首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A laser induced fluorescence (LIF) instrument has been developed to measure tropospheric NO2 with low detection limit. The instrument design, development and first measurements are reported. There are also details of the temporal gate system built for the fluorescence acquisition. The instrument is able to make fast measurements (up to 4 Hz) and shows a limit of detection of 10 pptv/60 s. Continuous observations (2 weeks in summer 2007) in a small town in central Italy were used to test the performance of the instrument and to study the photochemistry of ozone in a background site. LIF and a commercial chemiluminescence (CL) instrument simultaneous observations of NO2 show a good linearity (LIF = 1.02 CL + 0.6 (ppb), R2 = 0.98) but there is a bias of the commercial instrument of about 0.60 ppbv on average. The overestimation of the CL system is probably due to conversion of NOy species into NO by the molybdenum converter used in the CL instrument to detect NO2. Analysis of 1 s data is used to test the instrument response and the coupling between nitrogen oxides and ozone.  相似文献   

2.
Long-term observations of the nitrate radical concentration and supporting parameters in the continental boundary layer at the rural site Lindenberg near Berlin, Germany, were performed using differential optical absorption spectroscopy (DOAS). Average nighttime NO3 levels were 4.6 ppt, while NO3 steady-state lifetimes (calculated from the NO2–O3 product and the NO3 concentration) varied between 5 s and 615 s with an average of 92 s. The long-term observations offered the possibility to study the importance of NO3 for the oxidation of VOCs (volatile organic compounds) and its contribution in the non-photochemical removal of NOx from the atmosphere in different seasons. Analysis of the data showed, that NO3 was depleted by both, reactions with VOCs and indirectly by loss of N2O5 on aerosol surfaces. A clear seasonal variation of the sink distribution was found. The VOC sink dominated during summer while indirect loss was of major importance during the winter months. The results are compared with former long-term campaigns of NO3 in the marine boundary layer.  相似文献   

3.
In the United States, fertilized corn fields, which make up approximately 5% of the total land area, account for approximately 45% of total soil NOx emissions. Leaf chamber measurements were conducted of NO and NO2 fluxes between individual corn leaves and the atmosphere in (1) field-grown plants near Champaign, IL (USA) in order to assess the potential role of corn canopies in mitigating soil–NOx emissions to the atmosphere, and (2) greenhouse-grown plants in order to study the influence of various environmental variables and physiological factors on the dynamics of NO2 flux. In field-grown plants, fluxes of NO were small and inconsistent from plant to plant. At ambient NO concentrations between 0.1 and 0.3 ppbv, average fluxes were zero. At ambient NO concentrations above 1 ppbv, NO uptake occurred, but fluxes were so small (14.3±0.0 pmol m−2 s−1) as to be insignificant in the NOx inventory for this site. In field-grown plants, NO2 was emitted to the atmosphere at ambient NO2 concentrations below 0.9 ppbv (the NO2 compensation point), with the highest rate of emission being 50 pmol m−2 s−1 at 0.2 ppbv. NO2 was assimilated by corn leaves at ambient NO2 concentrations above 0.9 ppbv, with the maximum observed uptake rate being 643 pmol m−2 s−1 at 6 ppbv. When fluxes above 0.9 ppbv are standardized for ambient NO2 concentration, the resultant deposition velocity was 1.2±0.1 mm s−1. When scaled to the entire corn canopy, NO2 uptake rates can be estimated to be as much as 27% of the soil-emitted NOx. In greenhouse-grown and field-grown leaves, NO2 deposition velocity was dependent on incident photosynthetic photon flux density (PPFD; 400–700 nm), whether measured above or below the NO2 compensation point. The shape of the PPFD dependence, and its response to ambient humidity in an experiment with greenhouse-grown plants, led to the conclusion that stomatal conductance is a primary determinant of the PPFD response. However, in field-grown leaves, measured NO2 deposition velocities were always lower than those predicted by a model solely dependent on stomatal conductance. It is concluded that NO2 uptake rate is highest when N availability is highest, not when the leaf deficit for N is highest. It is also concluded that the primary limitations to leaf-level NO2 uptake concern both stomatal and mesophyll components.  相似文献   

