首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Measurements of the vertical entrainment velocity into two-dimensional dense gas plumes over fully rough surfaces were carried out as part of a co-operative research programme with wind tunnel facilities in the USA. This paper presents results obtained for neutral boundary layer conditions in the EnFlo wind tunnel at the University of Surrey; a companion paper treats the stable boundary layer case. Entrainment velocities, WE, were deduced from the streamwise development of the concentration field, non-dimensionalised with respect to the friction velocity in the undisturbed flow, u*, and correlated with the plume Richardson number, Ri*. Results for Richardson numbers in the range Ri*<15 were found to be well fitted by the empirical expression: WE/u*=0.65/(1+0.2Ri*). Flow visualisation studies showed layered plume structures with a sharp upper interface at higher Richardson numbers and in this regime turbulent motion below the interface became progressively more intermittent as Ri* increased. Measured turbulence levels collapsed within such high Richardson number plumes and flow and dispersion were significantly affected by molecular processes. Up-welling above the source was observed when the emission speed exceeded the approach flow friction velocity, though there was no clear evidence that this affected plume behaviour away from the immediate vicinity of the source.  相似文献   

2.
Measurements of the vertical entrainment velocity into two-dimensional dense gas plumes over fully rough surfaces were carried out as part of a co-operative research programme with wind tunnel facilities in the USA. This paper presents results obtained for stable boundary layer conditions in the EnFlo wind tunnel at the University of Surrey; a companion paper treats the neutral boundary layer case. Mean velocity and temperature, turbulent normal and shear tresses, temperature fluctuations and heat fluxes were measured and used to demonstrate that a moderately stable atmospheric boundary layer had been successfully simulated in the tunnel. Entrainment velocities, WE, were then deduced from the streamwise development of the concentration field, non-dimensionalised with respect to the friction velocity in the undisturbed flow, u*, and correlated with the plume Richardson number, Ri*. Higher non-dimensional entrainment speeds, WE/u*, were observed for Ri*>5 in the stable boundary layer than in the neutral boundary layer, the difference growing with increasing Richardson number. Emission velocity ratios, W0/u*, were however larger in the stable experiments, and exceeded one at about Ri*=18. Entrainment in the stable boundary layer appeared therefore to be more sensitive to emission velocity ratio than in the neutral case. Entrainment behaviour for Ri*⩽5 followed that found in the neutral boundary layer. In this regime, use of the neutral boundary layer entrainment speed correlation is unlikely to lead to the over-prediction of plume dilution rates in moderately stable boundary layers.  相似文献   

3.
Data from 137 sets of plume observations, comprising nearly 1 500 data points, are correlated with two simple formulae. These formulae, one for the buoyancy-dominated rise region and the other for the stratification-dominated levelled-off region of a plume, represent an approximate form of the entrainment theory of Hoult, et al. (1968)1 for the case of uniform atmospheric stratification and zero wind shear. The observations, which are those of the Tennessee Valley Authority and of Bringfelt (1968),6 were made of plumes whose source strengths ranged from 0.4 to 111 Mw and which were emitted from stacks of heights between 21 and 183 m. The two formulae are found to correlate the data equally well over all values of the stack exit and meteorological parameters, provided only that the bulk mean velocity of the stack gases exceeds the mean wind speed by at least 20%. The ratio of observed to calculated plume rise is found to be distributed log normally about the mean value.

The median rise at large distances downstream was found to differ insignificantly from that given by the effective stack height formula recommended recently11 for large buoyant plumes. Based upon the correlation, two formulae are recommended for computing median plume rise at all distances downstream of the stack. The formulae include an estimate of the expected uncertainty in the predicted rise.  相似文献   

4.
Experiments in a neutrally stable wind tunnel boundary layer were made for two-dimensional (quasi-line) sources of carbon dioxide dispersing over two types of uniformly spaced (billboard) surface roughness elements. Velocity and concentration measurements were made with each surface roughness over a wide range of source Richardson number by varying carbon dioxide release rate and wind speed. Concentration measurements were made with a FID gas analyzer using an ethane tracer in the source gas, and velocity measurements were made with independent LDV and HWA systems. For each surface roughness, this paper describes the wind tunnel boundary layer and presents alongwind and vertical concentration profiles in the gas plume. Vertical velocity and concentration profiles were measured at selected downwind distances, and the profiles were integrated to confirm the consistency of the measurements with the mass of carbon dioxide released. The data are intended for development of improved vertical turbulent entrainment correlations for use in dense gas dispersion models applied to hazardous chemical consequence analyses.  相似文献   

