首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within 2 years of trace gas measurements performed at Arosa (Switzerland, 2030 m above sea level), enhanced ozone mixing ratios were observed during south foehn events during summer and spring (5–10 ppb above the median value). The enhancements can be traced back to ozone produced in the strongly industrialized Po basin as confirmed by various analyses. Backward trajectories clearly show advection from this region during foehn. NOy versus O3 correlation and comparison of O3 mixing ratios between Arosa and Mt. Cimone (Italy, 2165 m asl) suggest that ozone is the result of recent photochemical production (+5.6 ppb on average), either directly formed during the transport or via mixing of air processed in the Po basin boundary layer. The absence of a correlation between air parcel residence times over Europe and ozone mixing ratios at Arosa during foehn events is in contrast to a previous analysis, which suggested such correlation without reference to the origin of the air. In the case of south foehn, the continental scale influence of pollutants emission on ozone at Arosa appears to be far less important than the direct influence of the Po basin emissions. In contrast, winter time displays a different situation, with mean ozone reductions of about 4 ppb for air parcels passing the Po basin, probably caused by mixing with ozone-poor air from the Po basin boundary layer.  相似文献   

2.
We use a global chemical transport model (GEOS-Chem) with 1° × 1° horizontal resolution to quantify the effects of anthropogenic emissions from Canada, Mexico, and outside North America on daily maximum 8-hour average ozone concentrations in US surface air. Simulations for summer 2001 indicate mean North American and US background concentrations of 26 ± 8 ppb and 30 ± 8 ppb, as obtained by eliminating anthropogenic emissions in North America vs. in the US only. The US background never exceeds 60 ppb in the model. The Canadian and Mexican pollution enhancement averages 3 ± 4 ppb in the US in summer but can be occasionally much higher in downwind regions of the northeast and southwest, peaking at 33 ppb in upstate New York (on a day with 75 ppb total ozone) and 18 ppb in southern California (on a day with 68 ppb total ozone). The model is successful in reproducing the observed variability of ozone in these regions, including the occurrence and magnitude of high-ozone episodes influenced by transboundary pollution. We find that exceedances of the 75 ppb US air quality standard in eastern Michigan, western New York, New Jersey, and southern California are often associated with Canadian and Mexican pollution enhancements in excess of 10 ppb. Sensitivity simulations with 2020 emission projections suggest that Canadian pollution influence in the Northeast US will become comparable in magnitude to that from domestic power plants.  相似文献   

3.
Ozone was measured in six- and NOx in five sampling periods in 1996–97, mostly during summer, at a 1070 m altitude site in northern Peloponnese. Mean values in each sampling period ranged from 43–48 ppb exceeding the European Union 24 h plant protection standard. The background ozone concentration of 43 ppb derived from the correlation of ozone with NOx also exceeded the EU plant protection standard. Ozone exhibited maxima in the afternoon and minima during the night; in certain 24–48 h periods, however, the ozone concentrations remained practically constant; in these short periods air mass back trajectories indicated air masses which originated in north Africa. NOx concentrations had maximum of 24 h around noon. Their mean concentrations ranged from 0.5–0.7 ppb, smaller than respective concentrations in north-central Europe.  相似文献   

4.
Natural emissions adopted in current regional air quality modeling are updated to better describe natural background ozone and PM concentrations for North America. The revised natural emissions include organosulfur from the ocean, NO from lightning, sea salt, biogenic secondary organic aerosol (SOA) precursors, and pre-industrial levels of background methane. The model algorithm for SOA formation was also revised. Natural background ozone concentrations increase by up to 4 ppb in annual average over the southeastern US and Gulf of Mexico due to added NO from lightning while the revised biogenic emissions produced less ozone in the central and western US. Natural PM2.5 concentrations generally increased with the revised natural emissions. Future year (2018) simulations were conducted for several anthropogenic emission reduction scenarios to assess the impact of the revised natural emissions on anthropogenic emission control strategies. Overall, the revised natural emissions did not significantly alter the ozone responses to the emissions reductions in 2018. With revised natural emissions, ozone concentrations were slightly less sensitive to reducing NOx in the southeastern US than with the current natural emissions due to higher NO from lightning. The revised natural emissions have little impact on modeled PM2.5 responses to anthropogenic emission reductions. However, there are substantial uncertainties in current representations of natural sources in air quality models and we recommend that further study is needed to refine these representations.  相似文献   