4.
As part of the BRACE 2002 May field intensive, the NOAA Twin Otter flew 21 missions over terrestrial, marine, and mixed terrestrial and marine sites in the greater Tampa, Florida, airshed including over Tampa Bay and the Gulf of Mexico. Aerosols were collected with filter packs and their inorganic fractions analyzed post hoc with ion chromatography. Anion mass dominated both the fine- (particle diameters ⩽2.5 μm) and coarse-mode (particle diameters 10.0–2.5 μm) inorganic fractions: SO42−in the fine fraction, 3.7 μg m−3 on average and Cl and NO3 in the coarse fraction, 0.6 μg m−3 on average and 1.4 μg m−3 on average, respectively. Ammonium ion dominated the inorganic fine-mode cation mass, averaging 1.2 μg m−3, presumably in association with SO42. Coarse-mode cation mass was dominated by Na+, but the concentrations of Ca2+ and K+ together often equaled or exceeded the Na+ mass which was, on average, 0.6 μg m−3. Nitrate appeared predominantly in the coarse rather than the fine fraction, as expected, and the fine fraction never contributed >15% of the total NO3 concentration. Nitric acid dominated the NO3 contribution from both aerosol size fractions, and constituted at least 45% of the total NO3 in all samples. Coarse-mode Cl depletion, and hence NO3 replacement, reached 100% within the first 4 h of plume travel from the urban core in some samples, although it was most often less than 100% and slightly below the expected 1:1 ratio with coarse-mode NO3 concentration: the slope of the regression line of NO3 concentration to Cl depletion was 0.9 in the coarse fraction. In addition, terrestrial samples were markedly lower in Cl depletion, and thus in substituted NO3, than were marine and mixed samples: 15–25% depletion in terrestrial samples vs. 50–65% in marine samples with the same air mass age. Thus, we conclude that NO3 and its progenitor compound HNO3 were present in the Tampa airshed in insufficient amounts to titrate fully the slightly alkaline coarse-mode particles there, and to replace completely the Cl from the coarse-mode NaCl.  相似文献   

5.
Boundary layer concentrations of hydroxyl (OH) and hydroperoxyl (HO2) radicals were measured at 1180 m elevation in a mountainous, forested region of north-western Greece during the AEROsols formation from BIogenic organic Carbon (AEROBIC) field campaign held in July–August 1997. In situ measurements of OH radicals were made by laser-induced fluorescence (LIF) at low pressure, exciting in the (0, 0) band of the A–X system at 308 nm. HO2 radicals were monitored by chemical titration to OH upon the addition of NO, with subsequent detection by LIF. The instrument was calibrated regularly during the field campaign, and demonstrated a sensitivity towards OH and HO2 of 5.2×105 and 2.4×106 molecule cm−3, respectively, for a signal integration period of 2.5 min and a signal-to-noise ratio of 1. Diurnal cycles of OH and HO2 were measured on 10 days within a small clearing of a forest of Greek Fir (Abies Borisi-Regis). In total 4165 OH data points and 1501 HO2 data points were collected at 30 s intervals. Noon-time OH and HO2 concentrations were between 4–12×106 and 0.4–9×108 molecule cm−3, respectively. The performance of the instrument is evaluated, and the data are interpreted in terms of correlations with controlling variables. A significant correlation (r2=0.66) is observed between the OH concentration and the rate of photolysis of ozone, J(O1D). However, OH persisted into the early evening when J(O1D) had fallen to very low values, consistent with the modelling study presented in the following paper (Carslaw et al., 2001, OH and HO2 radical chemistry in a forest region of north-western Greece. Atmospheric Environment 35, 4725–4737) that predicts a significant radical source from the ozonolysis of biogenic alkenes. Normalisation of the OH concentrations for variations in J(O1D) revealed a bell-shaped dependence of OH upon NOx (NO+NO2), which peaked at [NOx] ∼1.75 ppbv. The diurnal variation of HO2 was found to be less correlated with J(O1D) compared to OH.  相似文献   

6.
Static chamber method was adopted to measure the surface exchanges of NO and NO2 between three kinds of agricultural lands and the atmosphere during spring–summer period in the Yangtze Delta, China. The average NO fluxes were 20.9, 27.4 and 21.4 ng N m−2 s−1, respectively, for cabbage (CA, cultivation of celery occurred along with cabbage), potato (PO) and soybean (SY) fields. The average NO2 fluxes were −1.12, 0.93 and −0.68 ng N m−2 s−1, respectively, for the cabbage, potato and soybean fields. Apparently, negative linear correlation was found between the NO2 fluxes from the CK plot (tilled conventionally but did not cultivate any seeds) and its ambient concentrations, and the compensation point was calculated to be 0.92 ppbv. The total NO emission from the vegetable lands and SY land in this region during spring–summer period was roughly estimated to be 15.9 Gg N, which accounted for about 11.2% of the estimated value of total NO emissions in the July of 1999 from Chinese agricultural fields.  相似文献   

