首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The initial solid-phase concentration of volatile organic compounds (VOCs) is a key parameter influencing the emission characteristics of many indoor materials. Solid-phase measurements are typically made using solvent extraction or thermal headspace analysis. The high temperatures and chemical solvents associated with these methods can modify the physical structure of polymeric materials and, consequently, affect mass transfer characteristics.

To measure solid-phase concentrations under conditions resembling those in which the material would be installed in an indoor environment, a new technique was developed for measuring VOC concentrations in vinyl flooring (VF) and similar materials. A 0.09-m2 section of new VF was punched randomly to produce ~200 0.78-cm2 disks. The disks were milled to a powder at -140 °C to simultaneously homogenize the material and reduce the diffusion path length without loss of VOCs. VOCs were extracted from the VF particles at room temperature by fluidized-bed desorption (FBD) and by direct thermal desorption (DTD) at elevated temperatures. The VOCs in the extraction gas from FBD and DTD were collected on sorbent tubes and analyzed by gas chromatog-raphy/mass spectrometry (GC/MS). Seven VOCs emitted by VF were quantified. Concentration measurements by FBD ranged from 5.1 |ig/g VF for n-hexadecane to 130 |Jg/g VF for phenol. Concentrations measured by DTD were higher than concentrations measured by FBD. Differences between FBD and DTD results may be explained using free-volume and dual-mobility sorption theory, but further research is necessary to more completely characterize the complex nature of a diffusant in a polymer matrix.  相似文献   

2.
This study aimed to evaluate the sorption-desorption and leaching of aminocyclopyrachlor from three Brazilian soils. The sorption-desorption of 14C-aminocyclopyrachlor was evaluated using the batch method and leaching was assessed in glass columns. The Freundlich model showed an adequate fit for the sorption-desorption of aminocyclopyrachlor. The Freundlich sorption coefficient [Kf (sorption)] ranged from 0.37 to 1.34 µmol (1–1/n) L1/n kg?1 and showed a significant positive correlation with the clay content of the soil, while the Kf (desorption) ranged from 3.62 to 5.36 µmol (1–1/n) L1/n kg?1. The Kf (desorption) values were higher than their respective Kf (sorption), indicating that aminocyclopyrachlor sorption is reversible, and the fate of this herbicide in the environment can be affected by leaching. Aminocyclopyrachlor was detected at all depths (0?30 cm) in all the studied soils, where leaching was influenced by soil texture. The total herbicide leaching from the sandy clay and clay soils was <0.06%, whereas, ~3% leached from the loamy sand soil. The results suggest that aminocyclopyrachlor has a high potential of leaching, based on its low sorption and high desorption capacities. Therefore, this herbicide can easily contaminate underground water resources.  相似文献   

3.
The diffusion coefficient, D, partition coefficient, K, and the initial volatile organic compounds (VOCs) in dry building materials, are the three key parameters used to predict the VOC emissions. D and K may be strongly affected by temperature. We have developed a new and simple method, the C-history method, to measure the diffusion coefficient, D and the partition coefficient, K of formaldehyde in dry building materials at temperatures of 18, 30, 40 and 50 °C. The measured variations of the diffusion coefficients and the partition coefficients with temperature for particle board, vinyl floor, medium- and high-density board are presented. A formula relating the partition coefficient and related factors is obtained through analysis. This formula can predict the partition coefficient in principle and provide an insight for fitting experimental data, and it agrees well with the experimental results.  相似文献   

4.
Abstract

The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac‐sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac‐sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (KoC), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac‐sodium < fluometuron < prometryn < diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac‐sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step ω = [nad / nde ‐1] x 100). Soil type and initial concentration had significant effect on ω. The effect of sorption and desorption properties of these four herbicides on the off‐site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

5.
The diffusion coefficient (D) and partition coefficient (Kma) are the two important parameters used to predict the volatile organic compound (VOC) emission or sorption characteristics in porous building materials. D and Kma may be strongly affected by temperature (T). In this study, we derived a new correlation between D and T based on the assumption that molecular diffusion is dominant, and evaluated this correlation using a series of existing experimental data. The modeling results using the new correlation agree well with the experimental data. The correlation would be useful for assessment of indoor air quality under different environmental (temperature) conditions.  相似文献   

