首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectroradiometric direct irradiance measurements in the 300–1100 nm wavelength range with a spectral resolution of 6.2 nm have been used in a study of the variation in the Ångström turbidity parameter α and its dependence on the spectral range used in its determination. The measurements have been carried out under clear sky conditions at two different climate stations in Spain. Least-square fits of the experimental spectral aerosol optical depth (AOD) to the Ångström formula in different spectral ranges, selected for convenience depending on the objective or application (e.g., UV–VIS (350–400 nm), VIS (400–670 nm), VIS–NIR (370–870 nm), etc.), result in different sets for the α parameter. Due to this dependence on the spectral range, where the α-values are determined, a quantitative comparative analysis is carried out in order to assess the differences for a given data-base covering very different atmospheric conditions. The study reveals the necessity of a ‘standard spectral range’ to achieve confident data comparisons. We show some applications that are relevant for aerosol studies, from UV absorption by aerosols to satellite remote sensing.  相似文献   

2.
Multi-filter rotating shadowband radiometer (MFRSR) measurements have been carried out at Lampedusa (35.52°N, 12.63°E) in 1999, and continuously since 2001. This study describes the Saharan dust (SD) events at Lampedusa on the basis of daily average optical depth at 500 nm, τ, and Ångström exponent, α, derived from these observations. Back-trajectories ending at Lampedusa at 2000 and 4000 m altitude were calculated by means of the HYSPLIT model. SD events are identified as those for which the trajectories interact with the mixed layer in places where the surface wind exceeds 7 m s−1, or spend a large fraction of time over the Sahara. The SD days display values of αα⩽1, with Δα equal to the standard deviation of the daily α. Out of 911 days with cloud-free intervals, 233 (26%) are classified as SD, and correspond to 111 episodes of various duration, from 1 to 13 consecutive days. The occurrence of SD events is maximum in summer (33%), when also the largest seasonal average of τ (0.40) is measured, and minimum in winter (7%), when the smallest seasonal average of α (0.08) is found. SD days have been identified from the back-trajectories also in days lacking of observations, due to either cloudiness or measurement interruptions. The frequency of occurrence of SD days shows little change with respect to the cloud-free periods (24%). The seasonal distribution shows a peak in May (38%), followed by July (37%). Regions of SD production were derived from the HYSPLIT trajectories and NCEP-reanalysis surface winds. Finally, the MFRSR measurements at the solar zenith angle of 60° have been used to derive the single scattering albedo (SSA) for cases clearly dominated by dust (τ⩾0.40 and αα⩽0.5). The average SSA for the whole period is 0.77±0.04 at 415.6 nm and 0.94±0.04 at 868.7 nm.  相似文献   

3.
Regular measurements of total mass concentration and mass-size distribution of near-surface aerosols, made using a ten-channel Quartz Crystal Microbalance (qcm) Impactor for the period October 1998–December 1999 at the tropical coastal station Trivandrum (8.5°N, 77°E), are used to study the response of aerosol characteristics to regional mesoscale and synoptic processes. Results reveal that aerosol mass concentrations are generally higher under land breeze conditions. The sea breeze generally has a cleansing effect, depleting the aerosol loading. The continental air (LB regime) is richer in accumulation mode (submicron) aerosols than the marine air. On a synoptic scale, aerosol mass concentration in the submicron mode decreased from an average high value of ∼86 μg m−3 during the dry months (January–March) to ∼11 μg m−3 during the monsoon season (June–September). On the contrary mass concentration in the supermicron mode increased from a low value of ∼15 μg m−3 during the dry months to reach a comparatively high value of ∼35 μg m−3 during April, May. Correspondingly, the effective radius (Reff) increased from a low value of 0.15–0.17 μm to ∼0.3 μm indicating a seasonal change in the size distribution. The mass-size distribution shows mainly three modes, a fine mode (∼0.1 μm); a large mode (∼0.5 μm) and a coarse mode (∼3 μm). The fine mode dominates in winter. In summer the large mode becomes more conspicuous and the coarse mode builds up. The fine mode is highly reduced in monsoon and the large and coarse modes continue to remain high (replenished) so that their relative dominance increases. The size distribution tends to revert to the winter pattern in the post-monsoon season. Accumulation (submicron) aerosols account for ∼98% of the total surface area and ∼70% of the total volume of aerosols during winter. During monsoon, even though they still account for ∼90% of the area, their contribution to the volume is reduced to ∼50%; the coarse aerosols account for the rest.  相似文献   