7.
The CALINE4 roadway dispersion model has been applied to concentrations of NOx and NO2 measured near Gandy Boulevard in Tampa, FL (USA) during May 2002. A NOx emission factor of 0.86 gr mi−1 was estimated by treating NO+NO2 (NOx) as a conserved species and minimizing the differences between measured and calculated NOx concentrations. This emission factor was then used to calculate NO2 concentrations using the NO/NO2 transformation reactions built into CALINE4. A comparison of measured and calculated NO2 concentrations indicates that for ambient O3 concentrations less than 40 ppb the model under-predicts the chemical transformation of NO. The enhanced transformation of NO may be due to reactions of NO with oxidants such as peroxy radicals that are present either in the atmosphere or in vehicle exhaust.  相似文献   

8.
We present two years (January 2007–December 2008) of atmospheric SO2, NO2 and NH3 measurements from ten background or rural sites in nine provinces in China. The measurements were made on a monthly basis using passive samplers under careful quality control. The results show large geographical and seasonal variations in the concentrations of these gases. The mean SO2 concentration varied from 0.7 ± 0.4 ppb at Waliguan on Qinghai Plateau to 67.3 ± 31.1 ppb at Kaili in Guizhou province. The mean NO2 concentration ranged from 0.6 ± 0.4 ppb at Waliguan to 23.9 ± 6.9 ppb at Houma in southern Shanxi. The mean NH3 concentration ranged from 2.8 ± 3.0 ppb at Shangdianzi in northeastern Beijing to 13.7 ± 8.4 ppb at Houma. At most sites, SO2 and NO2 peaked in winter and reached minima in summer, while NH3 showed maximum values in summer and lower values in cold seasons. On the whole, the geographical distributions of the observed gas concentrations are consistent with those of emissions. The ground measurements of SO2 and NO2 are contrasted to the SCIAMACHY SO2 and OMI NO2 tropospheric columns, respectively. Although the satellite data can capture the main features of emissions and concentrations of SO2, they do not reflect the variations of SO2 in the surface layer. The situation is better for the case of NO2. The OMI NO2 columns capture the geographical differences in the ground NO2 and correlate fairly well with the ground levels of NO2 at six of the ten sites.  相似文献   

9.
The interaction of NO2 on carbonaceous aerosol particles in an NO2 concentration range relevant for the troposphere was studied. The adsorption as a function of NO2 concentration (2.5–65 ppb) was investigated along with the dependence on time (1–600 s) and particle concentration. The results exhibit a zero-order process in NO2 for the chemisorption over the measured time and concentration range. The results suggest that the chemisorption reaction is limited by a rapidly established steady-state coverage of a precursor in the form of reversibly adsorbed NO2 which seems to be constant over the whole investigated NO2 concentration range. Within the first 20 s, a chemisorption rate of 2.5×1011 molecules cm-2 s-1 was calculated. To estimate a saturation value for the NO2 adsorption on carbonaceous aerosol particles, bulk experiments were performed where the aerosol was deposited on a filter before exposure to NO2. This gives a lower limit for the total NO2 adsorption of about 1×1014 molecules cm-2 of particle surface area. The measurements show that the concept of the often used sticking coefficient γ (i.e. the number of adsorbed molecules per number of the total gas–surface collisions) is not a useful parameter to describe the chemisorption of NO2 at low ppb concentration on such complex surfaces as carbonaceous aerosol particles.  相似文献   

10.
The influence of NOx (NO+NO2) concentrations on the product distribution of the OH-initiated oxidation of DMS has been studied at room temperature using total NOx concentrations varying from 0 to ∼1800 ppbv (30–600 ppbv NO2 and 140–1760 ppbv NO). Clear trends in the formation yields of the products SO2, COS, MSA, MTF (methyl thiolformate), MSPN (methanesulphonyl peroxynitrate), DMSO and DMSO2 have been observed with variation in NOx. The presence of low levels of NO reduces the yields of both MTF and COS to zero. The formation yields of MSA and DMSO2 increase with increasing NOx concentration, whereas the yields of DMSO and SO2 decrease. The following approximate changes in the yield, not corrected for possible loss processes, have been measured for variation of NOx between 0 and ∼1800 ppbv: DMSO decreases from 20 to 3%S; DMSO2 increases from 3 to 15%S, SO2 decreases from 70 to 30%S and MSA increases from 4 to 17%S. Under the experiments conditions NOx levels of several tens of ppbv are required before a perceptible change is observed in the MSA yield. If applicable to the atmosphere such a situation is only likely to be observed near coastal areas affected by pollution. MSPN (CH3SO2O2NO2) is observed as an oxidation product in the presence of NO2 even at low levels (e.g. 60 ppbv). Its possible role as a NOx reservoir in the troposphere is considered.  相似文献   

