首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Long-range transport of pollution outflow from Asian mainland has been noticed and expected to play a significant role in Pacific background. Since 1993 the Taiwanese Environmental Protection Administration (TEPA) is conducting ground-based observations of various particulate and gaseous pollutants at 74 monitoring stations in Taiwan. One of these stations, Heng-Chun at the south coast of Taiwan can be considered as a background station with only negligible amounts of local pollution, and another one, Wan-Li at the north coast, predominantly receives air that has not passed over Taiwan, so that background air can be analysed by means of sectorisation. In this work, the sectorised 13-year time series of measurements of CO, SO2, O3, NOx and PM10, from the Wan-Li station are presen and compared to data from the Heng-Chun station and another TEPA background station off the coast of mainland China, Ma-Zu. The CO and O3 measurements are also compared to data from the Yonaguni station, a Pacific island site, part of the Global Atmospheric Watch (GAW) network.The similarity of the sectorised data from the Wan-Li station with the data of the other station indicates that atmospheric measurements from the Wan-Li site can be used to make inferences about trends in western Pacific background air pollution and the effect of long-range transport of pollutants. The measurement time series from 1993 to 2006 do not indicate a significant trend in the monthly mean O3 concentrations in accordance with other research about ozone in tropical latitudes. An increasing trend in CO concentrations of 2.8% per annum is observed between 1999 and 2006 for long-range transport to northern Taiwan, and a doubling of the SO2 and NOx concentrations observed at the Wan-Li and Heng-Chun sites within the period 2001–2006. SO2 concentrations are found to quadruple at Ma-Zu within the same period. The data suggest that pollution from the Asian mainland enhances significantly the background air pollution over the Pacific.  相似文献   

2.
Ozone and related trace gases (CO, NOx, and SO2) were measured from June 1999 to July 2000 at a rural site in the Yangtze Delta of China, a region of intensive anthropogenic activity. Elevated ozone levels were frequently observed during the study period, with the highest frequency in late spring and early summer. Over a 1 yr period, 21 d were found to have ozone concentrations exceeding the new US 8-h 80 ppb health standard. Calculation of the “SUM06” exposure index also shows relatively high (>15 ppm h) values for each season except winter. At these levels ozone may have adverse effects on human health as well as agricultural crops. Analysis of meteorological data shows that the high ozone days were associated with large-scale stagnation, intense solar radiation, and minimum rainfall. Large-scale back trajectories indicate a slow-moving/re-circulating airmass during the episodic days. Examination of chemical data shows that the observed daytime high ozone concentrations were due to downward mixing of ozone-rich air, in situ photochemical formation, and in some cases, advection to the site of aged plumes. The very high CO levels (and high CO to NOx ratios) were found to coincide with many of the ozone episodes, suggesting a contribution from sources of emission involving incomplete combustion. It is suggested that the burning of biomass (e.g., biofeuls and crop residues) may be an important source for the observed high CO and O3 values.  相似文献   

3.
In this work, we determine the major channels through which air pollutants, mainly originating in Northeast Asian mega-cities, flow out into the Northwestern Pacific atmosphere. For this purpose, comprehensive backward/forward trajectory analyses are conducted. Two important channels along which pollutants from the Northeast Asian mega-cities flow out are defined, and are labeled as “DC8 transport path” and “P3B transport path”. We then comprehensively examine the chemico-microphysical transformations of the anthropogenic pollutants from the Northeast Asian mega-cities along the two major transport paths, using a new Lagrangian forward-trajectory photochemical model. In the newly developed model, state-of-the-science parameterizations for considering chemico-microphysical aging processes and atmospheric aerosol processes are incorporated. As air masses travel toward low latitudes through the marine boundary layer (MBL), the temperature increases along the trajectories and large amounts of PAN experience thermal decomposition. By this process, PAN can be an important supplier of NO2 in the remote MBL. The O3 productions in the remote Northwestern Pacific MBL are fueled and maintained by NOx provided from the PAN decomposition. High O3 levels (>50 ppb) are observed within the remote MBL of the Northwestern Pacific Oceans from several TRACE-P DC8 and P3B measurements under the continental outflow situations. Gas-phase SO2 is continuously converted into nss-sulfate via heterogeneous oxidation reaction with H2O2 at a particle pH of 2–5. The Lagrangian-trajectory modeling studies also indicate that in the remote MBL of Northwestern Pacific Ocean under continental outflow situations, conditions are unfavorable for nucleation events, because of the depletion of SO2, the large aerosol surface areas available for H2SO4 sink, and high temperatures.  相似文献   