4.
Long-term measurements of spectral atmospheric transparency are analysed to describe the aerosol size distribution as well as the aerosol optical thickness in the urban region of Bratislava city, capital of Slovak Republic. Aerosol characteristics are related to the most frequent air masses, especially to the continental polar (cP—with a 54% occurrence) and maritime polar (mP—with 34% occurrence), to the wind direction and speed, as well as to the relative humidity. Including both random and systematic errors of the observations into the calculation procedures, the aerosol optical thickness is obtained with approximately 4% error at all wavelengths. Averaged values of the aerosol optical thickness τa(λ) at reference wavelength λ=520 nm vary over a wide range, from 0.1 to 0.7. Besides, the aerosol optical thickness of the continental polar air mass is obviously higher than corresponding values in the maritime polar air mass. It is shown that the transformation inside the air mass reflects the changes of the optical characteristics of aerosols, especially during decay of air mass. The function τa(λ) seems to be monomodal in the majority of cases, with the mode position about λ≈400 nm for cP, and λ≈500 nm for mP. A value of power parameter δ of the function τa(λ)≈λδ is about 0.8–1.6 for maritime polar and about 0.3–1.2 for continental polar. Two simple model functions (Junge and gamma) are examined to find a best fit of real distribution retrieved from the aerosol optical thickness data using the inverse techniques based on Mellin transform. The gamma function much better than Junge's function supply the real aerosol component of all studied air masses (mainly for cP and mP). The average modal radius of gamma distribution practically does not exceed the value of 0.06 μm. Real distributions retrieved using a Mellin transform give an averaged morning value of particle modal radius rm about 0.084 μm, and averaged daily value rm about 0.054 μm.  相似文献   

5.
A review of the physical characteristics of sulfur-containing aerosols, with respect to size distribution of the physical distributions, sulfur distributions, distribution modal characteristics, nuclei formation rates, aerosol growth characteristics, and in situ measurement, has been made.Physical size distributions can be characterized well by a trimodal model consisting of three additive lognormal distributions.When atmospheric physical aerosol size distributions are characterized by the trimodal model, the following typical modal parameters are observed:1. Nuclei mode – geometric mean size by volume, DGVn, from 0.015 to 0.04 μm. σgn=1.6, nucler mode volumes from 0.0005 over the remote oceans to 9 μm3 cm−3 on an urban freeway.2. Accumulation mode – geometric mean size by volume, DGVa, from 0.15 to 0.5 μm, σga=1.6–2.2 and mode volume concentrations from 1 for very clean marine or continental backgrounds to as high as 300 μm3 cm−3 under very polluted conditions in urban areas.3. Coarse particle mode – geometric mean size by volume, DGVc, from 5 to 30 μm, σgn=2–3, and mode volume concentrations from 2 to 1000 μm3 cm−3.It has also been concluded that the fine particles (Dp<2 μm) are essentially independent in formation, transformation and removal from the coarse particles (Dp>2 μm).Modal characterization of impactor-measured sulfate size distributions from the literature shows that the sulfate is nearly all in the accumulation mode and has the same size distribution as the physical accumulation mode distribution.Average sulfate aerodynamic geometric mean dia. was found to be 0.48±0.1 μm (0.37±0.1 μm vol. dia.) and σg=2.00±0.29. Concentrations range from a low of about 0.04 μg m−3 over the remote oceans to over 8 μg m−3 under polluted conditions over the continents.Review of the data on nucleation in smog chambers and in the atmosphere suggests that when SO2, is present, SO2-to-aerosol conversion dominates the Aitken nuclei count and, indirectly, through coagulation and condensation, the accumulation mode size and concentration. There are indications that nucleation is ubiquitous in the atmosphere, ranging from values as low as 2 cm−3 h−1 over the clean remote oceans to a high of 6×106 cm−3 h−1 in a power plant plume under sunny conditions.There is considerable theoretical and experimental evidence that even if most of the mass for the condensational growth of the accumulation mode comes from hydrocarbon conversion, sulfur conversion provides most of the nuclei.  相似文献   