11.
Personal exposures, residential indoor, outdoor and workplace levels of nitrogen dioxide (NO2) were measured for 262 urban adult (25–55 years) participants in three EXPOLIS centres (Basel; Switzerland, Helsinki; Finland, and Prague; Czech Republic) using passive samplers for 48-h sampling periods during 1996–1997. The average residential outdoor and indoor NO2 levels were lowest in Helsinki (24±12 and 18±11 μg m−3, respectively), highest in Prague (61±20 and 43±23 μg m−3), with Basel in between (36±13 and 27±13 μg m−3). Average workplace NO2 levels, however, were highest in Basel (36±24 μg m−3), lowest in Helsinki (27±15 μg m−3), with Prague in between (30±18 μg m−3). A time-weighted microenvironmental exposure model explained 74% of the personal NO2 exposure variation in all centres and in average 88% of the exposures. Log-linear regression models, using residential outdoor measurements (fixed site monitoring) combined with residential and work characteristics (i.e. work location, using gas appliances and keeping windows open), explained 48% (37%) of the personal NO2 exposure variation. Regression models based on ambient fixed site concentrations alone explained only 11–19% of personal NO2 exposure variation. Thus, ambient fixed site monitoring alone was a poor predictor for personal NO2 exposure variation, but adding personal questionnaire information can significantly improve the predicting power.  相似文献   

12.
Simultaneous measurements of nitrous acid (HONO) and nitrogen dioxide (NO2) using a differential optical absorption spectroscopy system, nitrogen oxide (NO) by an in situ chemiluminescence analyser and carbon dioxide (CO2) by a gas chromatographic technique were carried out in the Wuppertal Kiesbergtunnel. At high traffic density HONO concentrations of up to 45 ppbV were observed. However, at low traffic density unexpectedly high HONO concentrations of up to 10 ppbV were measured caused by heterogeneous HONO formation on the tunnel walls. In addition to the tunnel campaigns, emission measurements of HONO, NO2, NO and CO2 from different single vehicles (a truck, a diesel and a gasoline passenger car) were also performed. For the correction of the HONO emission data, the heterogeneous HONO formation on the tunnel walls was quantified by two different approaches (a) in different NO2 emission experiments in the tunnel without traffic and (b) on tunnel wall residue in the laboratory. The HONO concentration corrected for heterogeneous formation on the tunnel walls, in relation to the CO2 concentration can be used to estimate the amount of HONO, which is directly emitted from the vehicle fleet. From the measured data, emission ratios (e.g. HONO/NOx) and emission indices (e.g. mg HONO kg−1 fuel) were calculated. The calculated emission index of 88±18 mg HONO kg−1 fuel allows an estimation of the HONO emission rates from traffic into the atmosphere. Furthermore, the heterogeneous formation of HONO from NO2 on freshly emitted exhaust particles is discussed.  相似文献   

13.
Comparisons were made between the predictions of six photochemical air quality simulation models (PAQSMs) and three indicators of ozone response to emission reductions: the ratios of O3/NOz and O3/NOy and the extent of reaction. The values of the two indicator ratios and the extent of reaction were computed from the model-predicted mixing ratios of ozone and oxidized nitrogen species and were compared to the changes in peak 1 and 8 h ozone mixing ratios predicted by the PAQSMs. The ozone changes were determined from the ozone levels predicted for base-case emission levels and for reduced emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx). For all simulations, the model-predicted responses of peak 1 and 8 h ozone mixing ratios to VOC or NOx emission reductions were correlated with the base-case extent of reaction and ratios of O3/NOz and O3/NOy. Peak ozone values increased following NOx control in 95% (median over all simulations) of the high-ozone (>80 ppbv hourly mixing ratio in the base-case) grid cells having mean afternoon O3/NOz ratios less than 5 : 1, O3/NOy less than 4 : 1, or extent less than 0.6. Peak ozone levels decreased in response to NOx reductions in 95% (median over all simulations) of the grid cells having peak hourly ozone mixing ratios greater than 80 ppbv and where mean afternoon O3/NOz exceeded 10 : 1, O3/NOy was greater than 8 : 1, or extent exceeded 0.8. Ozone responses varied in grid cells where O3/NOz was between 5 : 1 and 10 : 1, O3/NOy was between 4 : 1 and 8 : 1, or extent was between 0.6 and 0.8. The responses in such grid cells were affected by ozone responses in upwind grid cells and by the changes in ozone levels along the upwind boundaries of the modeling domains.  相似文献   

