首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P Mukherjee  S Viswanathan 《Chemosphere》2001,45(6-7):1071-1083
Street canyon module and gaussian line source module of a regional-scale dispersion model Indic Airviro were used to simulate ambient carbon monoxide (CO) concentrations due to traffic flow at two roadside monitoring locations in Singapore. The fleet average emission factors for each vehicle category was estimated from US EPA MOBILE 5 A guidelines as a function of speed, vehicle deterioration rates and model years. 1-h CO concentrations and worst case 8-h levels have been simulated and compared with measured readings. This study used model-simulated rooftop concentration levels from non-localized sources as background levels at the two sites. The resulting CO concentrations correlate well with actual measured levels and provide a unique approach to predict the impact of CO from transportation.  相似文献   

2.
The haze episodes that occurred in Malaysia in September-October 1991, August-October 1994 and September-October 1997 have been attributed to suspended smoke particulate matter from biomass burning in southern Sumatra and Kalimantan, Indonesia. In the present study, polar organic compounds in aerosol particulate matter from Malaysia are converted to their trimethylsilyl derivatives and analyzed by gas chromatography-mass spectrometry in order to better assess the contribution of the biomass burning component during the haze episodes. On the basis of this analysis, levoglucosan was found to be the most abundant organic compound detected in almost all samples. The monosaccharides, alpha- and beta-mannose, the lignin breakdown products, vanillic and syringic acids and the minor steroids, cholesterol and beta-sitosterol were also present in some samples. The presence of the tracers from smoke overwhelmed the typical signatures of emissions from traffic and other anthropogenic activities in the urban areas.  相似文献   

3.
Emissions of greenhouse gases for the City of Barcelona are estimated for the period 1987–1994. The sources considered are: public and private transportation; industrial, commercial and domestic activities; and municipal solid waste disposal. The results show that the main source of CO2 emissions in Barcelona is private vehicle transportation, which accounts, as an average for the period studied, for 35% of total emissions. The second most important source is the municipal solid waste landfill facility of the city (24% of total emissions). The percentages for the remaining sources under consideration were: 14% electricity, 12% natural gas, 5% incineration, and 3% liquefied petroleum gases. However, the values for CO2 emissions per inhabitant over the period studied are lower than those for any other industrialized city available for comparison. This is closely related to the high percentage of electricity generation from nuclear power stations and hydro power facilities, and also to the extensive use of natural gas for domestic uses.  相似文献   

4.

Traffic emission is one of the main sources of haze pollution, but few studies have evaluated the dynamic impact and mechanism of transportation infrastructure on haze pollution based on a spatial perspective. This study selects the annual data of 30 provinces in China from 2000 to 2017 and uses a dynamic spatial Durbin model to study the dynamic impact of transportation infrastructure on haze pollution. The results show that transportation infrastructure has a significant spatial spillover effect on haze pollution, and the spatial spillover effect has regional heterogeneity. Specifically, whether long term or short term, highway traffic has a boosting effect on haze pollution, while railway traffic has an inhibitory effect on haze pollution. In addition, transportation infrastructure can affect haze pollution through three paths: expanding economic scale, promoting transformation of industrial structure, and promoting technological progress. At the regional level, the improvement of highway traffic density in eastern, central, and western regions will significantly increase haze pollution. The enhancement of railway traffic density has a significant inhibitory and boosting effect on haze pollution in central and western regions, respectively. For the eastern region, railway traffic construction can only restrain local haze pollution, but cannot exert the spatial spillover effect of railway traffic to reduce haze. The conclusions of this paper provide policy inspirations for giving full play to the haze reduction effect of transportation infrastructure and the development of green transportation.

  相似文献   

5.
From 1994 to 2003, daily air concentrations of particle-bound polycyclic aromatic hydrocarbons (PAHs) and carbon monoxide (CO) were regularly monitored at two traffic-oriented sampling sites (A and B) in urban Genoa, Italy. The data were used to estimate effects on air quality in real situations due to progressive substitution of EURO-0 vehicles, started in 1993, with less-polluting vehicles (EURO-1, EURO-2), mainly gasoline vehicles with a catalyst. PAH profile classification and diagnostic PAH ratios were used to identify 345 samples of predominantly traffic origin. At both sites, CO and PAH daily concentrations decreased exponentially with time and the apparent half-life values calculated were 6.3 and 5.5 for CO and 3.7 and 3.5 years for PAHs at sites A and B, respectively. At site A, monitored for traffic intensity, multiple regression analyses confirmed that daily PAH and CO concentrations were positively correlated with the number of non-catalytic vehicles estimated to cross this site during sampling and negatively correlated with seasonal variables (air temperature, ozone concentration, relative air humidity). The reduction in air pollution estimated for complete substitution of non-catalytic gasoline vehicles was 89% for BaP, 85% for total PAHs and 69% for CO.  相似文献   

