首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel. The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane, and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst, while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

2.
ABSTRACT

In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel.

The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane,and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst,while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

3.
In the present work, the effect of engine operating conditions on its exhaust emissions and on catalytic converter operation is studied. A 4-cylinder OPEL 1.6 l internal combustion engine equipped with a hydraulic brake dynamometer was used in all the experiments. For exhaust emissions treatment a typical three-way catalyst was used. The highest hydrocarbon and carbon monoxide engine-out emissions were observed at engine power 2–4 HP. These emissions were decreased as the engine power was increased up to 20 HP. Among the various compounds detected in exhaust emissions, the following ones were monitored at engine and catalyst outlet: methane, hexane, ethylene, acetaldehyde, acetone, benzene, toluene and acetic acid. The concentration of each compound in the catalytic converter effluent was in the range 45–132, 5–12, 10–125, 15–22, 3–7, 3–12, 2–9, 0–6 ppm, respectively. After the required temperature for catalyst operation had been achieved, carbon monoxide tailpipe emissions were dramatically decreased and the observed hydrocarbon conversions were also high. Methane was the most resistant compound to oxidation while ethylene was the most degradable compound over the catalyst. The order from the easiest to the most resistant to oxidation compound was: Alkene>Aromatic>Aldehyde>Ketone>Alkane.  相似文献   

4.
Emissions from a 1988 GM Corsica with adaptive learning closed loop control were measured with 4 fuels at 40, 75, and 90 degrees F. Evaporative and exhaust emissions were examined from each fuel at each test temperature. Test fuels were unleaded summer grade gasoline; a blend of this gasoline containing 8.1 percent ethanol; a refiner's blend stock; and the blend stock containing 16.2 percent methyl tertiary butyl ether. The ethanol and MTBE blends contained 3.0 percent oxygen by weight. Regulated emissions (total hydrocarbons, carbon monoxide, and oxides of nitrogen), detailed aldehydes, detailed hydrocarbons, ethanol, MTBE, benzene, and 1,3-butadiene were determined. The highest levels of regulated emissions were produced at the lower temperature. Blended fuels produced almost twice the evaporative hydrocarbon emissions at high temperatures as did the base fuels. Benzene emissions varied with fuels and operating temperatures, while 1,3-butadiene emissions decreased slightly with increasing temperatures. Formaldehyde emissions were not sensitive to fuel or temperature changes. Ethanol fuel blend total aldehyde emissions increased by 40 percent due to increased acetaldehyde emissions. Fuel blends had approximately a 3 percent economy decrease. The MTBE fuel blend appeared to offer the most reduction in total hydrocarbon, carbon monoxide, and oxides of nitrogen for the fuels and temperatures tested.  相似文献   

5.
Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min?1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly.For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NOx and NO2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NOx emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.  相似文献   

6.
Emissions from a 1988 GM Corsica with adaptive learning closed loop control were measured with 4 fuels at 40, 75, and 90° F. Evaporative and exhaust emissions were examined from each fuel at each test temperature. Test fuels were unleaded summer grade gasoline; a blend of this gasoline containing 8.1 percent ethanol; a refiner’s blend stock; and the blend stock containing 16.2 percent methyl tertiary butyl ether. The ethanol and MTBE blends contained 3.0 percent oxygen by weight. Regulated emissions (total hydrocarbons, carbon monoxide, and oxides of nitrogen), detailed aldehydes, detailed hydrocarbons, ethanol, MTBE, benzene, and 1, 3-butadiene were determined.

The highest levels of regulated emissions were produced at the lower temperature. Blended fuels produced almost twice the evaporative hydrocarbon emissions at high temperatures as did the base fuels. Benzene emissions varied with fuels and operating temperatures, while 1, 3-butadiene emissions decreased slightly with increasing temperatures. Formaldehyde emissions were not sensitive to fuel or temperature changes. Ethanol fuel blend total aldehyde emissions Increased by 40 percent due to increased acetaldehyde emissions.