5.
The compact design of mechanical cooling towers necessitates that the plumes are issued into the cross-wind in close proximity. An improved understanding of the interaction of adjacent plumes is therefore required for better design of such cooling towers, which may lead to a reduction in their environmental impact. This paper presents the results of a numerical investigation into the interaction of two adjacent plumes in a cross-flow. The numerical model simulates small-scale wind tunnel experiments of a cooling tower arrangement. The computations are performed for three-dimensional, turbulent, buoyant and interacting plumes, and for a single plume for comparison. Two double-source arrangements, namely, tandem and side-by-side, with respect to the oncoming atmospheric boundary layer are considered. A low Reynolds number kε turbulence model is used with two discretisation schemes, hybrid and QUICK, and the results are compared. Comparisons are also made with the experimental results. The results show that the interaction of side-by-side plumes is dominated by the interaction of the rotating vortex pairs within the plumes. A tandem source arrangement leads to early merging and efficient rise enhancement. Comparisons of the predicted results with experimental data show good agreement for the plume rise.  相似文献   

6.
Fumigation of a passive plume located in or above the entrainment zone (EZ) into a growing convective boundary layer (CBL) has been simulated by large-eddy simulation (LES). Three non-dimensional parameters, α(=we0/w*0), z0/zi0, and σz0/zi0, are used to classify different cases, where w*0 is the convective velocity scale, we0 the initial entrainment velocity, zi0 the initial CBL height, z0 the initial plume height, and σz0 is the initial plume half-depth. Forty cases have been run and analysed. The crosswind-integrated concentrations have been compared with existing laboratory data from a saline convection tank. The results show that LES is a promising tool to reproduce fumigation processes. With a relatively coarse grid mesh near the EZ, LES derives reliable results that are in a good agreement with the laboratory data. The first parameter, α, containing the effects due to inversion strength, plays an important role in determining C0(T), the ground-level concentration (GLC) as a function of dimensionless time, T. For large α (say >0.03, corresponding to fast entrainment), variation of α gives significant change in C0(T); whereas for a wide range of α between 0.01 and 0.02 (corresponding to slow entrainment), C0(T) is almost independent of α. The starting time of fumigation does not vary significantly with the second parameter, z0/zi0 (relative height of plume), although C0(T) is, in general, smaller for a higher plume. This confirms laboratory findings that the traditional notion of zero fumigation for a high plume (say above 1.10zi) is not correct. The effect of the third parameter, σz0/zi0, is on the magnitude of C0(T); thinner initial plumes have higher GLCs.  相似文献   

7.
A unique field experiment has been undertaken at the CFB Borden research site to investigate the development of dissolved chlorinated solvent plumes from a residual dense non-aqueous phase liquid (DNAPL) source. The "emplaced-source" tracer test methodology involved a controlled emplacement of a block-shaped source of sand containing chlorinated solvents below the water table. The gradual dissolution of this residual DNAPL solvent source under natural aquifer conditions caused dissolved solvent plumes of trichloromethane (TCM), trichloroethene (TCE) and perchloroethene (PCE) to continuously develop down gradient. Source dissolution and 3-D plume development were successfully monitored via 173 multilevel samplers over a 475-day tracer test period prior to site remediation research being initiated. Detailed groundwater level and hydraulic conductivity data were collected. Development of plumes with concentrations spanning 1-700,000 micrograms/1 is described and key processes controlling their migration identified. Plumes were observed to be narrow due to the weakness of transverse dispersion processes and long due to advection and significant longitudinal dispersion, very limited sorptive retardation and negligible, if any, attenuation due to biodegradation or abiotic reaction. TCM was shown to be essentially conservative, TCE very nearly conservative and PCE, consistent with its greater hydrophobicity, more retarded yet having a greater mobility than observed in previous Borden field tests. The absence of biodegradation was ascribed to the prevailing aerobic conditions and lack of any additional biodegradable carbon substrates. The transient groundwater flow regime caused significant transverse lateral plume movement, plume asymmetry and was likely responsible for most of the, albeit limited, transverse horizontal plume spreading. In agreement with the widespread incidence of extensive TCE and PCE plumes throughout the industrialized world, the experiment indicates such solvent plumes are likely to be highly mobile and persistent, at least in aquifers that are aerobic and have low sorption potential (low foc content).  相似文献   