6.
The initial solid-phase concentration of volatile organic compounds (VOCs) is a key parameter influencing the emission characteristics of many indoor materials. Solid-phase measurements are typically made using solvent extraction or thermal headspace analysis. The high temperatures and chemical solvents associated with these methods can modify the physical structure of polymeric materials and, consequently, affect mass transfer characteristics. To measure solid-phase concentrations under conditions resembling those in which the material would be installed in an indoor environment, a new technique was developed for measuring VOC concentrations in vinyl flooring (VF) and similar materials. A 0.09-m2 section of new VF was punched randomly to produce -200 0.78-cm2 disks. The disks were milled to a powder at -140 degrees C to simultaneously homogenize the material and reduce the diffusion path length without loss of VOCs. VOCs were extracted from the VF particles at room temperature by fluidized-bed desorption (FBD) and by direct thermal desorption (DTD) at elevated temperatures. The VOCs in the extraction gas from FBD and DTD were collected on sorbent tubes and analyzed by gas chromatography/mass spectrometry (GC/MS). Seven VOCs emitted by VF were quantified. Concentration measurements by FBD ranged from 5.1 microg/g VF for n-hexadecane to 130 microg/g VF for phenol. Concentrations measured by DTD were higher than concentrations measured by FBD. Differences between FBD and DTD results may be explained using free-volume and dual-mobility sorption theory, but further research is necessary to more completely characterize the complex nature of a diffusant in a polymer matrix.  相似文献   

7.
Herbicide leaching through soil into groundwater greatly depends upon sorption-desorption and degradation phenomena. Batch adsorption, desorption and degradation experiments were performed with acidic herbicide MCPA and three soil types collected from their respective soil horizons. MCPA was found to be weakly sorbed by the soils with Freundlich coefficient values ranging from 0.37 to 1.03 mg1−1/n kg−1 L1/n. It was shown that MCPA sorption positively correlated with soil organic carbon content, humic and fulvic acid carbon contents, and negatively with soil pH. The importance of soil organic matter in MCPA sorption by soils was also confirmed by performing sorption experiments after soil organic matter removal. MCPA sorption in these treated soils decreased by 37-100% compared to the original soils. A relatively large part of the sorbed MCPA was released from soils into aqueous solution after four successive desorption steps, although some hysteresis occurred during desorption of MCPA from all soils. Both sorption and desorption were depth-dependent, the A soil horizons exhibited higher retention capacity of the herbicide than B or C soil horizons. Generally, MCPA sorption decreased in the presence of phosphate and low molecular weight organic acids. Degradation of MCPA was faster in the A soil horizons than the corresponding B or C soil horizons with half-life values ranging from 4.9 to 9.6 d in topsoils and from 11.6 to 23.4 d in subsoils.  相似文献   

8.
Sorption of sulfadiazine on Brazilian soils   总被引:1,自引:0,他引:1  
Antimicrobials, among them sulfonamides are widely used in veterinary medicine and can contaminate the environment. The degree to which antimicrobials adsorb onto soil particles varies widely, as does the mobility of these drugs. Sulfadiazine (SDZ) was used to study the adsorption–desorption in Brazilian soil–water systems, using batch equilibrium experiments. Sorption of SDZ was carried out using four types of soils. Adsorption and desorption data were well fitted with Freundlich isotherms in log form (r > 0.999) and (0.984 < r < 0.999), respectively. An adsorption–desorption hysteresis phenomenon was apparent in all soils ranging from 0.517 to 0.827. The experimental results indicate that the Freundlich sorption coefficient (KF) values for SDZ ranged from 0.45 to 2.6 μg1?1/n (cm3)1/n g?1.  相似文献   

9.
Buffer zones such as ponds and ditches are used to reduce field-scale losses of pesticides from subsurface drainage waters to surface waters. The objective of this study was to assess the efficiency of these buffer zones, in particular constructed wetlands, focusing specifically on sorption processes. We modelled the sorption processes of three herbicides [2-methyl-4-chlorophenoxyacetic acid (2,4-MCPA), isoproturon and napropamide] and three fungicides (boscalid, prochloraz and tebuconazole) on four substrates (two soils, sediment and straw) commonly found in a pond and ditch in Lorraine (France). A wide range of Freundlich coefficient (K fads) values was obtained, from 0.74 to 442.63 mg1???n ?L n ?kg?1, and the corresponding K foc values ranged from 56 to 3,725 mg1???n ?L n ?kg?1. Based on potential retention, the substrates may be classified as straw >> sediments > soils. These results show the importance of organic carbon content and nature in the process of sorption. Similarly, the studied pesticides could be classified according to their adsorption capacity as follows: prochloraz >> tebuconazole–boscalid > napropamide >> MCPA–isoproturon. This classification is strongly influenced by the physico-chemical properties of pesticides, especially solubility and K oc. Straw exhibited the largest quantity of non-desorbable pesticide residues, from 12.1 to 224.2 mg/L for all pesticides. The presence of plants could increase soil–sediment sorption capacity. Thus, establishment and maintenance of plants and straw filters should be promoted to optimise sorption processes and the efficiency of ponds and ditches in reducing surface water pollution.  相似文献   