6.
Because of the common source, lead and CO values in the atmosphere tend to behave in a similar manner. Thus, diurnal variations in these two pollutants show a pattern related to motor vehicle traffic flow. Also, the exposure to both vary by orders of magnitude with the highest being on the road (in the car) thus setting up special dosage situations. Community sources seem to affect background level at least based on fall-off with distance. There may be a relatively wider exposure of the general population to lead and CO. While the lead levels may not be increasing in the downtown portion of the central city proper, typical central city levels of several years ago may be more diffuse and spread out, thus occurring over increasingly large portions of the community. Similarly, there may be a wider exposure of the population to CO as the levels become more nearly uniformly high over a larger area. In addition, there may be problems of a shorter term exposure to high levels of CO in commuter traffic. This may be of consequence to selected types of drivers or passengers. Finally, it should also be noted that during air pollution episodes, CO levels appear to rise with no data currently available on changes in concomitant ambient lead levels.  相似文献   

7.
Simulations of above-canopy water vapor and CO2 fluxes were calculated by the USGF linked model of canopy gas exchange and subsurface processes for the 1996-1997 winter wheat season at the AmeriFlux Wheat Site, Oklahoma. Soil surface CO2 flux plus canopy gas exchange and transpiration plus soil evaporation modeled the CO2 and water vapor fluxes, respectively. Parameter values for net photosynthesis, respiration and transpiration were obtained from published sources, generated from Wheat Site data, or estimated by minimizing standard deviation between model and data. The mean measured downward flux of CO2 during rapid growth and maturity of the crop was -0.45 mg m(-2) s(-1) compared to simulated flux of -0.47. Simulated downward CO2 flux exceeded measured values during rapid growth of the crop but underestimated the flux during maturity. For the entire 285-day period, the mean measured upward CO2 flux at night was 0.06 and simulated flux was 0.05.  相似文献   

8.
Environmental Science and Pollution Research - To reveal the seasonal variations and sources of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) during haze and non-haze episodes, daily PM2.5...  相似文献   

9.
The 2017 revisions to the Regional Haze Rule clarify that visibility progress at Class I national parks and wilderness areas should be tracked on days with the highest anthropogenic contributions to haze (impairment). We compare the natural and anthropogenic contributions to haze in the western United States in 2011 estimated using the Environmental Protection Agency (EPA) recommended method and using model projections from the Comprehensive Air Quality Model with Extensions (CAMx) and the Particulate Source Apportionment Tool (PSAT). We do so because these two methods will be used by states to demonstrate visibility progress by 2028. If the two methods assume different natural and anthropogenic contributions, the projected benefits of reducing U.S. anthropogenic emissions will differ. The EPA method assumes that episodic elevated carbonaceous aerosols greater than an annual 95th percentile threshold are natural events. For western U.S. IMPROVE monitoring sites reviewed in this paper, CAMx-PSAT confirms these episodes are impacted by carbon from wildfire or prescribed fire events. The EPA method assumes that most of the ammonium sulfate is anthropogenic in origin. At most western sites CAMx-PSAT apportions more of the ammonium sulfate on the most impaired days to global boundary conditions and anthropogenic Canadian, Mexican, and offshore shipping emissions than to U.S. anthropogenic sources. For ammonium nitrate and coarse mass, CAMx-PSAT apportions greater contributions to U.S. anthropogenic sources than the EPA method assigns to total anthropogenic contributions. We conclude that for western IMPROVE sites, the EPA method is effective in selecting days that are likely to be impacted by anthropogenic emissions and that CAMx-PSAT is an effective approach to estimate U.S. source contributions. Improved inventories, particularly international and natural emissions, and further evaluation of global and regional model performance and PSAT attribution methods are recommended to increase confidence in modeled source characterization.

