共查询到20条相似文献,搜索用时 15 毫秒
1.
《Atmospheric environment (Oxford, England : 1994)》2002,36(9):1431-1441
An empirical model has been devised to predict concentrations of PM10 at background and roadside locations in London. Factors to calculate primary PM10 and PM2.5 concentrations are derived from annual mean NOX, PM2.5 and PM10 measurements across London and south east England. These factors are used to calculate daily means for the primary and non-primary PM10 fractions for the London area. The model accurately predicts daily mean PM10 and EU Directive Limit values across a range of sites from kerbside to rural. Predictions of future PM10 can be made using the expected reductions in secondary PM10 and site specific annual mean NOX predicted from emission inventories and dispersion modelling. The model suggests that the EU Directive Limit values will be exceeded close to many of London's busiest roads, and perhaps at central background sites should there be a repeat of 1996 meteorological conditions during 2005. A repeat of 1997 meteorology conditions during 2005 would lead to the EU Limit Value being exceeded alongside the busiest central London roads only. The model is applicable for London and south east England but the methodology could be applied elsewhere at a city or regional level. The model relies on the currently observed ratio between NOX and PM10. This ratio has remained constant over the last 4 years but might change in the future. The NOX:PM10 ratio derived from measurements and used in this model, implies that emission inventories might over estimate primary PM10 by more than 50%. 相似文献
2.
《Atmospheric environment (Oxford, England : 1994)》2001,35(8):1451-1463
An annual mean concentration of 40 μg m−3 has been proposed as a limit value within the European Union Air Quality Directives and as a provisional objective within the UK National Air Quality Strategy for 2010 and 2005, respectively. Emissions reduction measures resulting from current national and international policies are likely to deliver significant reductions in emissions of oxides of nitrogen from road traffic in the near future. It is likely that there will still be exceedances of this target value in 2005 and in 2009 if national measures are considered in isolation, particularly at the roadside. It is envisaged that this `policy gap’ will be addressed by implementing local air quality management to reduce concentrations in locations that are at risk of exceeding the objective. Maps of estimated annual mean NO2 concentrations in both urban background and roadside locations are a valuable resource for the development of UK air quality policy and for the identification of locations at which local air quality management measures may be required. Maps of annual mean NO2 concentrations at both background and roadside locations for 1998 have been calculated using modelling methods, which make use of four mathematically straightforward, empirically derived linear relationships. Maps of projected concentrations in 2005 and 2009 have also been calculated using an illustrative emissions scenario. For this emissions scenario, annual mean urban background NO2 concentrations in 2005 are likely to be below 40 μg m−3, in all areas except for inner London, where current national and international policies are expected to lead to concentrations in the range 40–41 μg m−3. Reductions in NOx emissions between 2005 and 2009 are expected to reduce background concentrations to the extent that our modelling results indicate that 40 μg m−3 is unlikely to be exceeded in background locations by 2009. Roadside NO2 concentrations in urban areas in 2005 and 2009 are expected to be significantly higher than in background locations. 21% of urban major road links are expected to have roadside NO2 greater than or equal to 40 μg m−3 in 2005 for our illustrative emissions scenario. The continuing downward trend in traffic emissions is likely to further reduce the number of links exceeding this value by 2009, with about 6% of urban major road links predicted to have concentrations higher than 40 μg m−3. The majority of these links are in the London area. The remaining links are generally confined to the most heavily trafficked roads in other big cities. 相似文献
3.
