首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sets of mass extinction coefficients at visible and near infrared wavelengths were calculated for four aerosol particle polydispersions of continental and rural origins, which are characterized by Junge-type size distribution curves with different radius intervals. The calculations were made by using a very accurate computer programme for Mie extinction. The results show that the mass extinction coefficients are closely related to the upper limit of the radius range as well as to the right wing features of the particle size distribution curves. A procedure is suggested for determining the vertical particulate mass loading from multispectral sun photometer measurements taken in very clear atmospheres. The examination of atmospheric particle extinction measurements in terms of the various extinction models shows that our model CR (based on continental and rural aerosol particle size distributions characterized by different values of Junge parameter in six contiguous radius subintervals from 0.003 to 20 μm) should give realistic estimates of the particulate mass loading in cases in which Angström's exponent α is nearly equal to or higher than 1.4. However, for the majority of real cases giving values of α smaller than 1.4, the model CR gives a good estimate of the lower limit for the particulate mass loading.  相似文献   

2.
A source-resolved model has been developed to predict the contribution of different sources to primary organic aerosol concentrations. The model was applied to the eastern US during a 17 day pollution episode beginning on 12 July 2001. Primary organic matter (OM) and elemental carbon (EC) concentrations are tracked for eight different sources: gasoline vehicles, non-road diesel vehicles, on-road diesel vehicles, biomass burning, wood burning, natural gas combustion, road dust, and all other sources. Individual emission inventories are developed for each source and a three-dimensional chemical transport model (PMCAMx) is used to predict the primary OM and EC concentrations from each source. The source-resolved model is simple to implement and is faster than existing source-oriented models. The results of the source-resolved model are compared to the results of chemical mass balance models (CMB) for Pittsburgh and multiple urban/rural sites from the Southeastern Aerosol Research and Characterization (SEARCH) network. Significant discrepancies exist between the source-resolved model and the CMB model predictions for some of the sources. There is strong evidence that the organic PM emissions from natural gas combustion are overestimated. It also appears that the OM and EC emissions from wood burning and off-road diesel are too high in the Northeastern US. Other similarities and discrepancies between the source-resolved model and the CMB model for primary OM and EC are discussed along with problems in the current emission inventory for certain sources.  相似文献   

3.
Abstract

To determine the sources of particulate matter less than 2.5?μm (PM2.5 in different ambient atmospheres (urban, roadside, industrial, and rural sites), the chemical components of PM2.5 such as ions (Cl-, NO3-, SO42-, NH4+, Na+, K+, Ca2+, and Mg2+), carbonaceous species, and elements (Al, As, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Se, V, and Zn) were measured. The average mass concentrations of PM2.5 at the urban, roadside, industrial, and rural sites were 31.5?±?14.8, 31.6?±?22.3, 31.4?±?16.0, and 25.8?±?12.4?μg/m3, respectively. Except for secondary ammonium sulfate and ammonium nitrate, the model results showed that the traffic source (i.e., the sum of gasoline and diesel vehicle sources) was the most dominant source of PM2.5 (17.1%) followed by biomass burning (13.8%) at the urban site. The major primary sources of PM2.5 were consistent with the site characteristics (diesel vehicle source at the roadside site, coal-fired plants at the industrial site, and biomass burning at the rural site). Seasonal data from the urban site suggested that ammonium sulfate and ammonium nitrate were the most dominant sources of PM2.5 during all seasons. Further, the contribution of road dust source to PM2.5 increased during spring and fall seasons. We conclude that the determination of the major PM2.5 sources is useful for establishing efficient control strategies for PM2.5 in different regions and seasons.  相似文献   