5.
Large day-to-day variability in O3 and CO was observed at Chongming, a remote rural site east of Shanghai, in August 2010. High ozone periods (HOPs) that typically lasted for 3?C5?days with daily maximum ozone exceeding 102?ppb were intermittent with low ozone periods (LOPs) with daily maximum ozone less than 20?ppb. The correlation analysis of ozone with meteorological factors suggests that the large variations of surface ozone are driven by meteorological conditions correlated with the changes in the location and intensity of the west Pacific subtropical high (WPSH) associated with the East Asian summer monsoon (EASM). When the center of WPSH with weaker intensity is to the southeast of Chongming site, the mixing ratios and variability of surface ozone are higher. When the center of WPSH with stronger intensity is to the northeast of Chongming site, the mixing ratios and variability of surface ozone are lower. Sensitivity simulations using the GEOS-Chem chemical transport model indicate that meteorological condition associated with WPSH is the primary factor controlling surface ozone at Chongming in August, while local anthropogenic emissions make significant contributions to surface ozone concentrations only during HOP.  相似文献   

6.
Nocturnal depletion of ozone during a period of photochemical pollution has been observed at a rural site by continuous ground-level measurements and the determination of vertical profiles of ozone concentration. An acoustic sounder was used to provide continuous information upon the vertical temperature structure of the atmosphere. The results are interpreted in terms of recent theories of long-range transport of photochemical ozone and the chemical and physical processes causing ozone depletion.  相似文献   

7.
Measurements of air pollutants from a background site in central London are analysed. These comprise hourly data for CO, NO, NO2, O3, SO2 and PM10 from 1996 to 2008 and particle number count from 2001 to 2008. The data are analysed in terms of long-term trends, annual, weekly and diurnal cycles, and autocorrelation and cross-correlation functions. CO, NO and NO2 show a typical traffic-associated pattern with two daily peaks and lesser concentrations at the weekend. Particle number count and PM10 show a similar cycle, but with smaller amplitude. Ozone has an annual cycle with a maximum in May, influenced by the spring maximum in background ozone, but the diurnal and weekly cycles are dominated by losses through reaction with nitric oxide. Particle number count shows a minimum corresponding with maximum air temperatures in August, whereas the CO, NO NO2 and SO2 show a minimum in June/July. There is a lower particle count to NOx ratio at the background site compared to a central London kerbside site (Marylebone Road) and a seasonal pattern in particle count to NOx and PM10 ratios consistent with loss of nanoparticles by evaporation during atmospheric transport. Sulphur dioxide peaks in the morning in summer, but at midday in winter consistent with emissions from elevated sources mixing down from aloft as the diurnal mixed layer deepens. Implications for epidemiological studies of air quality and health are discussed. Sulphur dioxide, carbon monoxide, nitric oxide and nitrogen dioxide show clear downward trends over the measurement period, PM10 declines initially before levels stabilised, and ozone concentrations increased.  相似文献   

8.
Experiments were performed to investigate the effect of ozone (O3) on mercury (Hg) emission from a variety of Hg-bearing substrates. Substrates with Hg(II) as the dominant Hg phase exhibited a 1.7 to 51-fold increase in elemental Hg (Hgo) flux and a 1.3 to 8.6-fold increase in reactive gaseous mercury (RGM) flux in the presence of O3-enriched clean (50 ppb O3; 8 substrates) and ambient air (up to ∼70 ppb O3; 6 substrates), relative to clean air (oxidant and Hg free air). In contrast, Hgo fluxes from two artificially Hgo-amended substrates decreased by more than 75% during exposure to O3-enriched clean air relative to clean air. Reactive gaseous mercury emissions from Hgo-amended substrates increased immediately after exposure to O3 but then decreased rapidly. These experimental results demonstrate that O3 is very important in controlling Hg emissions from substrates. The chemical mechanisms that produced these trends are not known but potentially involve heterogenous reactions between O3, the substrate, and Hg. Our experiments suggest they are not homogenous gas-phase reactions. Comparison of the influence of O3 versus light on increasing Hgo emissions from dry Hg(II)-bearing substrates demonstrated that they have a similar amount of influence although O3 appeared to be slightly more dominant. Experiments using water-saturated substrates showed that the presence of high-substrate moisture content minimizes reactions between atmospheric O3 and substrate-bound Hg. Using conservative calculations developed in this paper, we conclude that because O3 concentrations have roughly doubled in the last 100 years, this could have increased Hgo emissions from terrestrial substrates by 65–72%.  相似文献   

9.
An unusually “smooth” springtime ozone episode (maximum 97 ppb(v)) at the Jungfraujoch Observatory (3580 m asl) in the Swiss Alps is described. Analysis of meteorological variables is combined with back-trajectory analysis, and numerical simulations from a mesoscale model nested within a limited area model to examine the origin of the episode. Cross-tropopause exchange on the western flank of an upper trough, deep convection in a Gulf of Genoa cyclone, and the northwards advection of boundary-layer air (with possible in situ photochemistry) all combined to produce the highest ozone concentration of the year (1987) at the mountain site.  相似文献   