Tor H. Oiamo Isaac N. Luginaah Michael Buzzelli Kathy Tang Xiaohong Xu Jeffrey R. Brook 《Journal of the Air & Waste Management Association (1995)》2013,63(11):1335-1345
Land use regression (LUR) models have been widely used to characterize the spatial distribution of urban air pollution and estimate exposure in epidemiologic studies. However, spatial patterns of air pollution vary greatly between cities due to local source type and distribution. London, Ontario, Canada, is a medium-sized city with relatively few and isolated industrial point sources, which allowed the study to focus on the contribution of different transportation sectors to urban air pollution. This study used LUR models to estimate the spatial distribution of nitrogen dioxide (NO2) and to identify local sources influencing NO2 concentrations in London, ON. Passive air sampling was conducted at 50 locations throughout London over a 2-week period in May–June 2010. NO2 concentrations at the monitored locations ranged from 2.8 to 8.9 ppb, with a median of 5.2 ppb. Industrial land use, dwelling density, distance to highway, traffic density, and length of railways were significant predictors of NO2 concentrations in the final LUR model, which explained 78% of NO2 variability in London. Traffic and dwelling density explained most of the variation in NO2 concentrations, which is consistent with LUR models developed in other Canadian cities. We also observed the importance of local characteristics. Specifically, 17% of the variation was explained by distance to highways, which included the impacts of heavily traveled corridors transecting the southern periphery of the city. Two large railway yards and railway lines throughout central areas of the city explained 9% of NO2 variability. These results confirm the importance of traditional LUR variables and highlight the importance of including a broader array of local sources in LUR modeling. Finally, future analyses will use the model developed in this study to investigate the association between ambient air pollution and cardiovascular disease outcomes, including plaque burden, cholesterol, and hypertension.
Implications: Monitoring and modeling of NO2 throughout the city of London represents an important step toward assessing air pollution health effects in a mid-sized Canadian city. The study supports the introduction of railways to LUR modeling of NO2. Railways explained approximately 9% of the variability in ambient NO2 concentrations in London, which suggests that local sources captured by land-use indicators may contribute to the efficacy of LUR models. These findings provide insights relevant to other medium and smaller sized cities with similar land use and transportation infrastructure. Furthermore, London is a central hub for medical research and treatment in southwestern Ontario, with facilities such as the Robarts Research Institute, London Regional Cancer Program (LRCP), and Stroke Prevention & Atherosclerosis Research Centre (SPARC). The models developed in this study will provide estimates of exposure for future analyses examining air pollution health effects in this data-rich population. 相似文献
4.
Monitoring of nitrogen dioxide pollution was carried out in rural environments throughout Wales during a 1-year survey to quantify any changes in background concentrations and distribution of the pollutant since an earlier survey in 1986. There were 23 sites in the present survey of which 16 had been monitored during the 1986 survey. The remaining 7 sites were based on moorland in mid-Wales within map squares for which critical loads for soil acidification are expected to be exceeded by the year 2005. All sites were chosen so as to be remote from major local sources of NO(2) and the values obtained were deemed to be minimum concentrations for the different regions. Measurements were made using diffusion tubes which aimed to provide mean concentrations of NO(2) for 2-week exposure periods. Concentrations of NO(2) were found to be higher in the winter months for most sites and this is probably related to a greater use of fossil fuels for heating buildings at this time of year. The exception was the high concentrations of NO(2) in May and June for several sites in North Wales, and in July and August for a site on Mount Snowdon. These high summer concentrations in North Wales are thought to be related to increased traffic associated with tourism. It is apparent that there has been a substantial increase in rural concentrations of NO(2) throughout Wales since the earlier survey of 1986. As an average of all 16 sites used in both surveys, there was a 53% increase in the annual mean concentration of NO(2). Also, it is evident that, since 1986, there has been a substantial increase in the area of south-eastern Wales which has a background level in excess of 10 ppb NO(2) and a notable reduction in land area with concentrations below 6 ppb NO(2) as an annual mean concentration. The possible future impact of increasing rural concentrations of NO(2) on Welsh vegetation is discussed with references to estimates of critical levels of NO(2) for adverse effects on plants. 相似文献
5.