4.
The size-segregated chemical composition of atmospheric aerosol particles (aerodynamic diameter Dpaer = 0.05–10 μm) was studied to reveal differences between seasons (winter/summer), air mass origins (East/West/North), and days of the week (weekday/Sunday). The goal was to identify the different particle emission sources for the first time at a kerbside in the city of Dresden, Germany.Ultra-fine particles (Dpaer = 0.05–0.14 μm, 12% of PM10) consisted of approximately 80% OM (organic matter) and EC (elemental carbon), while fine particles (Dpaer = 0.14–1.2 μm) comprised about 55% ionic compounds with 44% OM and EC. The coarse fraction (Dpaer = 1.2–10 μm) consisted of approximately 65% ions/OM/EC and 20% metal oxides.Pb, Zn, and Cu showed crustal enrichment factors (CEFSi) > 100 for all particle sizes indicating strong anthropogenic influence. The Zn source was coal burning rather than traffic emissions. Doubled concentrations in winter were likely caused by coal combustion (Pb) and biomass burning (K), but also by a lower mixing layer height. Air masses from the East caused higher Pb and K concentrations. The origin of air masses had almost no influence on Cu, Cr, Fe, Mn, Zn and Ca, Si, Ti, indicating local sources such as traffic and heating. Possible actions against particle emissions are discussed.  相似文献   

5.
Number distribution data for 0.1–45 μm diameter aerosol were obtained using optical counting and sizing probes flown over the Alaskan Arctic during the second Arctic Gas and Aerosol Sampling Program (AGASP-II), flights 201–203. Due to noise present in the lowest size channels of the optical probes, estimates of the H2SO4 component of Arctic haze were not attempted. Large particle (> 0.5 μm diameter) results are presented here. Large particle number and volume concentration were determined along with estimated mass, which was generally </ 0.1μg m−3. Lognormal fitting to > 0.3 μg m−3 mass loading sizedistributed aerosol data produced a means for comparing volume geometric median diameters (VGMD) for these higher-mass time intervals. These VGMDs showed that solid crustal particles previously observed during AGASP-II had VGMDs in the 1.2–1.6 μm range and that the shape of these fitted lognormal distributions was essentially constant. This result suggests very-long-range transport from a distant crustal source and, in conjunction with aerosol physical and chemical characterization data, argues against the presence of the Mt. Augustine eruptive particles during AGASP-II Alaskan Arctic sampling.  相似文献   

6.
The methods of positive matrix factorization–chemical mass balance and principal component analysis/multiple linear regression–chemical mass balance were studied in this paper, for combined source apportionment. Due to the high similarity among the source profiles, several problems would raised when only one receptor model was applied. For example, the collinearity problem would result in the negative contributions when applying CMB model; certain sources would not to be separated out when applying PCA or PMF model. In this study, PCA/MLR–CMB model and PMF–CMB were attempted to resolve the problem, where the combined models were applied to study the synthetic and ambient datasets. In synthetic dataset, there were seven sources (six actual sources from real world, and one unknown source). The results obtained by the combined models show that the combined source apportionment technique is feasible. In addition, an ambient dataset from a northern city in China was analyzed by PCA/MLR–CMB model and PMF–CMB model, and these two models got the similar results. The results show that coal combustion contributed the largest fraction to the total mass.  相似文献   

7.
The marine atmosphere is characterized by particles which originate from the ocean and by those which reached the air by advection from the continent. The bubble-burst mechanism produces both sea salt as well as biological particles. The following article describes the determination of the size distribution of marine aerosol particles with special emphasis on the biological particles. Th data were obtained on three cruises with the German Research Vessel “METEOR” crossing the South Atlantic Ocean. The measurements showed that biological particles amount to 17% in number and 10% in volume concentration. Another type of particle became obvious in the marine atmosphere, the biologically contaminated particle, i.e. particles which consist partly (approximately up to one-third) of biological matter. Their concentration in the evaluated size class (r>2 μm) is higher than the concentration of the pure biological particles. The concentrations vary over about one to two orders of magnitude during all cruises.  相似文献   

8.
应用化学质量平衡模型解析烟台市污染源的排放贡献率   总被引:8,自引:0,他引:8  
根据烟台地区污染排放特点,应用化学质量平衡模型(CMB8)进行污染源解析分析,得出每个污染源对于受体地区颗粒物体样本的排放贡献率。最终的模型结果显示,建筑尘和居民烯煤锅炉排放,海洋尘和冶炼厂排放对于大气环境污染也有一定的贡献,以上分析可以为城市污染源治理提供一定的依据。  相似文献   