6.
Individual aerosol particles were collected on 5 days with different meteorological conditions in March, April and June 1991 in the urban atmosphere of Vienna in Austria. The samples collected with an impactor were examined by electron microscopy. The mixing properties of submicrometer aerosol particles with radii between 0.1 and 1 μm were studied by using the dialysis (extraction) of water-soluble material. The averaged results showed that more than 85% of particles with radii between 0.1 and 0.7 μm were hygroscopic. However, more than 50% of particles with radii larger than 0.2 μm were mixed particles (hygroscopic particles with water-insoluble inclusions), and they were dominant (80%) in the size range 0.5–0.7 μm radius. The results also showed that the number proportion of mixed particles increased with increasing radius and the abundance increased with increasing particle loading in the atmosphere. The volume fraction of water-soluble material (ε) in mixed particles tended to decrease with increasing radius, implying the formation of mixed particles by heterogeneous processes such as condensation and/or surface reaction. Some results of elemental composition in individual particles analyzed with an energy-dispersive X-ray (EDX) analyzer equipped with an electron microscope are also presented in this paper.  相似文献   

7.
Smaller-sized fungal fragments (<1 μm) may contribute to mold-related health effects. Previous laboratory-based studies have shown that the number concentration of fungal fragments can be up to 500 times higher than that of fungal spores, but this has not yet been confirmed in a field study due to lack of suitable methodology. We have recently developed a field-compatible method for the sampling and analysis of airborne fungal fragments. The new methodology was utilized for characterizing fungal fragment exposures in mold-contaminated homes selected in New Orleans, Louisiana and Southern Ohio. Airborne fungal particles were separated into three distinct size fractions: (i) >2.25 μm (spores), (ii) 1.05–2.25 μm (mixture), and (iii) <1.0 μm (submicrometer-sized fragments). Samples were collected in five homes in summer and winter and analyzed for (1→3)-β-d-glucan.The total (1→3)-β-d-glucan varied from 0.2 to 16.0 ng m−3. The ratio of (1→3)-β-d-glucan mass in fragment size fraction to that in spore size fraction (F/S) varied from 0.011 to 2.163. The mass ratio was higher in winter (average=1.017) than in summer (0.227) coinciding with a lower relative humidity in the winter. Assuming a mass-based F/S-ratio=1 and the spore size=3 μm, the corresponding number-based F/S-ratio (fragment number/spore number) would be 103 and 106, for the fragment sizes of 0.3 and 0.03 μm, respectively. These results indicate that the actual (field) contribution of fungal fragments to the overall exposure may be very high, even much greater than that estimated in our earlier laboratory-based studies.  相似文献   

8.
The PM2.5 concentrations and the size distributions of dicarboxylic acids in Hong Kong were studied. Eleven sets of daily PM2.5 samples were obtained at a downtown sampling site during the period of 5–16 December 2000 using an R&P speciation PM2.5 sampler. About 6–12% of the total oxalic acid was found in the gas phase in some samples. A good correlation between succinate and sulfate (R2=0.88) and a moderate correlation between oxalate and sulfate (R2=0.74) were found. Sampling artifacts of oxalate, malonate and succinate were found to be negligible. A total of 18 sets of 48–96 h size distribution data on dicarboxylic acids, sulfate, nitrate and sodium at an urban site and a rural site from June 2000 to May 2001 were obtained using a Micro-Orifice Uniform Deposit Impactor. Data from both sites show similar size distribution characteristics of the dicarboxylic acids. The condensation mode of oxalate was usually observed at 0.177–0.32 μm. The location of the peak of the droplet mode of oxalate was associated with that of sulfate. When the peak of sulfate in the droplet mode appeared at 0.32–0.54 μm, the peak of oxalate sometimes appeared at 0.32–0.54 μm and sometimes shifted to 0.54–1.0 μm. When the peak of sulfate in the droplet mode appeared at 0.54–1.0 μm, the peak of oxalate sometimes appeared at 0.54–1.0 μm and sometimes shifted to 1.0–1.8 μm. Oxalate, succinate and sulfate found in the droplet mode were attributed to in-cloud formation. The slight shift of the oxalate peak from 0.32–0.54 to 0.54–1.0 μm or from 0.54–1.0 to 1.0–1.8 μm was ascribed to minor oxalate evaporation after in-cloud formation. The maximum peak of malonate sometimes appeared in the droplet mode and sometimes appeared at 3.1–6.2 μm. The formation of malonate is associated to the reactions between sea salt and malonic acid.  相似文献   