《Atmospheric environment (Oxford, England : 1994)》2001,35(21):3715-3728
There is a possibility of further controls on emissions to the atmosphere of nitrogen oxides to meet air quality objectives in the UK. Data in the National Air Quality Archive were used to calculate the likely sensitivity of hourly concentrations of nitrogen dioxide in ambient urban air to changes in the total oxides of nitrogen. Since the role of atmospheric chemical reactions is to make the response non-linearly dependent on the emissions control, we seek to establish the magnitude and sign of the effects that this non-linearity might cause. We develop a quantitative approach to analysing the non-linearity in the data. Polynomial curve fits have been developed for the empirical ratio NO2 : NOx (the ‘yield’). They describe nitrogen dioxide concentrations using total oxides of nitrogen. The new functions have the important feature of increased yield in winter episodes. Simpler functions tend to omit this feature of the yields at the highest hourly concentrations. Based on this study, the hourly nitrogen dioxide objective in the UK may require emissions control of no more than ≈50% on total oxides of nitrogen at the most polluted sites: other sites require less or even no control. 相似文献
6.
The objective of this study is to develop an automated synoptic climatological procedure to forecast high air pollution concentrations in the most polluted synoptic categories. The procedure is able to identify air masses historically associated with high air pollution concentrations. The arrival of air mass can be predicted 24 or 48 h in advance with the use of the weather forecast data. The development and statistical basis of the procedure are discussed, and an analysis of the procedure's ability to forecast weather conditions associated with high air pollution concentrations is presented. In addition, the dataset of 24 weather variables from 1993 to 1995 is used to validate the procedure. The procedure predicts that 70.3 and 83.3% of total high and severe SO2 concentration days fall into the identified most polluted categories, and the corresponding figures for NOx are 47.8 and 73.7%. The agreement between observed and predicted values is generally good. The prediction models can explain about 58 and 45% of total variance for NOx and SO2 with RMSEs of 42.5 and 16.5 microg m(-3), respectively. They are smaller than 1 SD of the observations. 相似文献
7.
8.
Monitoring of nitrogen dioxide was carried out at over 50 rural sites in Wales throughout 1986. All sites were chosen so as to be remote from any local sources of NO(2) and the values obtained were deemed to be minimum values for the different regions. Measurements were made using a diffusion tube technique which aimed to give mean concentrations of NO(2) for 2-week exposure periods. The results obtained have been used to generate pollution maps to show mean monthly levels of NO(2) for rural environments throughout Wales. It is apparent that levels of NO(2) are generally higher during the winter months. In addition, annual mean concentrations of the pollutant are greatest in the north-eastern and south-eastern parts of Wales with the lowest levels being found along the western coast. The work marks the completion of the first national survey of nitrogen dioxide pollution in Wales. The data are discussed in terms of the potential threat rural concentrations of NO(2) pose to crops and natural vegetation. 相似文献
9.
《Atmospheric environment (Oxford, England : 1994)》2007,41(35):7389-7400
We estimate the contributions from biomass burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal and annual aerosol concentrations in the United States. Our approach is to use total carbonaceous (TC) and non-soil potassium (ns-K) aerosol mass concentrations for 2001–2004 from the nationwide IMPROVE network of surface sites, together with satellite fire data. We find that summer wildfires largely drive the observed interannual variability of TC aerosol concentrations in the United States. TC/ns-K mass enhancement ratios from fires range from 10 for grassland and shrub fires in the south to 130 for forest fires in the north. The resulting summer wildfire contributions to annual TC aerosol concentrations for 2001–2004 are 0.26 μg C m−3 in the west and 0.14 μg C m−3 in the east; Canadian fires are a major contributor in the east. Non-summer wildfires and prescribed burns contribute on an annual mean basis 0.27 and 0.31 μg C m−3 in the west and the east, highest in the southeast because of prescribed burning. Residential biofuel is a large contributor in the northeast with annual mean concentration of up to 2.2 μg C m−3 in Maine. Industrial biofuel (mainly paper and pulp mills) contributes up to 0.3 μg C m−3 in the southeast. Total annual mean fine aerosol concentrations from biomass burning average 1.2 and 1.6 μg m−3 in the west and east, respectively, contributing about 50% of observed annual mean TC concentrations in both regions and accounting for 30% (west) and 20% (east) of total observed fine aerosol concentrations. Our analysis supports bottom-up source estimates for the contiguous United States of 0.7–0.9 Tg C yr−1 from open fires (climatological) and 0.4 Tg C yr−1 from biofuel use. Biomass burning is thus an important contributor to US air quality degradation, which is likely to grow in the future. 相似文献
10.