9.
10.
The chemical mass balance (CMB) receptor model is commonly used in source apportionment studies as a means for attributing measured airborne particulate matter (PM) to its constituent emission sources. Traditionally, error terms (e.g., measurement and source profile uncertainty) associated with the model have been treated in an additive sense. In this work, however, arguments are made for the assumption of multiplicative errors, and the effects of this assumption are realized in a Bayesian probabilistic formulation which incorporates a ‘modified’ receptor model. One practical, beneficial effect of the multiplicative error assumption is that it automatically precludes the possibility of negative source contributions, without requiring additional constraints on the problem. The present Bayesian treatment further differs from traditional approaches in that the source profiles are inferred alongside the source contributions. Existing knowledge regarding the source profiles is incorporated as prior information to be updated through the Bayesian inferential scheme. Hundreds of parameters are therefore present in the expression for the joint probability of the source contributions and profiles (the posterior probability density function, or PDF), whose domain is explored efficiently using the Hamiltonian Markov chain Monte Carlo method. The overall methodology is evaluated and results compared to the US Environmental Protection Agency's standard CMB model using a test case based on PM data from Fresno, California.  相似文献   

11.
The light scattering and absorption coefficients of fine atmospheric aerosol particles were recorded in Hungary under rural conditions in 1998–1999 by an integrating nephelometer and particle soot absorption photometer, respectively. In some cases optical properties in the fine size range were compared to those in the coarse particles. Results obtained indicate, as expected, that fine particles control the scattering and absorption caused by the aerosol. In 1999 the size distribution of aerosol particles was also monitored by means of an electric low pressure impactor (ELPI). This makes it possible the study of the relationship between the number, surface and mass concentration in the size range of 0.1–1.0 μm and the optical characteristics by also considering the chemical composition of the particles.  相似文献   

12.
The special and temporal characteristics of aerosol optical depth (AOD) and Angstrom wavelength exponent (Alpha) and their relationship with aerosol chemical compositions were analyzed by using the data of CE318 sun-photometer and aerosol sampling instruments at Lin'an, Shangdianzi and Longfengshan regional atmospheric background stations. Having the highest AOD among the three stations, Lin'an shows two peaks in a year. The AOD at Shangdianzi station shows a single annual peak with an obvious seasonal variation. The AOD at Longfengshan station has obvious seasonal variation which peaks in spring. The Alpha analysis suggests that the aerosol sizes in Lin'an, Longfengshan and Shangdianzi change from fine to coarse categories. The relationship between the aerosol optical depths of the Lin'an and Longfengshan stations and their chemical compositions is not significant, which suggests that there is not a simple linear relationship between column aerosol optical depth and the near surface chemical compositions of atmospheric aerosols. The aerosol optical depth may be affected by the chemical composition, the particle size and the shape of aerosol as well as the water vapor in the atmosphere.  相似文献   

13.
Aerosol samples were collected using a stacked filter unit (SFU) for PM10-2.0 and PM2.0 size fractions on the platform of a metropolitan underground railway station in downtown Budapest. Temporal variations in the PM10 mass concentration and wind speed and direction were determined with time resolutions of 30 and 4 s using a tapered-element oscillating microbalance (TEOM) and a wind monitor, respectively. Sample analysis involved gravimetry for particulate mass, and particle-induced X-ray emission spectrometry (PIXE) for elemental composition. Diurnal variation of the PM10 mass concentration exhibited two peaks, one at approximately 07:00 h and the other at approximately 17:00 h. The mean±SD PM10 mass concentration for working hours was 155±55 μg m−3. Iron, Mn, Ni, Cu, and Cr concentrations were higher than in outdoor air by factors between 5 and 20, showing substantial enrichment compared to both the average crustal rock composition and the average outdoor aerosol composition. Iron accounted for 40% and 46% of the PM10-2.0 and PM2.0 masses, respectively, and 72% of the PM10 mass was associated with the PM10-2.0 size fraction. The aerosol composition in the metro station (in particular the abundance of the metals mentioned above) is quite different from the average outdoor downtown composition. Mechanical wear and friction of electric conducting rails and bow sliding collectors, ordinary rails and wheels, as well as resuspension, were identified as the primary sources. Possible health implications based on comparison to various limit values and to data available for other underground railways are discussed.  相似文献   