10.
The application of a solvophobic approach for predicting the sorption of hydrophobic organic compounds (HOC) was evaluated with data collected using synthetic sorbents and soils. The experimental data consisted of batch equilibrium sorption coefficients (KD), as well as soil-TLC and reversed-phase liquid chromatographic (RPLC) retention factors (κ′). All data were collected using aqueous solutions and binary or ternary solvent mixtures of water, methanol, acetone, and acetonitrile. As predicted by the theory, the chromatographic retention factors and sorption coefficients for HOC decreased log-linearly with increasing fraction of organic cosolvent in binary solvents. Model parameters estimated from the binary solvent data could be used to predict sorption (or retention) from ternary solvents. Reasonable agreement was found between model parameters reported in the literature and those estimated using the data from batch sorption, soil-TLC, and RPLC studies.  相似文献   

11.
Barry G. Oliver 《Chemosphere》1985,14(8):1087-1106
The desorption of 20 chlorinated organics from sediments has been studied using a nitrogen purge/Tenax trap system for separating the “dissolved” and “sorbed” fractions in sediment/water slurries. The desorption partition coefficient, KD, was found to decrease with increasing temperature and suspended sediment concentration. While some differences in KD and desorption rates were observed for the study chemicals, considering their wide range of physical/chemical properties such as KOW, these changes were small. Desorption half-lives averaged about 60d at 4°C, 40d at 20°C and 10d at 40°C under continuous gaseous purging. Estimates of the loadings of chemicals via desorption from bottom sediments in Lake Ontario are compared to loadings of these chemicals to the lake from the Niagara River.  相似文献   

12.
Xiao D  Pan B  Wu M  Liu Y  Zhang D  Peng H 《Chemosphere》2012,86(2):183-189
The degradation intermediates of phenanthrene (PHE) may have increased health risks to organisms than PHE. Therefore, environmental fate and risk assessment studies should take into considerations of PHE degradation products. This study compared the sorption properties of PHE and its degradation intermediates, 9,10-phenanthrenequinone (PQN) and 9-phenanthrol (PTR) in soils, sediments and soil components. A relationship between organic carbon content (fOC) and single-point sorption coefficient (log Kd) was observed for all three chemicals in 10 soils/sediments. The large intercept in the log fOC − log Kd regression for PTR indicated that inorganic fractions control PTR sorption in soils/sediments. No relationship between specific surface area and Kd was observed. This result indicated that determination of surface area based on gas sorption could not identify surface properties for PHE, PQN, and PTR sorption and thus provide limit information on sorption mechanisms. The high sorption and strong nonlinearity (low n values) of PTR in comparison to PHE suggested that the mobility of PTR could be lower than PHE. Increased mobility of PQN compared with PHE may be expected in soils/sediments because of PQN lower sorption. The varied sorption properties of the three chemicals suggested that their environmental risks should be assessed differently.  相似文献   