4.
Bursa is one of the largest cities of Turkey and it hosts 17 organized industrial zones. Parallel to the increase in population, rapidly growing energy consumption, and increased numbers of transport vehicles have impacts on the air quality of the city. In this study, regularly calibrated automatic samplers were employed to get the levels of air pollution in Bursa. The concentrations of CH4 and N-CH4 as well as the major air pollutants including PM10, PM2.5, NO, NO2, NOx, SO2, CO, and O3, were determined for 2016 and 2017 calendar years. Their levels were 1641.62?±?718.25, 33.11?±?5.45, 42.10?±?10.09, 26.41?±?9.01, 19.47?±?16.51, 46.73?±?16.56, 66.23?±?32.265, 7.60?±?3.43, 659.397?±?192.73, and 51.92?±?25.63 µg/m3 for 2016, respectively. Except for O3, seasonal concentrations were higher in winter and autumn for both years. O3, CO, and SO2 had never exceeded the limit values specified in the regulations yet PM10, PM2.5, and NO2 had violated the limits in some days. The ratios of CO/NOx, SO2/NOx, and PM2.5/PM10 were examined to characterize the emission sources. Generally, domestic and industrial emissions were dominated in the fall and winter seasons, yet traffic emissions were effective in spring and summer seasons. As a result of the correlation process between Ox and NOx, it was concluded that the most important source of Ox concentrations in winter was NOx and O3 was in summer.  相似文献   

5.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

6.
Concurrent tropospheric O3 and CO vertical profiles from the Tropospheric Emission Spectrometer (TES) during the MILAGRO/INTEX-B aircraft campaigns over the Mexico City Metropolitan Area (MCMA) and its surrounding regions were used to examine Mexico City pollution outflow on a regional scale. The pollution outflow from the MCMA occurred predominantly at 600–800 hPa as evident in O3, CO, and NOx enhancements in the in situ aircraft observations. TES O3 and CO are sensitive to the MCMA pollution outflow due to their relatively high sensitivities at 600–800 hPa. We examined O3, CO, and their correlation at 600–800 hPa from TES retrievals, aircraft measurements, and GEOS-Chem model results. TES captures much of the spatial and day-to-day variability of O3 seen in the in situ data. TES CO, however, shows much less spatial and day-to-day variability compared with the in situ observations. The ΔO3/ΔCO slope is significantly higher in the TES data (0.43) than the in situ data (0.28) due partly to the lack of variability in TES CO. Extraordinarily high ΔO3/ΔCO slope (0.81) from TES observations at 618 hPa over the Eastern U.S. was previously reported by Zhang et al. [Zhang, L., Jacob, D.J., Bowman, K.W., et al., 2006. Ozone–CO correlations determined by the TES satellite instrument in continental outflow regions. Geophys. Res. Lett. 33, L18804. 10.1029/2006GL026399.]. Thus the application of TES CO–O3 correlation to map continental pollution outflow needs further examination.  相似文献   

7.
Measurements of air pollutants from a background site in central London are analysed. These comprise hourly data for CO, NO, NO2, O3, SO2 and PM10 from 1996 to 2008 and particle number count from 2001 to 2008. The data are analysed in terms of long-term trends, annual, weekly and diurnal cycles, and autocorrelation and cross-correlation functions. CO, NO and NO2 show a typical traffic-associated pattern with two daily peaks and lesser concentrations at the weekend. Particle number count and PM10 show a similar cycle, but with smaller amplitude. Ozone has an annual cycle with a maximum in May, influenced by the spring maximum in background ozone, but the diurnal and weekly cycles are dominated by losses through reaction with nitric oxide. Particle number count shows a minimum corresponding with maximum air temperatures in August, whereas the CO, NO NO2 and SO2 show a minimum in June/July. There is a lower particle count to NOx ratio at the background site compared to a central London kerbside site (Marylebone Road) and a seasonal pattern in particle count to NOx and PM10 ratios consistent with loss of nanoparticles by evaporation during atmospheric transport. Sulphur dioxide peaks in the morning in summer, but at midday in winter consistent with emissions from elevated sources mixing down from aloft as the diurnal mixed layer deepens. Implications for epidemiological studies of air quality and health are discussed. Sulphur dioxide, carbon monoxide, nitric oxide and nitrogen dioxide show clear downward trends over the measurement period, PM10 declines initially before levels stabilised, and ozone concentrations increased.  相似文献   