10.
Ozone and other air quality data from five rural sites in the industrialized Latrobe Valley, Victoria, have been subject to statistical analyses including linear regression modelling. The behaviour of O3 in the Latrobe Valley is explained largely in terms of natural background atmospheric processes as observed at Cape Grim, Tasmania.The maximum 1-h average concentration of naturally occurring O3 (obtained from a 6-year record at Cape Grim) is less than 40 ppb (v/v). In contrast the industrialized Latrobe Valley sites show O3 values exceeding 40 ppb between 1% and 3% of the time. These higher concentrations occur in conditions consistent with local photochemical production of O3 via ‘smog’ type processes and appear preferentially at low NOx concentrations (3–4 ppb) during the afternoon (13–18 h) and at high temperatures (above 25°C).A comparison of observations from an elevated station (750 m) with those from the valley floor shows systematic differences in seasonal and diurnal O3 variations and the time of day of occurrence of elevated O3 concentrations which can be explained in terms of the diurnal cycle of convective mixing and mountain/valley winds.A linear regression model incorporating this understanding has accounted for between 43% and 64% of the variance of O3 concentration at the elevated and rural stations. The statistical model incorporates temperature, time of day, month of year, wind speed, O3 concentration 24-h earlier and NOx concentration as variables in the regression equation, with temperature being the dominant variable. The standard deviation of the residual O3 values (observed minus fitted) is around 5 ppb. Auto and cross correlations are used to show that perhaps half of the unexplained variance is coherent from site to site and hence potentially could be modelled.  相似文献   

11.
During the Mesoscale Alpine Programme (MAP) special observation period (SOP) between 7 September and 15 November 1999, ground-based and airborne measurements have been conducted in the Rhine valley south of the Lake of Constance to investigate the unstationary aspects of Foehn and related phenomena, like the impact of Foehn on the ozone concentrations in the valley. Foehn events occurred with above-average frequency and high diversity. Foehn induced ozone peaks in October and November are found to be much lower than the September Foehn case of the period. An inversion layer in the lake area with ozone concentrations below 10 ppb often shields the monitoring stations from the Foehn air aloft. Trajectory calculations for the Foehn period between 19 and 24 October 1999 reveal that the Foehn air originated from below 1 to 1.5 km above the Po Basin and the Mediterranean Sea. Tethered balloon soundings in the source area south of the Alps, ozone measurements at the mountain station Jungfraujoch (3580 m a.s.l.) and airborne measurements across the Alpine crests reveal that the ozone levels found in the Foehn air correspond to the concentrations just above the mixing height in the Po Basin and are transported across the Alpine crest within the lowest flow layer.  相似文献   

12.
Ozone and related trace gases (CO, NOx, and SO2) were measured from June 1999 to July 2000 at a rural site in the Yangtze Delta of China, a region of intensive anthropogenic activity. Elevated ozone levels were frequently observed during the study period, with the highest frequency in late spring and early summer. Over a 1 yr period, 21 d were found to have ozone concentrations exceeding the new US 8-h 80 ppb health standard. Calculation of the “SUM06” exposure index also shows relatively high (>15 ppm h) values for each season except winter. At these levels ozone may have adverse effects on human health as well as agricultural crops. Analysis of meteorological data shows that the high ozone days were associated with large-scale stagnation, intense solar radiation, and minimum rainfall. Large-scale back trajectories indicate a slow-moving/re-circulating airmass during the episodic days. Examination of chemical data shows that the observed daytime high ozone concentrations were due to downward mixing of ozone-rich air, in situ photochemical formation, and in some cases, advection to the site of aged plumes. The very high CO levels (and high CO to NOx ratios) were found to coincide with many of the ozone episodes, suggesting a contribution from sources of emission involving incomplete combustion. It is suggested that the burning of biomass (e.g., biofeuls and crop residues) may be an important source for the observed high CO and O3 values.  相似文献   

13.
An episode selection procedure was developed and applied to select sets of days representing characteristic meteorological conditions leading to high ozone episodes over the Swiss Plateau. The selection procedure was applied to data extending from January 1991 through December 1998, and is comprised of two steps: First, days were classified according to observed air quality and meteorological characteristics using classification and regression trees analysis (CART). Second, the CART results were used in conjunction with observed air quality data to identify sets of days characteristic of those leading to elevated ozone. These sets of days were selected to optimise how well a limited number of days represented seasonal air quality, and that formed longer episodes for use in the air quality modelling. CART analysis was performed for three zones of the Swiss Plateau that have different air quality and meteorological characteristics. The results for two zones were used together in the episode selection procedure in order to identify days representative for the whole Plateau. Meteorological analysis for a third zone suggested that it would be strongly impacted by pollutants transported in from outside the country. One thousand and eight hundred optimisation runs were performed to minimise the likelihood that the set of days was a local optimum, increasing the robustness for use in air quality modelling analysis. Fifteen days, grouped in four episodes ranging from 3 to 5 days were selected along with their calculated representativeness (or weight) to recreate a seasonal metric. The variety of local as well as regional meteorological characteristics showed that the episode selection procedure chose days representing a diverse set of meteorological situations which are associated with elevated ozone. This set of episodes can now be used to test air quality strategies.  相似文献   