13.
Background, aim, and scope  Herbicide fate and its transport in soils and sediments greatly depend upon sorption–desorption processes. Quantitative determination of herbicide sorption–desorption is therefore essential for both the understanding of transport and the sorption equilibrium in the soil/sediment–water system; and it is also an important parameter for predicting herbicide fate using mathematical simulation models. The total soil/sediment organic carbon content and its qualitative characteristics are the most important factors affecting sorption–desorption of herbicides in soil or sediment. Since the acetochlor is one of the most frequently used herbicides in Slovakia to control annual grasses and certain annual broad-leaved weeds in maize and potatoes, and posses various negative health effects on human beings, our aim in this study was to investigate acetochlor sorption and desorption in various soil/sediment samples from Slovakia. The main soil/sediment characteristics governing acetochlor sorption–desorption were also identified. Materials and methods  The sorption–desorption of acetochlor, using the batch equilibration method, was studied on eight surface soils, one subsurface soil and five sediments collected from the Laborec River and three water reservoirs. Soils and sediments were characterized by commonly used methods for their total organic carbon content, distribution of humus components, pH, grain-size distribution, and smectite content, and for calcium carbonate content. The effect of soil/sediment characteristics on acetochlor sorption–desorption was examined by simple correlation analysis. Results  Sorption of acetochlor was expressed as the distribution coefficient (K d). K d values slightly decreased as the initial acetochlor concentration increased. These values indicated that acetochlor was moderately sorbed by soils and sediments. Highly significant correlations between the K d values and the organic carbon content were observed at both initial concentrations. However, sorption of acetochlor was most closely correlated to the humic acid carbon, and less to the fulvic acid carbon. The total organic carbon content was found to also significantly influence acetochlor desorption. Discussion  Since the strong linear relationship between the K d values of acetochlor and the organic carbon content was already released, the corresponding K oc values were calculated. Considerable variation in the K oc values suggested that other soil/sediment parameters besides the total soil organic carbon content could be involved in acetochlor sorption. This was revealed by a significant correlation between the K oc values and the ratio of humic acid carbon to fulvic acid carbon (CHA/CFA). Conclusions  When comparing acetochlor sorption in a range of soils and sediments, different K d values which are strongly correlated to the total organic carbon content were found. Concerning the humus fractions, the humic acid carbon content was strongly correlated to the K d values, and it is therefore a better predictor of the acetochlor sorption than the total organic carbon content. Variation in the K oc values was attributed to the differences in distribution of humus components between soils and sediments. Desorption of acetochlor was significantly influenced by total organic carbon content, with a greater organic carbon content reducing desorption. Recommendations and perspectives  This study examined the sorption–desorption processes of acetochlor in soils and sediments. The obtained sorption data are important for qualitative assessment of acetochlor mobility in natural solids, but further studies must be carried out to understand its environmental fate and transport more thoroughly. Although, the total organic carbon content, the humus fractions of the organic matter and the CHA/CFA ratio were sufficient predictors of the acetochlor sorption–desorption. Further investigations of the structural and chemical characteristics of humic substances derived from different origins are necessary to more preciously explain differences in acetochlor sorption in the soils and sediments observed in this study.  相似文献   

14.
Sorption-desorption behavior of polybrominated diphenyl ethers in soils   总被引:1,自引:0,他引:1  
Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4′-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (KOC) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration.  相似文献   

15.
Sorption–desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption–desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kdads, varied according to its initial concentration and was ranged 40–84 for HA, 14–58 for clay and 1.85–4.15 for bulk soil. Freundlich sorption coefficient, Kfads, values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ~800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/nads values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.  相似文献   

16.
A scale-free network model with surface and vertical field measurements was used to identify the connectivity distribution of the scale-free network behavior of ambient volatile organic compounds (VOCs). The results show that the carbon number (C n ) with the total amount of C n compounds (P(C n )) possesses an explicit relationship with the scale-free network behavior. The proportionate coefficient (α) and exponent ( γ) of the scale-free network model with spatial and temporal variations are estimated and discussed. The analytical results demonstrate that although photochemical reactions cause the VOCs fraction variation, they do not alter the fraction of C n compounds observably. Therefore, the values of α and of γ did not vary with time, but with local regional characteristics. The results indicate that the influence of local VOCs emissions occurs at a height of 100 m, but becomes insufficient at a height of 300 m. Air mass mixing increases with greater height; thus, the influence of regional characteristics at a height of 700 m is low. Finally, a successful empirical model was established to evaluate the distribution of surface VOCs in various regions.  相似文献   

17.
The levels of organochlorine pesticides (OCPs) in the water, suspended solids, and sediments from Lake Chaohu during the high water level period were measured by a solid-phase extraction gas chromatograph–electron capture detector. The spatial distributions of the three phases and the water/suspended solids and sediment/water partition coefficients were analyzed. The results showed the following: (1) The mean contents of OCPs in the water, suspended solids, and sediments were 132.4?±?432.1 ng/L, 188.1?±?286.7 ng/g dry weight (dw), and 13.7?±?9.8 ng/g dw, respectively. The dominant OCP components were isodrin (85.1 %) for the water, DDTs (64.4 %) for the suspended solids, and both isodrin (48.5 %) and DDTs (31.8 %) for the sediments. (2) β-HCH was the primary isomer of HCHs in the water and sediments, and the proportions were 61.7 and 41.3 %; γ-HCH was the primary isomer in the suspended solids, accounting for 49.3 %; p,p′-DDT was the dominant content of DDTs in the water and suspended solids, whereas p,p′-DDD was the main metabolite of DDTs in the sediments. (3) The concentrations of contaminants in the water from the western lake were greater than those from the eastern lake, but the concentrations in the suspended solids from the western lake were less than those from the eastern lake. (4) There was no significant correlation between the water–suspended solids partition coefficient K d and the n-octanol–water partition coefficient K ow, and between the sediment–water organic-C weighted sorption coefficients K oc and K ow.  相似文献   