8.
South Asia, particularly the Indo-Gangetic Plains and foothills of the Himalayas, has been found to be a major source of pollutant gases and particles affecting the regional as well as the global climate. Inventories of greenhouse gases for the South Asian region, particularly the sub-Himalayan region, have been inadequate. Hence, measurements of the gases are important from effective characterization of the gases and their climate effects. The diurnal, seasonal, and annual variation of surface level O3 measured for the first time in northeast India at Dibrugarh (27.4° N, 94.9° E, 111 m amsl), a sub-Himalayan location in the Brahmaputra basin, from November 2009 to May 2013 is presented. The effect of the precursor gases NO x and CO measured simultaneously during January 2012–May 2013 and the prevailing meteorology on the growth and decay of O3 has been studied. The O3 concentration starts to increase gradually after sunrise attaining a peak level around 1500 hours LT and then decreases from evening till sunrise next day. The highest and lowest monthly maximum concentration of O3 is observed in March (42.9?±?10.3 ppb) and July (17.3?±?7.0 ppb), respectively. The peak in O3 concentration is preceded by the peaks in NO x and CO concentrations which maximize during the period November to March with peak values of 25.2?±?21.0 ppb and 1.0?±?0.4 ppm, respectively, in January. Significant nonlinear correlation is observed between O3 and NO, NO2, and CO. National Atmospheric and Oceanic Administration Hybrid Single-Particle Lagrangian Integrated Trajectory back-trajectory and concentration weighted trajectory analysis carried out to delineate the possible airmass trajectory and to identify the potential source region of NO x and O3 concentrations show that in post-monsoon and winter, majority of the trajectories are confined locally while in pre-monsoon and monsoon, these are originated at the Indo-Gangetic plains, Bangladesh, and Bay of Bengal.  相似文献   

9.
This paper uses spectral methods to analyze changes in air quality at a single monitoring site in Delhi since 2000. Power spectral density calculations of daily concentration data for particulate matter (PM10), carbon monoxide (CO), oxides of nitrogen (NOx) and oxides of sulfur (SOx) reveal the presence of trends and periodic oscillations for all the pollutants. Singular Spectrum Analysis (SSA) is used to decompose daily data into statistically significant non-linear trends, seasonal cycles and other oscillations. Periods of sharp reductions were observed for both SOx and CO concentrations in 2001 and 2002, respectively. NOx concentration trends show a sustained rise from 2000 to 2004, followed by small decline thereafter. PM10 concentration trends remain essentially unchanged over the time period. All pollutants also show strong annual and biannual cycles. The observed trends in CO and NOx likely relate changes in Delhi's vehicular traffic emissions. The sharp drop in both the trend and amplitude of the seasonal cycle of CO coincides with the switch to Compressed Natural Gas (CNG) as a fuel for Delhi's public transport fleet. Observed changes in SOx and PM10 concentrations were most likely caused by sources unrelated to vehicular traffic.  相似文献   

10.
ABSTRACT

Generalized additive models were used to analyze the time series of daily hospital admissions for cardiovascular and cerebrovascular diseases over the period of 19871995 in three major metropolitan areas—Cook County, IL; Los Angeles County, CA; and Maricopa County, AZ— in the United States. In Cook and Maricopa Counties, admissions information was only available for the elderly (ages 65 and over), while in Los Angeles County, admissions information was available for all ages. In Cook County, daily monitoring information was available on PM10, CO, SO2, NO2, and O3. In Los Angeles and Maricopa Counties, monitoring information was available daily on the gases, and information on PM10 was available every sixth day. In Los Angeles County, information on PM25 was also available every sixth day. In Cook and Los Angeles Counties, associations were found between each pollutant, with the exception of O3, and admissions for cardiovascular disease, with the gases showing the strongest associations. In two-pollutant models with PM and one of the gases, the effect of the gases remained stable, while the effect of PM became unstable and insignificant. In Maricopa County, the gases, with the exception of O3, were weakly associated with hospital admissions for cardiovascular disease, while PM was not. In two-pollutant models with two of CO, SO2, and NO2, the pattern of results is heterogeneous in the three counties. In all three counties, only weak evidence of any association between air pollution and cere-brovascular admissions was found.  相似文献   