9.
The aerosol scattering properties were investigated at two continental sites in northern China in 2004. Aerosol light scattering coefficient (σsp) at 525 nm, PM10, and aerosol mass scattering efficiencies (α) at Dunhuang had a mean value of 165.1±148.8 M m−1, 157.6±270.0 μg m−3, and 2.30±3.41 m2 g−1, respectively, while these values at Dongsheng were, respectively, 180.2±151.9 M m−1, 119.0±112.9 μg m−3, and 1.87±1.41 m2 g−1. There existed a seasonal variability of aerosol scattering properties. In spring, at Dunhuang PM10, σsp, and α were 184.1±211.548 μg m−3, 126.3±89.6 M m−1, and 1.05±0.97 m2 g−1, respectively, and these values at Dongsheng were 146.4±142.1 μg m−3, 183.4±81.7 M m−1, and 1.98±1.52 m2 g−1, respectively. However, in winter at Dunhuang PM10, σsp, and α were 158.1±261.4 μg m−3, 303.3±165.2 M m−1, and 3.17±1.93 m2 g−1, respectively, and these values at Dongsheng were 155.7±170.1 μg m−3, 304.4±158.1 M m−1, and 2.90±1.72 m2 g−1, respectively. σsp and α in winter were higher than that in spring at both the sites, which coincides with the characteristics of dust aerosol and pollution aerosol. Overall, the dominant aerosol types in spring and winter at both sites in northern China are dust aerosol and pollution aerosol, respectively.  相似文献   

10.
In order to investigate the influence of the atmospheric aerosol on the ultraviolet radiation on earth, the measurement campaign Photochemical Activity and Ultraviolet Radiation (PAUR II) Modulation was carried out in the central Mediterranean Sea during the period May–June 1999. Two sites were chosen for measurements: the island of Crete (Greece), and the island of Lampedusa (Italy). The aerosol features over the Lampedusa island, as well as the dust coming from Sahara desert, were investigated by measurements of direct and diffuse solar irradiance carried out with an aureolemeter. The columnar volume size distributions of the aerosol showed a four-modal shape in a less turbid atmosphere when the aerosol optical depth was less than 0.2 at λ=500 nm, and a tri-modal shape in a turbid atmosphere when the aerosol optical depth at the same wavelength was greater than 0.5; the background aerosol turned out to be mainly composed of sea salt. The increase of the aerosol optical depth and of the particles density with radius about 1 μm has been found to be strictly related to the passage of Saharan dust in the time periods 14–22 May and 1–3 June, 1999. The columnar volume of particles obtained by the aureolemeter has been compared with the columnar volume of particles retrieved by in situ measurements carried out with a forward scattering spectrometer probe (FSSP) aboard a light aircraft flying over the island. Although the above two techniques refer to aerosol columns of different height and operate with different resolutions, their relevant results are in good agreement, especially during days with lower aerosol content. The two volume radius distributions have been also compared and their behaviours show a satisfactory agreement, mainly for particles with radius greater than 1 μm.  相似文献   

11.
A dynamic soil enclosure was used to characterise monoterpene emissions from 3 soil depths within a Picea sitchensis (Sitka spruce) forest. In addition, a dynamic branch enclosure was used to provide comparative emissions data from foliage. In all cases, limonene and α-pinene dominated monoterpene soil emissions, whilst camphene, β-pinene and myrcene were also present in significant quantities. α-Phellandrene, 3-carene and α-terpinene were occasionally emitted in quantifiable amounts whilst cymene and cineole, although tentatively identified, were always non-quantifiable. Total daily mean monoterpene emission rates, normalised to 30°C, varied considerably between soil depths from 33.6 μg m−2 h−1 (range 28.3–38.4) for undisturbed soil, to 13.0 μg m−2 h−1 (8.97–16.4) with uppermost layer removed, to 199 μg m−2 h−1 (157–216) with partially decayed layer removed, suggesting that the surface needle litter was the most likely source of soil emissions to the atmosphere. Relative monoterpene ratios did not vary significantly between layers. Foliar monoterpenes exhibited a similar emission profile to soils with the exceptions of camphene and 3-carene whose contributions decreased and increased, respectively. Emission rates from foliage, normalised to 30°C were found to have a daily mean of 625 ng g−1 dw h−1 (299–1360). On a land area basis however, total soil emissions were demonstrated to be relatively insignificant to total emissions from the forest ecosystem.  相似文献   