14.
A field experiment was conducted in August 1998 to investigate the concentrations of isoprene and isoprene reaction products in the surface and mixed layers of the atmosphere in Central Texas. Measured near ground-level concentrations of isoprene ranged from 0.3 (lower limit of detection – LLD) to 10.2 ppbv in rural regions and from 0.3 to 6.0 ppbv in the Austin urban area. Rural ambient formaldehyde levels ranged from 0.4 ppbv (LLD) to 20.0 ppbv for 160 rural samples collected, while the observed range was smaller at Austin (0.4–3.4 ppbv) for a smaller set of samples (37 urban samples collected). Methacrolein levels did not vary as widely, with rural measurements from 0.1 ppbv (LLD) to 3.7 ppbv and urban concentrations varying between 0.2 and 5.7 ppbv. Isoprene flux measurements, calculated using a simple box model and measured mixed-layer isoprene concentrations, were in reasonable agreement with emission estimates based on local ground cover data. Ozone formation attributable to biogenic hydrocarbon oxidation was also calculated. The calculations indicated that if the ozone formation occurred at low VOC/NOx ratios, up to 20 ppbv of ozone formed could be attributable to biogenic photooxidation. In contrast, if the biogenic hydrocarbon reaction products were formed under low NOx conditions, ozone production attributable to biogenics oxidation would be as low as 1 ppbv. This variability in ozone formation potentials implies that biogenic emissions in rural areas will not lead to peak ozone levels in the absence of transport of NOx from urban centers or large rural NOx sources.  相似文献   

15.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

16.
The objective of these analyses was to determine whether highways significantly influence ambient concentrations of NO2 at distances greater than 200 m. NO2 was sampled for 14 consecutive days in May 2003 at 67 sites across Montréal, Canada. The association between logarithmic concentrations of NO2 and land-use variables was assessed using multiple regressions. Locations less than 100 m from the nearest highways were excluded, leaving 61 data points. Then, locations less than 200 m were excluded, leaving 55 data points. Excluding sampling locations located less than 100 or 200 m from the nearest highway did not substantially change the regression parameters. NO2 was still significantly associated with both the distance from nearest highway and the traffic count on the nearest highway. These findings indicate that the negative association found between distance from highways and NO2 concentration in several land-use regression studies in Europe and North America was not generated solely by the high concentrations found in the immediate vicinity of highways.  相似文献   

17.
Measurement of ambient gas-phase total peroxides was performed at the summit of Mount Tai (Mt. Tai, 1534 m above sea level) in central-eastern China during March 22–April 24 and June 16–July 20, 2007. The hourly averaged concentration of peroxides was 0.17 ppbv (± 0.16 ppbv, maximum: 1.28 ppbv) and 0.55 ppbv (± 0.67 ppbv, maximum: 3.55 ppbv) in the spring and summer campaigns, respectively. The average concentration of peroxides at Mt. Tai, which is in a heavily polluted region, was much lower than hydrogen peroxide measurements made at some rural mountain sites, suggesting that significant removal processes took place in this region. An examination of diurnal variation and a correlation analysis suggest that these removal processes could include chemical suppression of peroxide production due to the scavenging of peroxy and hydroxy radicals by high NOx, wet removal by clouds/fogs rich in dissolved sulfur dioxide which reacts quickly with peroxides, and photolysis. These sinks competed with photochemical sources of peroxides, resulting in different mean concentrations and diurnal pattern of peroxides in the spring and summer. A principal component analysis was conducted to quantify the major processes that influenced the variation of peroxide concentrations. This analysis shows that in the spring photochemical production was an important source of peroxides, and the major sink was scavenging during upslope transport of polluted and humid air from the lower part of the planetary boundary layer (PBL) and wet removal by synoptic scale clouds. During the summer, highly polluted PBL air (with high NOx) was often associated with very low peroxides due to the chemical suppression of HO2 by high NOx and wet-removal by clouds/fogs in this sulfur-rich atmosphere, especially during the daytime. Higher concentrations of peroxides, which often appeared at mid-nighttime, were mainly associated with subsidence of air masses containing relatively lower concentrations of NOy.  相似文献   