11.
A basin-wide air quality trend analysis for the South Coast Air Basin of California is conducted for hydrocarbons (HC), NOx, O3 and CO using multi-station composite daily maximum-hour average ambient concentrations for the third quarter (July, August and September) from 1968 to 1985. Emissions and air quality trends are compared for the period 1968-1984. Ambient HC and NOX trends are somewhat different from estimated emission trends of HC and NOx, while a definite, downward trend of ambient CO is consistent with vehicular emission control measures. Basin-wide ambient HC, NOx and O3 appear to show downward trends for the period 1970-1985, but because of high fluctuations it is difficult to delineate trends for shorter periods. The meteorology (850 mb temperature)-adjusted O3 shows a more consistent downward trend than does unadjusted O3. Polynomial and multiplicative regression models for basin-wide empirical O3-HC-NOx relationships Indicate that the O3 variation is explained largely by the meteorological variable (850 mb temperature) although model estimations are improved by adding HC and NOx concentration terms.  相似文献   

12.
The emissions of exhaust gases (NO x , SO2, VOCs, and CO2) and particles (e.g., PM) from ships traversing Busan Port in Korea were estimated over three different years (the years 2006, 2008, and 2009). This analysis was performed according to the ship operational modes (“at sea,” “maneuvering,” and “in port”) and ship types based on an activity-based method. The ship emissions for current (base year 2009) and future scenarios (years 2020 and 2050) were also compared. The annual emissions of SO2, VOCs, PM, and CO2 were highest (9.6?×?103, 374, 1.2?×?103, and 5.6?×?105 ton year?1, respectively) in 2008. In contrast, the annual NO x emissions were highest (11.7?×?103 ton year?1) in 2006 due mainly to the high NO x emission factor. The emissions of air pollutants for each ship operational mode differed considerably, with the largest emission observed in “in port” mode. In addition, the largest fraction (approximately 45–67 %) of the emissions of all air pollutants during the study period was emitted from container ships. The future ship emissions of most pollutants (except for SO2 and PM) in 2020 and 2050 are estimated to be 1.4–1.8 and 4.7–6.1 times higher than those in 2009 (base year), respectively.  相似文献   

13.
The Alpine stations Zugspitze, Hohenpeissenberg, Sonnblick, Jungfraujoch and Mt. Krvavec contribute to the Global Atmosphere Watch Programme (GAW) of the World Meteorological Organization (WMO). The aim of GAW is the surveillance of the large-scale chemical composition of the atmosphere. Thus, the detection of air pollutant transport from regional sources is of particular interest. In this paper, the origin of NOx (measured with a photo-converter), CO and O3 at the four Alpine GAW stations is studied by trajectory residence time statistics. Although these methods originated during the early 1980s, no comprehensive study of different atmospheric trace gases measured simultaneously at several background observatories in the Alps was conducted up to present.The main NOx source regions detected by the trajectory statistics are the northwest of Europe and the region covering East Germany, Czech Republic and southeast Poland, whereas the main CO source areas are the central, north eastern and eastern parts of Europe with some gradient from low to high latitudes. Subsiding air masses from west and southwest are relatively poor in NOx and CO.The statistics for ozone show strong seasonal effects. Near ground air masses are poor in ozone in winter but rich in ozone in summer. The main source for high ozone concentration in winter is air masses that subside from higher elevations, often enhanced by foehn effects at Hohenpeissenberg. During summer, the Mediterranean constitutes an important additional source for high ozone concentrations.Especially during winter, large differences between Hohenpeissenberg and the higher elevated stations are found. Hohenpeissenberg is frequently within the inversion, whereas the higher elevated stations are above the inversion.Jungfraujoch is the only station where the statistics detect an influence of air rich in CO and NOx from the Po Basin.  相似文献   