Implications: The western states intend to use the CAMx model to project visibility progress by 2028. Modeled visibility response to changes in U.S. anthropogenic emissions may be less than estimated using the EPA assumptions based on total U.S. and international anthropogenic contributions to visibility impairment. Additional model improvements are needed to better account for contributions to haze from natural and international emissions in current and future modeling years. These improvements will allow more direct comparison of model and EPA estimates of natural and anthropogenic contributions to haze and future visibility progress.  相似文献   


10.
During wintertime, haze episodes occur in the Dallas-Ft. Worth (DFW) urban area. Such episodes are characterized by substantial light scattering by particles and relatively low absorption, leading to so-called "white haze." The objective of this work was to assess whether reductions in the emissions of SO2 from specific coal-fired power plants located over 100 km from DFW could lead to a discernible change in the DFW white haze. To that end, the transport, dispersion, deposition, and chemistry of the plume of a major power plant were simulated using a reactive plume model (ROME). The realism of the plume model simulations was tested by comparing model calculations of plume concentrations with aircraft data of SF6 tracer concentrations and ozone concentrations. A second-order closure dispersion algorithm was shown to perform better than a first-order closure algorithm and the empirical Pasquill-Gifford-Turner algorithm. For plume impact assessment, three actual scenarios were simulated, two with clear-sky conditions and one with the presence of fog prior to the haze. The largest amount of sulfate formation was obtained for the fog episode. Therefore, a hypothetical scenario was constructed using the meteorological conditions of the fog episode with input data values adjusted to be more conducive to sulfate formation. The results of the simulations suggest that reductions in the power plant emissions lead to less than proportional reductions in sulfate concentrations in DFW for the fog scenario. Calculations of the associated effects on light scattering using Mie theory suggest that reduction in total (plume + ambient) light extinction of less than 13% would be obtained with a 44% reduction in emissions of SO2 from the modeled power plant.  相似文献   

11.
The recently completed Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study focused on particulate sulfate source attribution for a 4-month period from July through October 1999. A companion paper in this issue by Schichtel et al. describes the methods evaluation and results reconciliation of the BRAVO Study sulfate attribution approaches. This paper summarizes the BRAVO Study extinction budget assessment and interprets the attribution results in the context of annual and multiyear causes of haze by drawing on long-term aerosol monitoring data and regional transport climatology, as well as results from other investigations. Particulate sulfates, organic carbon, and coarse mass are responsible for most of the haze at Big Bend National Park, whereas fine particles composed of light-absorbing carbon, fine soils, and nitrates are relatively minor contributors. Spring and late summer through fall are the two periods of high-haze levels at Big Bend. Particulate sulfate and carbonaceous compounds contribute in a similar magnitude to the spring haze period, whereas sulfates are the primary cause of haze during the late summer and fall period. Atmospheric transport patterns to Big Bend vary throughout the year, resulting in a seasonal cycle of different upwind source regions contributing to its haze levels. Important sources and source regions for haze at Big Bend include biomass smoke from Mexico and Central America in the spring and African dust during the summer. Sources of sulfur dioxide (SO2) emissions in Mexico, Texas, and in the Eastern United States all contribute to Big Bend haze in varying amounts over different times of the year, with a higher contribution from Mexican sources in the spring and early summer, and a higher contribution from U.S. sources during late summer and fall. Some multiple-day haze episodes result from the influence of several source regions, whereas others are primarily because of emissions from a single source region.  相似文献   

12.
Size-fractionated atmospheric particulate matter samples and several gas phase species were measured in Phoenix, Arizona to chemically characterize the wintertime haze which develops during late-night and early-morning hours. These samples were analyzed for a dozen major and minor components including various combustion source tracers, soil related species, carbonaceous material and acid-base species. Organic material, ‘soot’, nitrates, sulfates and crustal material accounted for a majority (~ 90%) of the measured aerosol mass. The gas phase species CO, NO, NO2,O3 and water vapor were also monitored.The results from this 1-month study indicate that the haze is usually due to locally generated material with the automobile being the dominant source. The mixture of sources results in a haze that is apparently a carbon and nitrate rich aerosol. On occasion, imported material containing high levels of sulfate can mix with locally generated material to also impact on air-quality and visibility in the area.  相似文献   