8.
The 1981 VISTTA field study characterized the composition and appearance of particle-rich plumes from three different sources. This paper compares the VISTTA observations with the predictions of two plume visibility models. Observations and predictions are analyzed from the perspective of exact solutions to the equations of radiative transfer for a somewhat idealized atmosphere. These solutions, which explicity relate plume/sky contrast to the composition of plume and background and the geometry of sun, plume and observer, are shown to be consistent with the VISTA observations. The simplified relationships are used as the basis for budgeting radiative transfer by the plume and background, and for analyses of the sensitivity of plume appearance to individual variables.The optics predictions of the two models are less accurate for plumes dominated by particle scattering than they are for plumes dominated by NO2 absorption. Inaccurate prediction of plume particle size distributions can be identified as an important source of error. Inaccurate prediction of background sky radiance is suspected as another.  相似文献   

9.
The impacts of emissions plumes from major industrial sources on black carbon (BC) and BTEX (benzene, toluene, ethyl benzene, xylene isomers) exposures in communities located >10 km from the industrial source areas were identified with a combination of stationary measurements, source identification using positive matrix factorization (PMF), and dispersion modeling. The industrial emissions create multihour plume events of BC and BTEX at the measurement sites. PMF source apportionment, along with wind patterns, indicates that the observed pollutant plumes are the result of transport of industrial emissions under conditions of low boundary layer height. PMF indicates that industrial emissions contribute >50% of outdoor exposures of BC and BTEX species at the receptor sites. Dispersion modeling of BTEX emissions from known industrial sources predicts numerous overnight plumes and overall qualitative agreement with PMF analysis, but predicts industrial impacts at the measurement sites a factor of 10 lower than PMF. Nonetheless, exposures associated with pollutant plumes occur mostly at night, when residents are expected to be home but are perhaps unaware of the elevated exposure. Averaging data samples over long times typical of public health interventions (e.g., weekly or biweekly passive sampling) misapportions the exposure, reducing the impact of industrial plumes at the expense of traffic emissions, because the longer samples cannot resolve subdaily plumes. Suggestions are made for ways for future distributed pollutant mapping or intervention studies to incorporate high time resolution tools to better understand the potential impacts of industrial plumes.

Implications: Emissions from industrial or other stationary sources can dominate air toxics exposures in communities both near the source and in downwind areas in the form of multihour plume events. Common measurement strategies that use highly aggregated samples, such as weekly or biweekly averages, are insensitive to such plume events and can lead to significant under apportionment of exposures from these sources.  相似文献   


10.
The injection of a dense gas stream at ground level into a flowing turbulent atmosphere produces a wide, flat plume that entrains air primarily through its upper surface. A quasi-one-dimensional flow model of an isothermal dense gas plume is developed for the purpose of comparing experiments in wind tunnels and water flumes and field tests in the atmosphere. Comparisons are made for plume width, including the width at the source, and centerline ground plane source gas concentration. All published data are used in this comparison, which cover a factor of about 100 in plume length scale and Reynolds number. Tests conducted by different experimenters were found not to be dynamically similar. Dimensionless model parameters, all of order unity, are selected to give the best agreement among all the experimental data. The dependence of entrainment rate on the plume Richardson number, a key feature of the model, is confirmed in the comparison. The entrainment rate parameter is found to be larger for the field tests than for the laboratory experiments, reflecting the much higher Reynolds number of the former.  相似文献   