12.
During the month of August 2004, the size-resolved number concentration of water-insoluble aerosols (WIA) from 0.25 to 2.0 μm was measured in real-time in the urban center of Atlanta, GA. Simultaneous measurements were performed for the total aerosol size distribution from 0.1 to 2.0 μm, the elemental and organic carbon mass concentration, the aerosol absorption coefficient, and the aerosol scattering coefficient at a dry (RH=30%) humidity. The mean aerosol number concentration in the size range 0.1–2.0 μm was found to be 360±175 cm−3, but this quantity fluctuated significantly on time scales of less than one hour and ranged from 25 to 1400 cm−3 during the sample period. The mean WIA concentration (0.25–2.0 μm) was 13±7 cm−3 and ranged from 1 to 60 cm−3. The average insoluble fraction in the size range 0.25–2.0 μm was found to be 4±2.5% with a range of 0.3–38%. The WIA population was found to follow a consistent diurnal pattern throughout the month with concentration maxima concurring with peaks in vehicular traffic flow. WIA concentration also responded to changes in meteorological conditions such as boundary layer depth and precipitation events. The temporal variability of the absorption coefficient followed an identical pattern to that of WIA and ranged from below the detection limit to 55 Mm−1 with a mean of 8±6 Mm−1. The WIA concentration was highly correlated with both the absorption coefficient and the elemental carbon mass concentration, suggesting that WIA measurements are dominated by fresh emissions of elemental carbon. For both the total aerosol and the WIA size distributions, the maximum number concentration was observed at the smallest sizes; however the WIA size distribution also exhibited a peak at 0.45 μm which was not observed in the total population. Over 60% of the particles greater than 1.0 μm were observed to be insoluble in the water sampling stream used by this instrumentation. Due to the refractive properties of black carbon, it is highly unlikely that these particles could be composed of elemental carbon, suggesting a crustal source for super-micron WIA.  相似文献   

13.
Characteristic parameters of black carbon aerosol (BC) emitted from jet engine were measured during ground tests and in-flight behind the same aircraft. Size distribution features were a primary BC mode at a modal diameter D≈0.045 μm, and a BC agglomeration mode at D<0.2 μm. The total BC number concentration at the engine exit was 2.9×107 cm-3 with good agreement between model results and in-flight measured number concentrations of non-volatile particles with D⩾0.014 μm. A comparison between total number concentration of BC particles and the non-volatile fraction of the total aerosol at the exit plane suggests that the non-volatile fraction of jet engine exhaust aerosol consists almost completely of BC. In-flight BC mass emission indices ranged from 0.11 to 0.15 g BC (kg fuel)-1. The measured in-flight particle emission value was 1.75±0.15×1015 kg-1 with corresponding ground test values of 1.0–8.7×1014 kg-1. Both size distribution properties and mass emission indices can be scaled from ground test to in-flight conditions. Implications for atmospheric BC loading, BC and cirrus interaction and the potential of BC for perturbation of atmospheric chemistry are briefly outlined.  相似文献   

14.
Size-resolved, 24-h aerosol samples were collected from June–July 2001 by means of an Andersen high-volume cascade impactor. Sampling was conducted in a central avenue (Patission) characterised by heavy traffic, 21 m above street level, in the Athens city centre. Samples were analysed by atomic absorption spectrometry and gas chromatography to determine the size distribution of nine metallic elements (Cd, Pb, V, Ni, Mn, Cr, Cu, Fe, Al) and n-alkanes (with carbon numbers in the range 18–35). The aerosol mass median diameter (MMD) was calculated by means of probit analysis on the cumulative mass concentration size distribution for each metals and n-alkane. The total n-alkane mass concentration (TNA) in total suspended particles (TSP) ranged from 72 to 1506 ng m−3 while the total metal concentration ranged from 5.6 to 28.6 μg m−3. The results showed that metals such as Cd, V and Ni are characterised by a MMD <1 μm, while the MMD for Pb and Mn are ∼1 μm. Such metals are generally considered to have anthropogenic emission sources. Other metals such as Al, Fe, Cu and Cr were found to have MMD=2–6 μm, which generally originate from soil dust or mechanical abrasion processes. The Carbon number profile of n-alkane compounds showed a strong anthropogenic source with only a minor biogenic influence. The concentration of most n-alkanes was characterised by high variability during the sampling period, in contrast to the concentration of most trace metals. Most n-alkanes had a unimodal size distribution with MMD=1–2 μm similar to those of some trace metals (Pb, Mn), which originate mostly from vehicle emissions. This is a strong indication that these species have a common source. Finally, gas–particle partitioning of n-alkanes was also examined for different particle sizes by means of the relationship between the partition constant Kp and saturation vapour pressure (pL0) as proposed by current sorption models.  相似文献   