18.
A fast response analyzer for HNO3 in highly polluted air is described. The time resolution attainable was 12 s. The method is based on the difference in a technique for HNO3-scrubbed and non-scrubbed air and the reduction of HNO3 to NO with the use of a line of catalytic converters and a method for the subsequent NO-ozone chemiluminescence. A sample air stream, in which particulates are removed with a Teflon filter, is divided into two channels. CH-1 is directly connected to the converter line, and CH-2 contains a HNO3 scrubber packed with a nylon fiber that goes to another converter line. Each converter line is composed of a hot quartz-bead converter (QBC) and a molybdenum converter (MC) in a series. A QBC reduces HNO3 to (NO+NO2), which is called NOx. The MC reduces the NOx to NO.For CH-1, the analyzer detects most compounds that typically comprise NOy (J. Geophys. Res. 91 (1986) 9781). These CH-1 compounds are called NOy′ hereafter (NOy-particulate nitrate) because the particulates are removed by the filter. A difference in the detector signal for the two channels indicates HNO3. For a blank test, atmospheric air in which HNO3 was pre-scrubbed by an extra nylon fiber was introduced to the analyzer. Variations in the blank value were 0.38±0.42 and 0.34±0.55 ppb during the high readings (NOy′-HNO3 ) (called NOy* hereafter) (111±12 ppb, N=180), and low NOy* readings (62±8 ppb, N=180), respectively, indicating that the lowest detection limit of the analyzer is 1.1 ppb (2σ). When the data obtained with the analyzer is compared to the data using the denuder method, a linear correlation with the regression of Y=0.973X+0.077 (r2=0.916 (N=20)) in the range of 0–6.5 ppb HNO3 is obtained, which is an excellent agreement. Atmospheric monitoring was carried out at Kobe. Although the average concentration of HNO3 was 2.6±1.3 ppb, ca.10 ppb for a HNO3 concentration was occasionally observed when the NOy* concentration was high, i.e., more than 100 ppb.  相似文献   

19.
The heterogeneous reactivity of nitrogen dioxide with pyrene and 1-nitropyrene (1NP) adsorbed on silica particles has been investigated using a fast-flow-tube in the absence of light. Reactants and products were extracted from particles using pressurised fluid extraction (PFE) and concentration measurements were performed using gas chromatography/mass spectrometry (GC/MS). The pseudo-first order rate constants were obtained from the fit of the experimental decay of particulate polycyclic compound concentrations versus reaction time. Experiments were performed at three different NO2 concentrations and second order rate constants were calculated considering the oxidant concentration. The following rate constant values were obtained at room temperature: k(NO2 + pyrene) = (9.3 ± 2.3) × 10?17 cm3 molecule?1 s?1 and k(NO2 + 1NP) = (6.2 ± 1.5) × 10?18 cm3 molecule?1 s?1, showing that the reactivity of 1NP was slower by a factor of 15 than that of pyrene. 1NP was identified as the only NO2-initiated oxidation product of pyrene and all the three dinitropyrenes were identified in the case of the 1NP reaction. The product quantification allowed showing that the kinetics of oxidation product formation was equal to that measured for parent compounds degradation, within uncertainties, confirming the validity of the reaction kinetics measurements.  相似文献   

20.
The new National Ambient Air Quality Standard for ozone in the US uses 8 h averaging for the concentration. Based on the 1993 ambient data for Southern California, 8 h averaging has a moderate tendency to move the location of the peak ozone concentration east of the location of the peak 1 h ozone concentration. Reducing the area-wide peak 8 h ozone concentration to 80 ppb would require an effective reduction of the area-wide peak 1 h ozone concentration to around 90 ppb. The Urban Airshed Model with improved numerical solvers, meteorological input based on a mesoscale model and an adjusted emissions inventory was used to study the effect of reactive organic gases (ROG) and NOx controls on daily-maximum and peak 8 h ozone concentrations under the 26–28 August 1987 ozone episodic conditions in Southern California. The NOx disbenefit remains prominent for the case of 8 h ozone concentration but is somewhat less prominent, especially when areal ozone exposure is considered, than the case for 1 h ozone concentration. The role of two indicators – O3/NOy and H2O2/HNO3 – for NOx- and ROG-sensitivity for 1 and 8 h ozone concentrations were also studied. In general, the indicator trends are consistent with model predictions, but the discriminating power of the indicators is rather limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号