13.
ABSTRACT

During wintertime, haze episodes occur in the Dallas-Ft. Worth (DFW) urban area. Such episodes are characterized by substantial light scattering by particles and relatively low absorption, leading to so-called “white haze.” The objective of this work was to assess whether reductions in the emissions of SO2 from specific coal-fired power plants located over 100 km from DFW could lead to a discernible change in the DFW white haze. To that end, the transport, dispersion, deposition, and chemistry of the plume of a major power plant were simulated using a reactive plume model (ROME). The realism of the plume model simulations was tested by comparing model calculations of plume concentrations with aircraft data of SF6 tracer concentrations and ozone concentrations. A second-order closure dispersion algorithm was shown to perform better than a first-order closure algorithm and the empirical Pasquill-Gifford-Turner algorithm. For plume impact assessment, three actual scenarios were simulated, two with clear-sky conditions and one with the presence of fog prior to the haze. The largest amount of sulfate formation was obtained for the fog episode. Therefore, a hypothetical scenario was constructed using the meteorological conditions of the fog episode with input data values adjusted to be more conducive to sulfate formation. The results of the simulations suggest that reductions in the power plant emissions lead to less than proportional reductions in sulfate concentrations in DFW for the fog scenario. Calculations of the associated effects on light scattering using Mie theory suggest that reduction in total (plume + ambient) light extinction of less than 13% would be obtained with a 44% reduction in emissions of SO2 from the modeled power plant.  相似文献   

14.
Abstract

A fuel-based methodology for calculating motor vehicle emission inventories is presented. In the fuel-based method, emission factors are normalized to fuel consumption and expressed as grams of pollutant emitted per gallon of gasoline burned. Fleet-average emission factors are calculated from the measured on-road emissions of a large, random sample of vehicles. Gasoline use is known at the state level from sales tax data, and may be disaggregated to individual air basins. A fuel-based motor vehicle CO inventory was calculated for the South Coast Air Basin in California for summer 1991. Emission factors were calculated from remote sensing measurements of more than 70,000 in-use vehicles. Stabilized exhaust emissions of CO were estimated to be 4400 tons/day for cars and 1500 tons/day for light-duty and medium- duty trucks, with an estimated uncertainty of ±20% for cars and ±30% for trucks. Total motor vehicle CO emissions, including incremental start emissions and emissions from heavy-duty vehicles were estimated to be 7900 tons/day. Fuelbased inventory estimates were greater than those of California's MVEI 7F model by factors of 2.2 for cars and 2.6 for trucks. A draft version of California's MVEI 7G model, which includes increased contributions from high-emitting vehicles and off-cycle emissions, predicted CO emissions which closely matched the fuel-based inventory. An analysis of CO mass emissions as a function of vehicle age revealed that cars and trucks which were ten or more years old were responsible for 58% of stabilized exhaust CO emissions from all cars and trucks.  相似文献   

15.
To identify the characteristics of air pollutants and factors attributing to the formation of haze in Wuhan, this study analyzed the hourly observations of air pollutants (PM2.5, PM10, NO2, SO2, O3, and CO) from March 1, 2013, to February 28, 2014, and used hybrid receptor models for a case study. The results showed that the annual average concentrations for PM2.5, PM10, NO2, SO2, O3, and CO during the whole period were 89.6 μg m?3, 134.9 μg m?3, 54.9 μg m?3, 32.4 μg m?3, 62.3 μg m?3, and 1.1 mg m?3, respectively. The monthly variations revealed that the peak values of PM2.5, PM10, NO2, SO2, and CO occurred in December because of increased local emissions and severe weather conditions, while the lowest values occurred in July mainly due to larger precipitation. The maximum O3 concentrations occurred in warm seasons from May to August, which may be partly due to the high temperature and solar radiation. Diurnal analysis showed that hourly PM2.5, PM10, NO2, and CO concentrations had two ascending stages accompanying by the two traffic peaks. However, the O3 concentration variations were different with the highest concentration in the afternoon. A case study utilizing hybrid receptor models showed the significant impact of regional transport on the haze formation in Wuhan and revealed that the mainly potential polluted sources were located in the north and south of Wuhan, such as Baoding and Handan in Hebei province, and Changsha in Hunan province. Implications: Wuhan city requires a 5% reduction of the annual mean of PM2.5 concentration by the end of 2017. In order to accomplish this goal, Wuhan has adopted some measures to improve its air quality. This work has determined the main pollution sources that affect the formation of haze in Wuhan by transport. We showed that apart from the local emissions, north and south of Wuhan were the potential sources contributing to the high PM2.5 concentrations in Wuhan, such as Baoding and Handan in Hebei province, Zhumadian and Jiaozuo in Henan province, and Changsha and Zhuzhou in Hunan province.  相似文献   