11.
This paper describes an investigation into the behaviour of smoke plumes from pool fires, and the subsequent generation of empirical models to predict plume rise and dispersion from such a combustion source. Synchronous video records of plumes were taken from a series of small-scale (0.06–0.25m2) outdoor methanol/toluene pool fire experiments, and used to produce sets of images from which plume dimensions could be derived. Three models were used as a basis for the multiple regression analysis of the data set, in order to produce new equations for improved prediction. Actual plume observations from a large (20.7 m×14.2 m) aviation fuel pool fire were also used to test the predictions. The two theoretically based models were found to give a better representation of plume rise and dispersion than the empirical model based on measurements of small-scale fires. It is concluded that theoretical models tested on small-scale fires (heat output ≈70 kW) can be used to predict plume behaviour from much larger combustion sources (heat output ≈70 MW) under near neutral atmospheric conditions.  相似文献   

12.
A theory for the rise of a plume in a horizontal wind is proposed in which it is assumed that, for some distance downwind of a high stack, the effects of atmospheric turbulence may be ignored in comparison with the effects of turbulence generated by the plume. The theory, an extension of the local similarity ideas used by Morton, Taylor, and Turner,1 has two empirical parameters which measure the rate that surrounding fluid is entrained into the plume. Laboratory measurements of buoyant plume motion in laminar unstratified cross flow are used to estimate the empirical parameters. Using this determination of the parameters in the theory, the trajectories of atmospheric plumes may be predicted. To make such a prediction, the observed wind velocity and temperature as functions of altitude, and flow conditions at the stack orifice, are used in numerically integrating the equations. The resulting trajectories are compared with photographs, made by Leavitt, et al.,2 of TVA, of plumes from 500 to 600 ft high stacks. Within 10 stack heights downwind of the stack, the root mean square discrepancy between the observed height of the trajectory above ground level and the theoretical value is 14%, which is about the uncertainty in the observed height. The maximum plume rise within the field of observation is within 15% of that predicted by the present theory.  相似文献   

13.
Numerical and approximate analytical solutions are compared for turbulent plume rise in a crosswind. The numerical solutions were calculated using the plume rise model of Hoult, Fay and Forney (1969, J. Air Pollut. Control Ass.19, 585–590), over a wide range of pertinent parameters. Some wind shear and elevated inversion effects are included. The numerical solutions are seen to agree with the approximate solutions over a fairly wide range of the parameters. For the conditions considered in the study, wind shear effects are seen to be quite small. A limited study was made of the penetration of elevated inversions by plumes. The results indicate the adequacy of a simple criterion proposed by Briggs (1969, AEC Critical Review Series, USAEC Division of Technical Information extension, Oak Ridge, Tennesse).  相似文献   

14.
A method for calculating the dispersion of plumes in the atmospheric boundary layer is presented. The method is easy to use on a routine basis. The inputs to the method are fundamental meteorological parameters, which act as distinct scaling parameters for the turbulence. The atmospheric boundary layer is divided into a number of regimes. For each scaling regime we suggest models for the dispersion in the vertical direction. The models directly give the crosswind-integrated concentrations at the ground, xy, for nonbuoyant releases from a continuous point source. Generally the vertical concentration profile is proposed to be other than Gaussian. The lateral concentration profile is always assumed to be Gaussian, and models for determining the lateral spread σy are proposed. The method is limited to horizontally homogeneous conditions and travel distances less than 10km. The method is evaluated against independent tracer experiments over land. The overall agreement between measurements and predictions is very good and better than that found with the traditional Gaussian plume model.  相似文献   

15.
The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study – Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west–northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50–60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O3 that peaked at 120 ppbv at a short distance (15–25 km) downwind of Nashville. Ozone productivity (the ratio of excess O3 to NOy and NOz) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism.  相似文献   