14.
We have used a global version of the Regional Air Pollution Information and Simulation (RAINS) model to estimate anthropogenic emissions of the air pollution precursors sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), primary carbonaceous particles of black carbon (BC), organic carbon (OC) and methane (CH4). We developed two scenarios to constrain the possible range of future emissions. As a baseline, we investigated the future emission levels that would result from the implementation of the already adopted emission control legislation in each country, based on the current national expectations of economic development. Alternatively, we explored the lowest emission levels that could be achieved with the most advanced emission control technologies that are on the market today. This paper describes data sources and our assumptions on activity data, emission factors and the penetration of pollution control measures. We estimate that, with current expectations on future economic development and with the present air quality legislation, global anthropogenic emissions of SO2 and NOx would slightly decrease between 2000 and 2030. For carbonaceous particles and CO, reductions between 20% and 35% are computed, while for CH4 an increase of about 50% is calculated. Full application of currently available emission control technologies, however, could achieve substantially lower emissions levels, with decreases up to 30% for CH4, 40% for CO and BC, and nearly 80% for SO2.  相似文献   

15.
16.
17.
Tropospheric ozone adversely affects human health and vegetation, and biogenic volatile organic compound (BVOC) emission has potential to influence ozone concentration in summer season. In this research, the standard emissions of isoprene and monoterpene from the vegetation of the Kinki region of Japan, estimated from growth chamber experiments, were converted into hourly emissions for July 2002 using the temperature and light intensity data obtained from results of MM5 meteorological model. To investigate the effect of BVOC emissions on ozone production, two ozone simulations for one-month period of July 2002 were carried out. In one simulation, hourly BVOC emissions were included (BIO), while in the other one, BVOC emissions were not considered (NOBIO). The quantitative analyses of the ozone results clearly indicate that the use of spatio-temporally varying BVOC emission improves the prediction of ozone concentration. The hourly differences of monthly-averaged ozone concentrations between BIO and NOBIO had the maximum value of 6 ppb at 1400 JST. The explicit difference appeared in urban area, though the place where the maximum difference occurred changed with time. Overall, BVOC emissions from the forest vegetation strongly affected the ozone generation in the urban area.  相似文献   

18.
Urban and non-urban rural ozone (O3) concentrations are high in Bulgaria and often exceed the European AOT40 ecosystem as well as the AOT60 human health standards. This paper presents preliminary estimates to establish background, non-urban O3 concentrations for the southern region of Bulgaria. Ozone concentrations from three distinctly different sites are presented: a mountain site influenced by mountain-valley wind flow; a coastal site influenced by sea-breeze wind flow; and a 1700-m mountain peak site without 'local' wind flow characteristics. The latter offers the best estimate of 46-50 ppb for a background O3 level. The highest non-urban hourly value, 118 ppb, was measured at the mountain-valley site.  相似文献   

19.
This study applies a methodology for discriminating local and external contributions of atmospheric particulate matter (PM) at a rural background station in the North-western coast of Spain. The main inputs at the nearest scale have come from soil dust, marine aerosol and road traffic. At a larger scale, the highest contributions have come from fossil-fuel combustion sources, giving rise to relatively high ammonium sulphate background levels, mainly in summer. External contributions from long-range transport processes of African dust and nitrate have been detected. Morocco and Western Sahara have been identified as the main potential source regions of African dust, with a higher content of Al and Ti than other crustal components. Geographical areas from central and Eastern Europe have been identified as potential sources of particulate nitrate. The discrimination of the PM contribution from natural and anthropogenic sources at different geographical scales is a necessary information for establishing PM reduction strategies in specific areas.  相似文献   

20.
Annual anthropogenic pollutant emissions of sulfur dioxide, nitrogen oxides, and hydrocarbons from point and area sources were apportioned to 80-km grid squares on a 35 × 30 grid network. The grid network was superimposed on a polar stereographic projection map true at 60°N. The domain of the network included southern Canada and the United States east of the Rocky Mountains, excluding southern Texas and northern New England.The emissions data were obtained from the 1977 United States Environmental Protection Agency's National Emissions Data System (NEDS) file as well as from data compiled by the Ontario Ministry of the Environment and Environment Canada. These emission inventories, the design of the gridding procedures, and the major source classifications responsible for much of the emissions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号