11.
《Atmospheric environment (Oxford, England : 1994)》2007,41(22):4723-4733
Detecting and quantifying abnormal changes in the concentration of urban air pollutants can be difficult due to the influence of meteorology and atmospheric chemistry. This study presents methods to detect and characterise small changes in the concentration of nitrogen dioxide (NO2) that deviate from expected behaviour. Generalized additive models (GAMs) are used to describe daily mean NO2 concentrations at roadside monitoring sites to determine how concentrations deviate from measured concentrations. Structural change methods are applied to time series describing this difference to identify change-points, where concentrations of NO2 deviate significantly from expected behaviour. Methods are also used which quantify the timing and uncertainty associated in the timing of these change-points. For most time series data considered in London, concentrations of NO2 underwent relatively abrupt changes rather than smoothly varying increases; changes which remain largely undetected in raw time series data. Most change-points occurred in late 2002 or early 2003, and the factors, which may have contributed to them, are discussed. These methods can also identify technical problems with monitoring equipment and are applicable to other instances where detecting sudden atmospheric composition change is important. 相似文献
12.
Lee K Yang W Bofinger ND 《Journal of the Air & Waste Management Association (1995)》2000,50(10):1739-1744
Indoor and outdoor NO2 concentrations were measured and compared with simultaneously measured personal exposures of 57 office workers in Brisbane, Australia. House characteristics and activity patterns were used to determine the impacts of these factors on personal exposure. Indoor NO2 levels and the presence of a gas range in the home were significantly associated with personal exposure. The time-weighted average of personal exposure was estimated using NO2 measurements in indoor home, indoor workplace, and outdoor home levels. The estimated personal exposures were closely correlated, but they significantly underestimated the measured personal exposures. Multiple regression analysis using other nonmeasured microenvironments indicated the importance of transportation in personal exposure models. The contribution of transportation to the error of prediction of personal exposure was confirmed in the regression analysis using the multinational study database. 相似文献
13.
García-Algar O Zapater M Figueroa C Vall O Basagaña X Sunyer J Freixa A Guardino X Pichini S 《Journal of the Air & Waste Management Association (1995)》2003,53(11):1312-1317
Sources and concentrations of indoor nitrogen dioxide (NO2) were examined in Barcelona, Spain, during 1996-1999. A total of 340 dwellings of infants participating in a hospital-based cohort study were selected from different areas of the city. Passive filter badges were used for indoor NO2 measurement over 7-30 days. Dwelling inhabitants completed a questionnaire on housing characteristics and smoking habits. Data on outdoor NO2 concentrations were available for the entire period of the study in the areas of the city where indoor concentrations were determined. Bivariate analysis was performed to investigate relationships between indoor NO2 concentrations on one hand and outdoor NO2 concentrations, housing, and occupant characteristics on the other. Stepwise multiple linear regression was performed with variables that were found to have a significant bivariate relationship. Indoor NO2 mean values ranged between 23.57 ppb in 1996 and 27.02 ppb in 1999, with the highest yearly value of 27.82 ppb in 1997. In the same time period, mean outdoor NO2 concentration ranged between 25.26 and 25.78 ppb with a peak of 30.5 ppb in 1998. Multiple regression analysis showed that principal sources of indoor NO2 concentrations were the use of a gas cooker, the absence of an extractor fan when cooking, and cigarette smoking. The absence of central heating was also associated with higher NO2 concentrations. Finally, each ppb increase in outdoor NO2 was associated with a 1% increase in indoor concentrations. 相似文献
14.
《Atmospheric environment (Oxford, England : 1994)》1999,33(1):1-11
The concentrations of respirable suspended particulates (PM10), fine suspended particulates (PM2.5) and nitrogen dioxide (NO2) were measured in various locations over the territory of Hong Kong. In order to study the contributions of these pollutants from motor vehicles and their characteristics, the attention was focused on the roadside, street-level concentrations. A statistical analysis of the sampling results was conducted to obtain general characteristics of the roadside particulate and nitrogen dioxide pollution and to investigate the effects of traffic volume and meteorological factors on the pollution levels. High correlation coefficients are found between PM10, PM2.5 and NO2 concentration. 相似文献
15.