Fuel blends had approximately a 3 percent economy decrease. The MTBE fuel blend appeared to offer the most reduction in total hydrocarbon, carbon monoxide, and oxides of nitrogen for the fuels and temperatures tested.  相似文献   

7.
ABSTRACT

Emissions levels from current gasoline spark-ignited engines are low, and emissions changes associated with the blending of ethanol into gasoline are small and difficult to quantify. Addition of ethanol, with a high blending octane number, allows a reduction in aromatics in market gasoline. Blending behavior of ethanol is nonlinear, altering the distillation curve, including the 50% temperature point, T50. Increase in gasoline direct injection (GDI) engine technology in the fleet challenges ability of older models based on port fuel injection (PFI) results to predict the overall air quality impact of ethanol blending. Five different models derived from data collected through U.S. Environmental Protection Agency Energy Policy Act (EPAct) programs were used to predict LA92 Phase 1 particulate matter (PM) emissions for summer regular (SR) E0 (gasoline with 0% ethanol by volume), E10 (gasoline with 10% ethanol) and E15 (gasoline with 15% ethanol). Substantial reductions of PM for E10 and E15 relative to E0 were predicted when aromatics were displaced by ethanol to maintain octane rating. SR E0 and E10 were also matched to linear combinations of EPAct fuels and results showed a 35% PM reduction for SR E10 relative to SR E0. For GDI vehicles the Coordinating Research Council (CRC) E-94-3 study found that E10 had 23% or 29% PM increase. However, CRC E-129 found an E10 PM reduction of 10% when one E0 fuel and its splash blended (SB) E10 were compared. Both CRC project E-129 SB data and fuel triplets selected from the EPAct study showed variation for E15 emissions, although E-129 suggests that E15 in GDI offers about a 25% reduction of PM with respect to E0. Overall, data suggest that ethanol blending offers a modest to a substantial reduction of cold-start PM mass if aromatic levels of the finished products are reduced in response to ethanol addition.

Implications: Studies of exhaust emissions effects of ethanol blending with gasoline vary in conclusions. Blending properties are nonlinear. Modeling of real-world emissions effects must consider all fuel composition adjustments and property changes associated with ethanol addition. Aromatics are reduced in E10 or E15, compared with E0, and distillation changes. PFI-derived models show reductions in cold-start PM for expected average E10 versus E0 pump fuel, due to reduced aromatic content. Relative emissions effects from older technology (PFI) engines do not predict newer engine (GDI) results reliably, but recent GDI data show reduced cold-start PM when ethanol displaces aromatics.  相似文献   

8.
Germany     
ABSTRACT

The 1988 Alternative Motor Fuels Act and the 1990 Clean Air Act Amendments require examination of the potential to favorably influence air quality by changing the composition of motor vehicle fuels. Motor vehicle tailpipe and evaporative emissions were characterized using laboratory simulations of roadway driving conditions and a variety of vehicle-fuel technologies (reformulated gasoline (RFG), methanol (M85), ethanol (E85), and natural gas (CNG)). Speciated organic compound (with Carter MIR ozone potential), CO, and NOx emission rates and fuel economy were characterized. The Carter MIR ozone potential of combined Federal Test Procedure (FTP) tailpipe and evaporative emissions was reduced more than 90% with CNG relative to RFG, M85, and E85 fuels. FTP toxic compound emissions (benzene, formaldehyde, acetalde-hyde, and 1,3-butadiene) were greater with M85 and E85 fuels than with RFG fuel, and less with CNG fuel than RFG fuel. The most abundant toxic compound was benzene with RFG fuel, formaldehyde with M85 fuel, and acetaldehyde with E85 fuel. FTP MPG fuel economies were reduced with M85 and E85 fuels relative to RFG fuel, consistent with their lower BTU/gal. Energy efficiencies (BTU/mi) were improved with all the alternative fuels relative to RFG. Carter MIR ozone potential was generally reduced with the alternative fuels relative to RFG fuel under REP05 (high speeds and acceleration rates) driving conditions (most significantly with CNG). Toxic aldehyde emissions were reduced under REP05 conditions relative to FTP conditions with all the tested fuels, and toxic benzene emissions were elevated under high acceleration conditions.  相似文献   

9.
Mobile sources are among the largest contributors of four hazardous air pollutants--benzene, 1,3-butadiene, acetaldehyde, and formaldehyde--in urban areas. At the same time, federal and state governments are promoting the use of alternative fuel vehicles as a means to curb local air pollution. As yet, the impact of this movement toward alternative fuels with respect to toxic emissions has not been well studied. The purpose of this paper is to compare toxic emissions from vehicles operating on a variety of fuels, including reformulated gasoline (RFG), natural gas, ethanol, methanol, liquid petroleum gas (LPG), and electricity. This study uses a version of Argonne National Laboratory's Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation (GREET) model, appropriately modified to estimate toxic emissions. The GREET model conducts a total fuel-cycle analysis that calculates emissions from both downstream (e.g., operation of the vehicle) and upstream (e.g., fuel production and distribution) stages of the fuel cycle. We find that almost all of the fuels studied reduce 1,3-butadiene emissions compared with conventional gasoline (CG). However, the use of ethanol in E85 (fuel made with 85% ethanol) or RFG leads to increased acetaldehyde emissions, and the use of methanol, ethanol, and compressed natural gas (CNG) may result in increased formaldehyde emissions. When the modeling results for the four air toxics are considered together with their cancer risk factors, all the fuels and vehicle technologies show air toxic emission reduction benefits.  相似文献   