16.
This paper evaluated the feasibility of using the horizontal radial plume mapping (HRPM) technique to locate multiple emission sources via computational simulation. Seventy-two test maps, each having two Gaussian distributions, were generated in a two-dimensional domain. The HRPM technique with the non-negative least square (NNLS) algorithm was then applied to reconstruct the plumes, assuming a nine-beam scanning beam geometry. The NNLS algorithm successfully reconstructed the source locations of 68 of the 72 test maps. However, when one of the plumes was near the origin, the NNLS did not always identify the peak locations correctly. Furthermore, when the two plumes were spaced closely, the NNLS tended to reconstruct a wide plume covering both plumes instead of separating them due to the resolution limitation of the current nine-beam geometry. In the sensitivity analysis, five sets of random error (1%, 5%, 10%, 20%, and 30%) were added in the path-integrated concentration (PIC) from the 72 test maps, and thus, an additional 360 reconstructions were implemented. Robust results were obtained when the noise added was less than 20%. The results generally support the implementation of the NNLS algorithm in the HRPM technique as described in the U.S. Environmental Agency (EPA) Other Test Method 10 (OTM-10).

Implications: The methodology evaluated in this paper provides near-real-time estimates about the locations of multiple emission sources. The involved optical remote sensing instruments can monitor large spatial areas (e.g., landfills) in a cost-effective way.  相似文献   

17.
Mobile lidar observations were made downwind of TVA’s Cumberland (Tennessee) power plant as part of the STATE (Sulfur Transport and Transformation in the Environment) program. Vertical profiles of aerosol backscatter have been processed and displayed to show plume structure as an intensity-modulated TV presentation. Available meteorological data, especially the pilot balloon and radiosonde measurements collected during the STATE experiment, have been used to aid in the interpretation of the lidar display. The data show: ? Well defined nighttime plumes, which often tilt or display a layered structure in the shape of a “>”.

? Late morning convective breakup of the plume.

? Well mixed convective plumes during the day.

? Reformation of the layered nighttime plume during the late afternoon.

It appears that the nighttime plume behavior can be related qualitatively to the strong directional shear of the wind with height that often accompanies the stable nighttime atmosphere. The nighttime plume shapes frequently differ markedly from the oval shape one expects of a gaussian plume. Daytime plumes are in better conformance to the expected shape except when constricted by the surface or the top of the mixing layer  相似文献   

18.
The 1995 Kit Fox dense gas field data set consists of 52 trials where short-duration CO2 gas releases were made at ground level over a rough surface during neutral to stable conditions. The experiments were intended to demonstrate the effects on dense gas clouds of relatively large roughnesses typical of industrial process plants. Fast response concentration observations were made by 80 samplers located on four downwind lines (25, 50, 100, and 225 m), including profile observations on three towers on each of the closest three arcs. Detailed meteorological measurements were made on several towers within and outside of the roughness arrays. The data analysis emphasized the variation of maximum concentration with surface roughness, the dependence of cloud advection speed on cloud depth, the variation of the three components of dispersion with ambient turbulence, and the dependence of vertical entrainment rate on ambient friction velocity and cloud Richardson number. The Kit Fox data were used to evaluate a specific dense gas dispersion model (HEGADAS 3+), with emphasis on whether it would be able to account for the increased roughness. The model was able to satisfactorily simulate the observed concentrations, with a mean bias of about 5% and with about 90% of the predictions within a factor of two of the observations.  相似文献   

19.
We present a plume rise model which can be applied to situations with arbitrary wind fields and source exit directions and to both dry and wet plumes. The model is an integral model which considers plume properties averaged over the plume cross section. It is validated by means of water tank, wind tunnel, and field experiments (stacks and cooling towers).  相似文献   

20.
Several photographs are presented which illustrate the large scale dispersion of atmospheric pollutants. These photographs were taken by astronauts on various manned spacecraft flights. A spacecraft view of a forest fire in the Apalachicola National Forest revealed a rather large smoke plume. Geometrically scaled measurements indicated the plume was approximately 4 miles wide and about 65 miles long. Trapped under a frontal inversion located between 2500 and 3000 ft above ground level, this plume was being transported south-southwestward into the Gulf of Mexico by the local wind flow pattern. Several pictures containing examples of industrial smoke plumes in the vicinity of Houston, Tex., are discussed in relation to the local synoptic situation. A picture of industrial haze over Houston, Tex., is presented to illustrate an areal distribution of atmospheric pollutants covering an area of about 2600 square miles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号