14.
In the frame of the MIUR-AEROCLOUDS project (Study of Direct and Indirect Aerosol Effects on Climate), night-time and daytime size-segregated aerosol samples were collected concurrently at five different sites (near-city, urban, rural, marine and mountain background sites). The paper reports on the daily evolution of the main aerosol chemical characteristics as a function of particle size in different environments over the Italian Peninsula, spanning from the Po Valley to the south Tyrrhenian coast.Two 4-day intensive observation periods (IOPs) were undertaken in July 2007 and February 2008, under meteorological conditions typical of the summer and winter climate for Italy.In the summer IOP, under stable atmospheric conditions, at the low-altitude continental sites the diurnal evolution of the planetary boundary layer (PBL), induces an atmospheric dilution effect driving the particulate matter (PM) concentrations, while, at the mountain site, it determines the upward motion of polluted air masses from the Po Valley PBL in daytime.The fine fraction was dominated by ammonium salts and carbonaceous matter (water-soluble organic matter, WSOM, and water-insoluble carbonaceous matter, WINCM). High concentrations of ammonium sulphate and WSOM due to enhanced photochemical activity constituted the background aerosol composition over the whole country, whereas, ammonium nitrate and WINCM were more associated to local emissions (e.g. urban site with concentrations peaking in the finest size range due to strong local traffic-related sources of ultrafine particles).During the winter IOP in the Po Valley, the shallow PBL depths and low wind velocity, especially at night, favoured the condensation of semi-volatile species (i.e. organic matter and ammonium nitrate), causing the high fine PM concentration observed at ground level.  相似文献   

15.
A source apportionment study was conducted at two rural locations, Potsdam and Stockton, to assess the in-state/out-of-state sources of PM2.5 and Hg in New York State. At both locations, samples were collected between November 2002 and August 2005 and analyzed for fine PM mass and its chemical constituents. The measured chemical constituents included elements, cations, anions, organic and elemental carbon (OC and EC), black carbon (BC), and water-soluble short-chain (WSSC) organic acids. Positive matrix factorization (PMF) was applied to the measured concentrations and eight and seven factors were resolved at Potsdam and Stockton, respectively. Four factors were resolved in common between the two locations including secondary sulfate, secondary nitrate, secondary OC, and a crustal factor. The factor profiles of mixed industrial and motor vehicle factors resolved at Potsdam were different compared with the corresponding profiles for these factors at Stockton. A resuspended road salt factor was identified at Potsdam, while an aged sea salt factor was identified at Stockton. At Potsdam, a wood smoke factor was also resolved. Among the resolved factors, secondary sulfate was the highest contributor to the measured mass at both sites. Potential source contribution function (PSCF) analysis indicated the Ohio River Valley region as a common potential source region for this factor at both locations. For the secondary nitrate factor, at Potsdam PSCF analysis indicated the Midwestern US (NOx emissions), and the US farm belt (ammonia emissions) as potential source regions, while at Stockton, the Midwestern US (power plant NOx emissions) was indicated as a major potential source region.  相似文献   