10.
Tailpipe and evaporative emissions from three pre-1985 passenger motor vehicles operating on an oxygenated blend fuel and on a nonoxygenated base fuel were characterized. Emission data were collected for vehicles operating over the Federal Test Procedure at 40,75, and 90°F to simulate ambient driving conditions. The two fuels tested were a commercial summer grade regular gasoline (the nonoxygenated base fuel) and an oxygenated fuel containing 9.5 percent methyl tert-butyl ether (MTBE), more olefins, and fewer aromatics than the base fuel. The emissions measured were total hydrocarbons (THCs), speciated hydrocarbons, speciated aldehydes, carbon monoxide (CO), oxides of nitrogen (NOx), benzene, and 1,3-butadiene.

This study showed no pattern of tailpipe regulated emission reduction when oxygenated fuel was used. Tailpipe emissions from the 1984 Buick Century without a catalyst and the 1977 Mustang with catalyst decreased with the MTBE fuel. However, emissions from the 1984 Buick Century and the 1980 Chevrolet Citation, both fitted with catalysts increased. The vehicles emitted more 1,3- butadiene and, in general, more NOx when operated with the base fuel.

THC, CO, benzene, and 1,3-butadiene emissions from both fuels and all vehicles, in general, decreased with increasing test temperature, whereas NOx emissions, in general, increased with increasing test temperature. Formaldehyde, acetaldehyde, and total aldehydes also showed a decrease in emissions as test temperature increased. More formaldehyde was emitted when the MTBE fuel was used.

Evaporative, diurnal, and hot soak emissions from the base fuel were greater than those from the MTBE fuel. The evaporated emissions from both fuels increased with increasing test temperatures. Diurnal data indicate that canister conditioning (bringing the evaporative charcoal canister to equilibrium) is required before testing.  相似文献   

11.
A compression ignition engine is used for the study of the fuel (one reference and one hydrotreated) and the fuel/air equivalence ratio influence on the exhaust emissions of specific pollutants. Under the experimental conditions used, seven hydrocarbons, nine aldehydes and three organic acids are detected in the exhaust gas. No alcohols are detected under these conditions, indicating that these compounds are emitted only if they (or probably other oxygenated compounds) are introduced in the fuel. Fuel hydrotreatment decreases most of the exhaust pollutants, the four toxics and also the quantity of the ozone that could be formed from the exhaust gas. It also changes the composition of exhaust gas: it increases the proportion of methane, benzene, formaldehyde, acetaldehyde, acroleine, and propionic acid, while it decreases the proportion of all other pollutants detected. Fuel/air equivalence ratio also decreases most of the exhaust emissions, the emission of the total toxics and the quantity of the ozone that could be formed. It also changes the proportion of each pollutant in exhaust gas: the percentages of methane, benzene, acetone and acetic acid increase, while those of the other pollutants detected decrease. The majority of the specific pollutants detected corresponds to organic acids, followed by hydrocarbons and aldehydes.  相似文献   

12.
Abstract

This study examines exhaust emissions from 11 vehicles tested on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline fuels (22 vehicle/ fuel combinations). The paper highlights ozone precursor and toxic emissions. Emission rates from some of the presumably well-maintained, low-mileage test vehicles were higher than expected, but fuel effects were consistent with findings of similar studies. Aggregate toxic and non-methane organic emission rates from the variable/flexible fuel vehicles were higher with alcohol fuels than with reformulated gasoline. Lower specific reactivities for emissions with the alcohol fuels offset this negative trait. Specific reactivities of the organic emissions with the alternative fuels were consistently lower than those with the gasoline blends. Compressed natural gas and liquefied petroleum gas fuels had the lowest values. Although specific reactivities were expected to vary from fuel-to-fuel, they also varied considerably from vehicle-to-vehicle.  相似文献   