16.
Comparison of reported measurements of the change in the direct and total hemispheric solar irradiances at Barrow, Alaska between days with and without visible haze with values computed from aerosol models with different imaginary parts of the refractive index leads to the conclusion that the haze is only weakly absorbing. Using the value of the single scattering albedo deduced from the comparison the reduction in the effective local planetary albedo of the Arctic due to Arctic haze is estimated to be about 0.03.  相似文献   

17.
A study was conducted to estimate the changes in wintertime visual air quality in Dallas-Fort Worth (DFW) that might occur due to proposed reductions in SO2 emissions at two steam electric generating plants in eastern Texas, each over 100 km from the city. To provide information for designing subsequent investigations, the haze was characterized broadly during the first year of the study. Meteorological data acquired then demonstrated that, during haze episodes, emissions from only one of the two plants were likely to be transported directly to DFW. Therefore, the second year of the study was centered on just one of the power plants. Air quality was then characterized within the urban area and at rural locations that would be upwind and downwind of the plant during transport to DFW. An instrumented aircraft measured plume dispersion and the air surrounding the plume on selected days. A mathematical model was used to predict the change that would occur in airborne particulate matter concentrations in DFW if SO2 emissions were reduced to reflect the proposed limitations. The contribution of particles in the atmosphere to light extinction was estimated, and simulated photographs were produced to illustrate the visibility changes. The study concluded that the proposed emission reductions would, at most, subtly change perceived wintertime visibility.  相似文献   

18.
ABSTRACT

A study was conducted to estimate the changes in wintertime visual air quality in Dallas-Fort Worth (DFW) that might occur due to proposed reductions in SO2 emissions at two steam electric generating plants in eastern Texas, each over 100 km from the city. To provide information for designing subsequent investigations, the haze was characterized broadly during the first year of the study. Meteorological data acquired then demonstrated that, during haze episodes, emissions from only one of the two plants were likely to be transported directly to DFW. Therefore, the second year of the study was centered on just one of the power plants. Air quality was then characterized within the urban area and at rural locations that would be upwind and downwind of the plant during transport to DFW. An instrumented aircraft measured plume dispersion and the air surrounding the plume on selected days. A mathematical model was used to predict the change that would occur in airborne particulate matter concentrations in DFW if SO2 emissions were reduced to reflect the proposed limitations. The contribution of particles in the atmosphere to light extinction was estimated, and simulated photographs were produced to illustrate the visibility changes. The study concluded that the proposed emission reductions would, at most, subtly change perceived wintertime visibility.  相似文献   

19.
A two-year record of hourly concentrations of halocarbon tracers (methylchloroform and perchloroethylene) and hourly averages of particle light scattering (Bsp) has been analyzed In an effort to understand the sources of haze In the U.S. southwestern deserts and mountains. Measurements were taken on top of Spirit Mountain in southern Nevada. In conjunction with photographs used to interpret visual quality, haze episodes at Spirit Mountain were usually coincident with elevated concentrations of tracers originating from urban sources. Haze obscured an 88-km-distant mountain 17 percent of the total observation time. Of those Incidents, 69 percent were associated with long-range transport of haze from the Los Angeles Basin.  相似文献   

20.
In the present study, the real-world on-road liquefied petroleum gas (LPG) vehicle/taxi emissions of carbon monoxide (CO), hydrocarbon (HC) and nitric oxide (NO) were investigated. A regression analysis approach based on the measured LPG vehicle emission data was also used to estimate the on-road LPG vehicle emission factors of CO, HC and NO with respect to the effects of instantaneous vehicle speed and acceleration/deceleration profiles for local urban driving patterns. The results show that the LPG vehicle model years and driving patterns have a strong correlation to their emission factors. A unique correlation of LPG vehicle emission factors (i.e., g km−1 and g l−1) on different model years for urban driving patterns has been established. Finally, a comparison was made between the average LPG, and petrol [Chan, T.L., Ning, Z., Leung, C.W., Cheung, C.S., Hung, W.T., Dong, G., 2004. On-road remote sensing of petrol vehicle emissions measurement and emission factors estimation in Hong Kong. Atmospheric Environment 38, 2055–2066 and 3541] and diesel [Chan, T.L., Ning, Z., 2005. On-road remote sensing of diesel vehicle emissions measurement and emission factors estimation in Hong Kong. Atmospheric Environment 39, 6843–6856] vehicle emission factors. It has shown that the introduction of the replacement of diesel taxis to LPG taxis has alleviated effectively the urban street air pollution. However, it has demonstrated that proper maintenance on the aged LPG taxis should also be taken into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号