15.
The size distribution of ambient air particles and associated organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) including hexachlorocyclohexanes (HCHs), DDT and metabolites, etc., was investigated at a traffic-impacted site of Thessaloniki, Greece. Investigation took place during wintertime of 2006 at two heights above ground: at the street level (1.5 m) and at the rooftop level (15 m). Size-resolved samples (<0.95 μm, 0.95–1.5 μm, 1.5–3 μm, 3–7.5 μm and >7.5 μm) were concurrently collected from the two height levels using five-stage high volume cascade impactors. At both heights, particle mass exhibited bimodal distribution with peaks in the 0.95–1.5 μm and the 3–7.5 μm size fractions, whereas most organic pollutants exhibited one peak at 0.95–1.5 μm. Apart from the 0.95–1.5 μm fraction, particle concentrations of all size ranges were significantly higher at the street level than at the rooftop as a result of more intensive vehicular emissions and road dust resuspension. On the contrary, the concentrations of most organic pollutants did not differentiate significantly between the two elevations.  相似文献   

16.
Ambient particulate chemical composition data acquired from samples collected using a three-stage Davis Rotating-drum Universal-size-cut Monitoring (DRUM) impactor in Detroit, MI, between February and April 2002 were analyzed through the application of a three-way factor analysis model. PM2.5 (particulate matter ⩽2.5 μm in aerodynamic diameter) was collected by a DRUM impactor with 3-h time resolution and three size modes (2.5 μm>Dp>1.15 μm, 1.15 μm>Dp>0.34 μm and 0.34 μm>Dp>0.1 μm). A novel three-way factor analysis model was applied to these data where the source profiles are a three-way array of size, composition and source while the contributions are a matrix of sample by source. Nine factors were identified: road salt, industrial (Fe+Zn), cloud processed sulfate, two types of metal works, road dust, local sulfate source, sulfur with dust, and homogeneously formed sulfate. Road salt had high concentrations of Na and Cl. Mixed industrial emissions are characterized by Fe and Zn. The cloud processed sulfate had a high concentration of S in the intermediate size mode. The first metal works represented by Fe in all three size modes and by Zn, Ti, Cu, and Mn. The second included a high concentration of small size particle sulfur with intermediate size Fe, Zn, Al, Si, and Ca. Road dust contained Na, Al, Si, S, K, and Fe in the large size mode. The local and homogeneous sulfate factors show high concentrations of S in the smallest size mode, but different time series behavior in their contributions. Sulfur with dust is characterized by S and a mix of Na, Mg, Al, Si, K, Ca, Ti, and Fe from the medium and large size modes. This study shows that the utilization of time and size resolved DRUM data can assist in the identification of sources and atmospheric processes leading to the observed ambient concentrations.  相似文献   

17.
Seasonal variations of biogenic volatile organic compound (VOC) emission rates and standardised emission factors from gorse (Ulex europaeus) have been measured at two sites in the United Kingdom, from October 1994 to September 1995, within temperature and PAR conditions ranging from 3 to 34°C and 10–1300 μmol m−2 s−1, respectively. Isoprene was the dominant emitted compound with a relative composition fluctuating from 7% of the total VOC (winter) to 97% (late summer). The monoterpenes α-pinene, camphene, sabinene, β-pinene, myrcene, limonene, trans-ocimene and γ-terpinene were also emitted, with α-pinene being the dominant monoterpene during most the year. Trans-ocimene represented 33–66% of the total monoterpene during the hottest months from June to September. VOC emissions were found to be accurately predicted using existing algorithms. Standard (normalised) emission factors of VOCs from gorse were calculated using experimental parameters measured during the experiment and found to fluctuate with season, from 13.3±2.1 to 0.1±0.1 μg C (g dwt)−1 h−1 in August 1995 and January 1995, respectively, for isoprene, and from 2.5±0.2 to 0.4±0.2 μg C (g dwt)−1 h−1 in July and November 1995, respectively, for total monoterpenes. No simple clear relation was found to allow prediction of these seasonal variations with respect to temperature and light intensity. The effects of using inappropriate algorithms to derive VOC fluxes from gorse were assessed for isoprene and monoterpenes. Although on an annual basis the discrepancies are not significant, monthly estimation of isoprene were found to be overestimated by more than a factor of 50 during wintertime when the seasonality of emission factors is not considered.  相似文献   