13.
Flex fuel vehicles (FFVs) typically operate on gasoline or E85, an 85%/15% volume blend of ethanol and gasoline. Differences in FFV fuel use and tailpipe emission rates are quantified for E85 versus gasoline based on real-world measurements of five FFVs with a portable emissions measurement system (PEMS), supplemented chassis dynamometer data, and estimates from the Motor Vehicle Emission Simulator (MOVES) model. Because of inter-vehicle variability, an individual FFV may have higher nitrogen oxide (NOx) or carbon monoxide (CO) emission rates on E85 versus gasoline, even though average rates are lower. Based on PEMS data, the comparison of tailpipe emission rates for E85 versus gasoline is sensitive to vehicle-specific power (VSP). For example, although CO emission rates are lower for all VSP modes, they are proportionally lowest at higher VSP. Driving cycles with high power demand are more advantageous with respect to CO emissions, but less advantageous for NOx. Chassis dynamometer data are available for 121 FFVs at 50,000 useful life miles. Based on the dynamometer data, the average difference in tailpipe emissions for E85 versus gasoline is ?23% for NOx, ?30% for CO, and no significant difference for hydrocarbons (HC). To account for both the fuel cycle and tailpipe emissions from the vehicle, a life cycle inventory was conducted. Although tailpipe NOx emissions are lower for E85 versus gasoline for FFVs and thus benefit areas where the vehicles operate, the life cycle NOx emissions are higher because the NOx emissions generated during fuel production are higher. The fuel production emissions take place typically in rural areas. Although there are not significant differences in the total HC emissions, there are differences in HC speciation. The net effect of lower tailpipe NOx emissions and differences in HC speciation on ozone formation should be further evaluated.

Implications: Reported comparisons of flex fuel vehicle (FFV) tailpipe emission rates for E85 versus gasoline have been inconsistent. To date, this is the most comprehensive evaluation of available and new data. The large range of inter-vehicle variability illustrates why prior studies based on small sample sizes led to apparently contradictory findings. E85 leads to significant reductions in tailpipe nitrogen oxide (NOx) and carbon monoxide (CO) emission rates compared with gasoline, indicating a potential benefit for ozone air quality management in NOx-limited areas. The comparison of FFV tailpipe emissions between E85 and gasoline is sensitive to power demand and driving cycles.  相似文献   

14.
Chin JY  Batterman SA 《Chemosphere》2012,86(9):951-958
The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and biodiesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (<10% ethanol), E85 (85% ethanol and 15% gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C9 to C16n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor-liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished.  相似文献   

15.
Characterization of emissions from a variable gasoline/methanol fueled car.   总被引:1,自引:0,他引:1  
In response to the occurrence of the increasingly severe ambient ozone exceedances, regional environmental managers are examining the possibility of a cleaner fuel for automobiles. At this time the leading candidate appears to be methanol. In anticipation of a shift to methanol, flexible-fueled automobiles capable of operating on gasoline and/or methanol are being developed. This study examines both the exhaust and evaporative emissions from a prototype General Motors Variable Fuel Corsica. Results are reported for tests conducted at temperatures of 40 degrees, 75 degrees, and 90 degrees F, and for fuels M0 M25, M50, M85, and M100. In addition to regulated emissions and fuel economy, emission rates for methanol, aldehydes, and a large number of hydrocarbon compounds were measured. The data indicate that increasing the fuel's methanol content does not affect the exhaust organic emission rate (calculated in accordance with the regulation) from flexible-fueled cars, but formaldehyde and methanol comprise increasingly greater portions of the organic material while hydrocarbons comprise less. Increasing fuel methanol content has no significant effect on exhaust regulated emission rates (organic material, carbon monoxide, and nitrogen oxides) nor on the composition of total hydrocarbons, except for methane, which increases substantially. The effect of ambient temperature on both exhaust and evaporative emissions is similar to its effect on gasoline cars: organic and carbon monoxide exhaust emissions increase substantially at the lower temperatures, and evaporative emissions increase steadily with increases in temperature.  相似文献   

16.
Speciated hydrocarbon emissions data have been collected for six single-component fuels run in a laboratory pulse flame combustor (PFC). The six fuels include n-heptane, isooctane (2, 2, 4-trimethylpentane), cyclohexane, 1-hexene, toluene, and methyl-t-butyl ether (MTBE: an oxygenated fuel extender). Combustion of non-aromatic fuels in the PFC (at a fuel/air equivalence ratio of Φ = 1.02) produced low levels of unburned fuel and high yields of methane and olefins (> 75 percent combined) irrespective of the molecular structure of the fuel. In contrast, hydrocarbon emissions from toluene combustion in the PFC were comprised predominantly of unburned fuel (72 percent). With the PFC, low levels of 1, 3-butadiene (0.3-1.8 percent) were observed from all the fuels except MTBE, for which no measurable level (<0.2 percent) was detected; low levels of benzene were observed from isooctane, heptane, and 1-hexene, but significant levels (9 percent) from cyclohexane and toluene. No measurable amount of benzene (< 0.2 percent) was observed in the MTBE exhaust.