18.
Wen Y  Su LM  Qin WC  Fu L  He J  Zhao YH 《Chemosphere》2012,86(6):634-640
The hydrophobic parameter represented by the octanol/water partition coefficient (log P) is commonly used to predict the soil sorption coefficient (Koc). However, a simple non-linear relationship between log Koc and log P has not been reported in the literature. In the present paper, soil sorption data for 701 compounds was investigated. The results show that log Koc is linearly related to log P for compounds with log P in the range of 0.5-7.5 and non-linearly related to log P for the compounds in a wide range of log P. A non-linear model has been developed between log Koc and log P for a wide range of compounds in the training set. This model was validated in terms of average error (AE), average absolute error (AAE) and root-mean squared error (RMSE) by using an external test set with 107 compounds. Nearly the same predictive capacity was observed in comparison with existing models. However, this non-linear model is simple, and uses only one parameter. The best model developed in this paper is a non-linear model with six correction factors for six specific classes of compounds. This model can well predict log Koc for 701 diverse compounds with AAE = 0.37. The reasons for systemic deviations in these groups may be attributed to the difference of sorption mechanism for hydrophilic/polar compounds, low solubility for highly hydrophobic compounds, hydrolysis of esters in solution, volatilization for volatile compounds and highly experimental errors for compounds with extremely high or low sorption coefficients.  相似文献   

19.
Pan B  Tao S  Wu D  Zhang D  Peng H  Xing B 《Chemosphere》2011,84(11):1578-1583
The sorption coefficients obtained in field investigation vary greatly from laboratory sorption experiments. The possible reasons were discussed in literature. Observing the commonly reported desorption hysteresis, this study proposed that the unclear sorption history of the field study could also result in the diverse sorption coefficients. This study conducted a comparative study regarding phenanthrene sorption/desorption behavior in low-concentration multi-time sorption process and the commonly applied high-concentration one-time sorption process. The sorption coefficients determined during the desorption process were much higher than those at sorption process. Thus, the prediction of sorption coefficient should be related with sorption history. Desorption hysteresis was increased with increased equilibration time and decreased solid-phase concentration. In addition, although the apparent contact time between sorbate and sorbent was shorter for low-concentration multi-time sorption, the desorption hysteresis was much stronger, which consequently result in higher sorption coefficients in comparison to high-concentration one-time sorption. Pore swelling or diffusion-controlled sorption kinetics could not explain this phenomenon. This study calls for research attention on sorption history, especially for field investigations.  相似文献   

20.
ABSTRACT

This study addresses the issues related to decontamination of marine beach sand accidentally contaminated by petroleum products. Sorption and desorption of BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) onto the sand from Uran Beach, located near the city of Mumbai, India, were studied, and isotherms were determined using the bottle point method to estimate sorption coefficients. Alternatively, QSARs (i.e., quantitative structure activity relationships) were developed and used to estimate the sorption coefficients. Experiments for kinetics of volatilization as well as for kinetics of sorption and desorption in the presence of volatilization were conducted in a fabricated laboratory batch reactor. A mathematical model describing the fate of volatile hydrophobic organic pollutants like BTEX (via sorption and desorption in presence of volatilization) in a batch sediment-washing reactor was proposed. The experimental kinetic data were compared with the values predicted using the proposed models for sorption and desorption, and the optimum values of overall mass transfer coefficients for sorption (Ksas) and desorption (Kdad) were estimated.This was achieved by minimization of errors while using the sorption coefficients (Kp) obtained from either laboratory isotherm studies or the QSARs developed in the present study. Independent experimental data were also collected and used for calibration of the model for volatilization,and the values of the overall mass transfer coefficient for volatilization (Kgag) were estimated for BTEX. In these exercises of minimization of errors, comparable cumulative errors were obtained from the use of Kp values derived from experimental isotherms and QSARs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号