Campbell GW 《Environmental pollution (Barking, Essex : 1987)》1988,55(4):251-270
Nitrogen dioxide concentrations have been measured at rural sites in the United Kingdom and have revealed a marked spatial variation. The annual mean NO2 concentration varies from approximately 1 microg Nm-3 in Northern Ireland to approximately 7 microg Nm-3 in East Anglia. Though the temporal resolution of the diffusion tube method is limited by exposure periods of 2-4 weeks, it was possible to detect a marked seasonal variation in NO2 concentration at all sites, with higher values in the winter than in the summer. This is in contrast to the small seasonal variation previously observed at sites in London. Sulphur dioxide concentrations were measured daily using a bubbler method and, if expressed in terms of mass of sulphur and nitrogen, the SO2 and NO2 annual mean concentrations were similar. This is in contrast to an S/N ratio of greater than 3 in total UK emissions of SO2 and NOx. It seems likely that this difference is due to a combination of the different spatial distributions and heights of emissions of SO2 and NOx, the influence of local sources of NOx, and the smaller S/N ratio in Continental European emissions. 相似文献
16.
17.
《Atmospheric environment(England)》1987,21(4):929-942
In a preceding paper (Inoue et al, 1986b, Atmospheric Environment20, 2325–2337), we proposed two prediction schemes for hourly nitrogen oxide (NO) concentration using the regression model with autocorrelated error terms, and applied these schemes to the prediction of NO-concentration at m h later. Data analyses based on the data sets observed at a measurement site for a year showed that these schemes are practical for the predictions 1 h later.In this follow up paper, we apply these schemes to the prediction for other years and/or other measurement sites, and investigate the stability of the assumed regression model and the adopted prediction schemes not only numerically but also theoretically. From these analyses, our prediction schemes are shown to be stable for the prediction of NO-concentration in other years. 相似文献
18.
《Atmospheric environment(England)》1976,10(8):619-631
The representiveness of daily observations at atmospheric smoke and sulphur dioxide concentrations monitored at National Survey country sites is discussed. Long-term mean smoke and sulphur dioxide concentrations for wind octants at 21 country sites in England and Wales are presented and examined in the context of urban and background concentrations. Sources are identified and the effects of wind speed on the long-distance transport of air pollution discussed.Estimates of domestic and industrial smoke emissions, by counties, for England and Wales are given. An expression is developed from which long-term concentrations of smoke or sulphur dioxide at a country site can be calculated. 相似文献
19.
Measurements of nitrogen dioxide and sulphur dioxide concentrations in urban and rural areas of Poland using a passive sampling method 总被引:1,自引:0,他引:1
Measurements of 1-month concentrations of NO(2) and SO(2) were carried out in the period from May 1993 to April 1994 in 147 points in 30 major cities of Poland and in 31 points in rural areas. The measurement points were divided into five classes representing: centres of cities, residential areas, industrial areas, traffic locations and rural areas. Passive samplers were prepared in one laboratory, mailed to local laboratories for sampling and then returned for analysis. The same samplers were used for collecting both NO(2) and SO(2). Analyses for NO(2) absorbed as nitrite were made spectrophotometrically after reaction with Saltzman reagent. Sulphur dioxide was determined as sulphate with ion chromatography. The consistency of data allowed comparison of levels of air pollution in different cities and the production of maps of spatial distribution of NO(2) and SO(2) in rural areas of Poland. 相似文献
20.
《Chemosphere》1987,16(7):1373-1380
Some of the essential aspects of the environmental distribution and fate of cypermethrin (a synthetic pyrethroid insecticide) are evaluated by means of theoretical calculations of the equilibrium partitioning among the principal environmental media and by laboratory experiments in simulation chambers. 相似文献