18.
Two methods for measuring aerosol elemental carbon (EC) are compared. Three-hour integrated carbon samples were collected on quartz filters during the summer of 1990 in Uniontown, PA, primarily during episodes of elevated particulate pollution levels. These samples were analyzed for EC and organic carbon (OC) using a thermo/optical reflectance (TOR) method. Aerosol black carbon (BC) was measured using an Aethalometer, a semi-continuous optical absorption method. The optical attenuation factor for ambient BC was supplied by the instrument manufacturer. Three-hour average concentrations were calculated from the semi-continuous BC measurements to temporally match the EC/OC integrated quartz filter samples. BC and EC concentrations are highly correlated over the study period (R2=0.925). The regression equation is BC (μg m-3)=0.95 (±0.04) EC−0.2 (±0.4). The means of 3 h average measurements for EC and BC are 2.3 and 2.0 μg m-3, respectively, average concentrations of EC and BC ranged from 0.6 to 9.4 and 0.5 to 9.0 μg m-3 respectively. TOR OC and EC concentrations were not highly correlated (R2=0.22). The mean OC/EC ratio was 1.85.The 10-week Aethalometer hourly dataset was analyzed for daily and weekly temporal patterns. A strong diurnal BC pattern was observed, with peaks occurring between 7 a.m. and 9 a.m. local time. This is consistent with the increase in emissions from ground level combustion sources in the morning, coupled with poor dispersion before daytime vertical mixing is established. There was also some indication of a day-of-week effect on BC concentrations, attributed to activity of local ground level anthropogenic sources. Comparison of BC concentrations with co-located measurements of coefficient of haze in a separate field study in Philadelphia, PA, during the summer of 1992 showed good correlation between the two measurements (R2=0.82).  相似文献   

19.
Concentrations of size fractionated particulate sodium and potassium were measured in both marine and urban air. Marine air sampling was conducted during a cruise on R/V Hakuho-maru in the northwestern North Pacific in the summer of 1998. Urban air sampling was performed in the central part of Tokyo in 1997 and 1998. The fine sodium concentration (D<1.1 μm) in “Urban” air (180 ng m−3) was 3 times higher than that in “Marine” air (56 ng m−3). In the urban air samples, the size distributions of sodium and potassium showed bimodal peaks in the fine particle range (D<1.1 μm) and in the coarse particle range (D>1.1 μm). The existence of anthropogenic sodium in the fine particle range was detected in the urban air. The K/Na weight ratios in the fine particle range of the urban air (1.8–2.7) was 50–75 times higher than that in seawater (0.036). Potassium in the urban air is thought to be derived largely from anthropogenic sources. In the urban air samples, a high correlation between fine sodium and fine potassium concentrations suggests that they have the same anthropogenic source. Reevaluating the K/Na ratios in marine air to be relatively higher than that in seawater, we can estimate that several percents of anthropogenic sodium can be transported from land to remote marine air.  相似文献   

20.
There are a number of difficulties associated with the quantitative analysis of volatile organic compounds (VOCs) in atmospheric particles. Therefore, majority of the previous studies on VOCs associated with particles have been qualitative. Air samples were collected in Izmir, Turkey to determine ambient particle and gas phase concentrations of several aromatic, oxygenated and halogenated VOCs. Samples were quantitatively analyzed using thermal desorption–gas chromatography/mass spectrometry. Gas-phase concentrations ranged between 0.02 (bromoform) and 4.65 μg m−3 (toluene) and were similar to those previously measured at the same site. Particle-phase concentrations ranged from 1 (1,3-dichlorobenzene) to 933 pg m−3 (butanol). VOCs were mostly found in gas-phase (99.9±0.25%). However, the particulate VOCs had comparable concentrations to those reported previously for semivolatile organic compounds. The distribution of particle-phase VOCs between fine (dp<2.5 μm) and coarse (2.5 μm<dp<10 μm) fractions was also investigated. It was found that VOCs were mostly associated with fine particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号