For isooctane and toluene the speciated hydrocarbon emissions from a spark-ignited (SI) single-cylinder engine were also determined. HC emissions from the SI engine contained the same species as observed from the PFC, although the relative composition was different. For the non-aromatic fuel isooctane, unburned fuel represented a larger fraction (50 percent) of the HC emissions when run in the engine. HC emissions from toluene combustion in the engine were similar to those from the PFC.  相似文献   

17.
Exhaust and evaporative emissions tests were conducted on several methanol- and gasoline-fueled vehicles. Separate samples for chromatographlc analysis of formaldehyde, methanol, and Individual hydrocarbons were collected in each of the three phases of the driving cycle and in each of the two portions of the evaporative emissions test. One vehicle, equipped with an experimental variable-fuel engine, was tested using methanol/gasoline fuel mixtures of 100, 85, 50,15, and 0 percent methanol. Combustion-generated hydrocarbons were lowest using methanol fuel, and increased several-fold as the gasoline fraction was increased. Gasoline components In the exhaust Increased from zero as the gasoline fraction of the fuel was Increased. On the other hand, formaldehyde emissions were several times higher using methanol fuel than they were using gasoline. A dedicated methanol car and the variable-fuel car gave similar emissions patterns when they both were tested using methanol fuel. The organic-carbon composition of the exhaust was 85-90 percent methanol, 5-7 percent formaldehyde, and 3-9 percent hydrocarbons. Several cars that were tested using gasoline emitted similar distributions of hydrocarbons, even through the vehicles represented a broad range of current and developmental engine families and emissions control systems. These vehicles continue the trend of the past twenty years toward less photochemically reactive exhaust, with higher percentages of methane and total alkanes, and correspondingly lower percentages of oleflns and aromatlcs.  相似文献   

18.
This study describes the variations in the chemical composition of the exhaust at various air-fuel ratios when toluene, toluene-n-heptane mixture, and isooctane are used as fuels in a Labeco single cylinder engine. The exhaust products from toluene are divided into three groups: those which decrease as the equivalence ratio is increased: toluene, benzene, methane, and dimethylacetylene; those which increase with increasing equivalence ratio: benzaldehyde, and products which exhibit a maximum at an equivalence ratio of 1, then decrease: acetylene, ethyl acetylene, ethyl benzene, and styrene. Combustion of the mixture of 25 volume percent n-heptane in toluene reveals interesting information, compared to emissions from pure toluene: concentrations of ethyl benzene, styrene, and dimethylacetylene surprisingly are increased by factors of 1.9, 1.9, and 2.1 respectively, probably because reactive radicals derived from heptane interact with toluene to form unsaturated molecules. Ethyl acetylene, benzene, and benzaldehyde remained unchanged but the fractional mole concentration of unreacted toluene decreased. These results show that fuels rich in aromatics may produce less unsaturates than when diluted with aliphatic fuels. For isooctane fuel, methane, and isooctane in the exhaust decrease as the equivalence ratio is increased, while isobutylene, propylene, ethylene, and propadiene concentrations exhibit maxima at an equivalence ratio of 1.  相似文献   

19.
Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min−1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NOx and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.  相似文献   

20.
In response to the occurrence of the increasingly severe ambient ozone exceedances, regional environmental managers are examining the possibility of a cleaner fuel for automobiles. At this time the leading candidate appears to be methanol. In anticipation of a shift to methanol, flexible-fueled automobiles capable of operating on gasoline and/or methanol are being developed. This study examines both the exhaust and evaporative emissions from a prototype General Motors Variable Fuel Corsica. Results are reported for tests conducted at temperatures of 40°, 75°, and 90° F, and for fuels MO M25, M50, M85, and M100. In addition to regulated emissions and fuel economy, emission rates for methanol, aldehydes, and a large number of hydrocarbon compounds were measured. The data indicate that increasing the fuel's methanol content does not affect the exhaust organic emission rate (calculated in accordance with the regulation) from flexible-fueled cars, but formaldehyde and methanol comprise increasingly greater portions of the organic material while hydrocarbons comprise less. Increasing fuel methanol content has no significant effect on exhaust regulated emission rates (organic material, carbon monoxide, and nitrogen oxides) nor on the composition of total hydrocarbons, except for methane, which increases substantially. The effect of ambient temperature on both exhaust and evaporative emissions is similar to its effect on gasoline cars: organic and carbon monoxide exhaust emissions increase substantially at the lower temperatures, and evaporative emissions increase steadily with increases in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号