16.
17.
Field measurements have shown that organic surfactants are significant components of atmospheric aerosols. While fatty acids, among other surfactants, are prevalent in the atmosphere, the influence of these species on the chemical and physical properties of atmospheric aerosols remains not fully characterized. In order to assess the phase in which particles may exist, a detailed study of the deliquescence of a model surfactant aerosol has been carried out. Sodium oleate was chosen as a surfactant proxy relevant in atmospheric aerosol. Sodium oleate micelle aerosol particles were generated nebulizing a sodium oleate aqueous solution. In this study, the water uptake and phase transition of sodium oleate aerosol particles have been studied in a room temperature aerosol flow tube system (AFT) using Fourier transform infrared (FTIR) spectroscopy. Aerosol morphology and elemental composition were also analysed using scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX) techniques. The particles are homogeneously distributed as ellipsoidal-shape aggregates of micelles particles with an average size of ∼1.1 μm. The deliquescence by the sodium oleate aerosol particles was monitored by infrared extinction spectroscopy, where the dried aerosol particles were exposed to increasing relative humidity as they passed through the AFT. Observations of the infrared absorption features of condensed phase liquid water enable to determine the sodium oleate deliquescence phase transition at 88±2%.  相似文献   

18.
The vapour-deposited thin-film method of analysing individual aerosol particles is shown to provide a method for quantitative determination of sulphate. The method utilizes a calibration curve which relates the mass of sulphate in a particle to the diameter of the reaction ring it produces with a thin layer of barium chloride. A single calibration curve was shown to apply to ammonium sulphate, sulphuric acid and mixed ammonium sulphate/sodium chloride particles. Masses of as little as 10−17 g sulphate, corresponding to particle diameters of ~0.03 μm, were determined to +41%, −29% accuracy with this technique.  相似文献   

19.
Aerosol samples in PM10–2.0 and PM2.0 size fractions were collected on the platform of a metropolitan underground railway station in central Budapest. Individual aerosol particles were studied using atomic force microscopy, scanning electron microscopy and transmission electron microscopy with energy-dispersive X-ray spectrometry and electron diffraction. The bulk aerosol samples were investigated by 57Fe Mössbauer spectroscopy, and they were subjected to chemical speciation analysis for Cr. The particles were classified into groups of iron oxides and iron, carbonates, silicates, quartz and carbonaceous debris. Electron micrographs showed that the Fe-rich particles in the PM2.0 size fraction typically consisted of aggregates of nano-sized hematite crystals that were randomly oriented, had round shapes and diameters of 5–15 nm. In addition to hematite, a minor fraction of the iron oxide particles also contained magnetite. In addition, the PM2.0-fraction particles typically had a rugged surface with layered or granular morphologies. Mössbauer spectroscopy suggested that hematite was a major Fe-bearing species in the PM10–2.0 size fraction; its mass contribution to the Fe was 36%. Further constituents (ferrite, carbides and FeOOH) were also identified. The water soluble amounts of Cr for the underground railway station and city center were similar. In the PM10–2.0 size fraction, practically all dissolved Cr had an oxidation state of three, which corresponds to ambient conditions. In the PM2.0 size fraction, however, approximately 7% of the dissolved Cr was present as Cr(VI), which was different from that for the urban aerosol. It is suggested that the increased adverse health effects of aerosol particles in metros with respect to ambient outdoor particles is linked to the differences in the oxidation states, surface properties or morphologies.  相似文献   

20.
于2013年9月(非采暖季)、2014年2-3月(采暖季)、2014年5月(风沙季)采集忻州市3个监测点(新城区、开发区和旧城区)的PM2.5样品,分析其中的39种元素、9种水溶性离子及2种碳组分,并对PM2.5的质量浓度进行重构。结果表明,重构后的化学组分分为5类:矿物尘、微量元素、有机物、元素碳和二次粒子,其中矿物尘、二次粒子及有机物是忻州PM2.5的主要组成,分别占到ρ(PM2.5)的24.0%~36.2%、19.2%~32.6%和12.9%~25.7%;化学组成质量分数具有较明显的季节变化特征,风沙季矿物尘质量分数高于采暖季和非采暖季,采暖季有机物质量分数高于其他两季,非采暖季二次粒子质量分数略高于其他两季;化学组分的空间变化显示会展中心站点的二次粒子和矿物尘质量分数明显高于其他2个站点。应用化学质量平衡(CMB)模型进行来源解析,结果显示忻州市PM2.5的主要来源是扬尘(21%~35%)、二次粒子(25%~26%)和机动车尾气(21%~26%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号