trace elements (Hg, Al, Mg, V, Mn, Cu, Zn, As, Rb, Sr, Cd, Ba, La, Ce, and Pb) in throughfall, precipitation, and ambient air samples from a northern mixed-hardwood forest. Based on a multiple linear regression model, dry deposition had the most important influence on Hg, Al, La, Ce, V, As, Cu, Zn, Cd, and Pb fluxes while foliar leaching strongly influenced Mg, Mn, Rb, Sr, and Ba fluxes in net throughfall. The Hg dry deposition flux was estimated using gaseous and aerosol Hg measurements and modeled deposition velocities. The calculated dry deposition flux (∼12–14 μg m−2) of Hg to the canopy indicated that atmospheric deposition of Hg could easily account for all of the Hg deposited in net throughfall (1.9±0.1 μg m−2). Although there is a large uncertainty associated with these techniques, the modeling estimates indicate that atmospheric Hg may account for all of the Hg deposited in litterfall (11.4±2.8 μg m−2).  相似文献   

19.
Airborne in-situ measurements were analyzed to investigate the effects of biomass burning and regional background aerosols on cloud condensation nuclei (CCN) activity in the Pacific Dust Experiment (PACDEX) during April and May 2007. Airmass trajectories with both horizontal and vertical motions were provided to identify the aerosol sources. In the biomass burning cases, the elevated aerosol layers were clearly observed at dry conditions because of the convection of airmass in the source region. The relative aging of aerosols was supported by the ratios of BC to particles with size ranging from 0.1 to 1.0 μm (N0.1–1.0) and BC to carbon monoxide. Compared to aerosols in the precedent plume of biomass burning, aged particles in the latter plume were more activated to CCN at 0.4% (CCN0.4%) than 0.1% supersaturation (CCN0.1%) due to aerosols chemical modification during the aging process. On the other hand, significant difference of CCN0.4% and CCN0.1% at regional background aerosols over the Pacific Ocean was due to the activated particles below 1 μm in diameter. Although higher concentrations of aged particles were observed over the eastern Pacific Ocean, activated aerosols to cloud droplet was comparatively similar in the western Pacific Ocean because of the similar concentrations of N0.1–1.0 in both cases.  相似文献   

20.
The mixing ratios of surface ozone at two rural/remote sites in Thailand, Inthanon and Srinakarin, have been measured continuously for the first time. Almost identical seasonal variations of O3 with dry season maximum and a wet season minimum with a large seasonal amplitude are observed at both sites during 1996–1998. At Inthanon, the monthly averaged O3 mixing ratios range 9–55 ppb, with the annual average of 27 ppb. The ozone mixing ratios at Srinakarin are in the similar range, 9–45 ppb with annual average of 28 ppb. Based on trajectory analysis of O3 data at Inthanon, the long-range transport of O3 under Asian monsoon regime could primarily explain the low O3 mixing ratios of 13 ppb in clean marine air mass from Indian Ocean during wet season but only partly explain the relatively low O3 mixing ratios, 26 ppb or less, in continental air mass from northeast Asia either in wet or dry season. The highest O3 mixing ratios are found in air masses transported within southeast Asia, averaged 46 ppb in dry season. The high O3 mixing ratios during the dry season are suggested to be significantly due to the local/sub-regional scale O3 production triggered by biomass burning in southeast Asia rather than long-range transport effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号