14.
Abstract

Data from the U.S. Environmental Protection Agency Air Quality System, the Southeastern Aerosol Research and Characterization database, and the Assessment of Spatial Aerosol Composition in Atlanta database for 1999 through 2002 have been used to characterize error associated with instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, GA. These data are being used in time series epidemiologic studies in which associations of acute respiratory and cardiovascular health outcomes and daily ambient air pollutant levels are assessed. Modified semivariograms are used to quantify the effects of instrument precision and spatial variability on the assessment of daily metrics of ambient gaseous pollutants (SO2, CO, NOx, and O3) and fine particulate matter ([PM2.5] PM2.5 mass, sulfate, nitrate, ammonium, elemental carbon [EC], and organic carbon [OC]). Variation because of instrument imprecision represented 7–40% of the temporal variation in the daily pollutant measures and was largest for the PM2.5 EC and OC. Spatial variability was greatest for primary pollutants (SO2, CO, NOx, and EC). Population–weighted variation in daily ambient air pollutant levels because of both instrument imprecision and spatial variability ranged from 20% of the temporal variation for O3 to 70% of the temporal variation for SO2 and EC. Wind rose plots, corrected for diurnal and seasonal pattern effects, are used to demonstrate the impacts of local sources on monitoring station data. The results presented are being used to quantify the impacts of instrument precision and spatial variability on the assessment of health effects of ambient air pollution in Atlanta and are relevant to the interpretation of results from time series health studies that use data from fixed monitors.  相似文献   

15.
Knowledge of the distribution and sources of black carbon (BC) is essential to understanding its impact on radiative forcing and the establishment of a control strategy. In this study, we analyze atmospheric BC and its relationships with fine particles (PM2.5) and trace gases (CO, NOy and SO2) measured in the summer of 2005 in two areas frequently influenced by plumes from Beijing and Shanghai, the two largest cities in China. The results revealed different BC source characteristics for the two megacities. The average concentration of BC was 2.37 (±1.79) and 5.47 (±4.00) μg m?3, accounting for 3.1% and 7.8% of the PM2.5 mass, in Beijing and Shanghai, respectively. The good correlation between BC, CO and NOy (R2 = 0.54–0.77) and the poor correlation between BC and SO2 suggest that diesel vehicles and marine vessels are the dominant sources of BC in the two urban areas during summer. The BC/CO mass ratio in the air mass from Shanghai was found to be much higher than that in the air mass from Beijing (0.0101 versus 0.0037 ΔgBC/ΔgCO), which is attributable to a larger contribution from diesel burning (diesel-powered vehicles and marine vessels) in Shanghai. Based on the measured ratios of BC/CO and annual emissions of CO, we estimate that the annual emissions of BC in Beijing and Shanghai are 9.51 Gg and 18.72 Gg, respectively. The improved emission rates of BC will help reduce the uncertainty in the assessment of the impact of megacities on regional climate.  相似文献   

16.
The formation of chemical oxidants, particularly ozone, in Mexico City were studied using a newly developed regional chemical/dynamical model (WRF-Chem). The magnitude and timing of simulated diurnal cycles of ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx), and the maximum and minimum O3 concentrations are generally consistent with surface measurements. Our analysis shows that the strong diurnal cycle in O3 is mainly attributable to photochemical variations, while diurnal cycles of CO and NOx mainly result from variations of emissions and boundary layer height. In a sensitivity study, oxidation reactions of aromatic hydrocarbons (HCs) and alkenes yield highest peak O3 production rates (20 and 18 ppbv h−1, respectively). Alkene oxidations, which are generally faster, dominate in early morning. By late morning, alkene concentrations drop, and oxidations of aromatics dominate, with lesser contributions from alkanes and CO. The sensitivity of O3 concentrations to NOx and HC emissions was assessed. Our results show that daytime O3 production is HC-limited in the Mexico City metropolitan area, so that increases in HC emissions increase O3 chemical production, while increases in NOx emissions decrease O3 concentrations. However, increases in both NOx and HC emissions yield even greater O3 increases than increases in HCs alone. Uncertainties in HC emissions estimates give large uncertainties in calculated daytime O3, while NOx emissions uncertainties are less influential. However, NOx emissions are important in controlling O3 at night.  相似文献   

17.
This study presents surface ozone (O3) and carbon monoxide (CO) measurements conducted at Bhubaneswar from December 2010 to November 2012 and attempts for the very first time a health risk assessment of the atmospheric trace gases. Seasonal variation in average 24 h O3 and CO shows a distinct winter (December to February) maxima of 38.98?±?9.32 and 604.51?±?145.91 ppbv, respectively. O3 and CO characteristics and their distribution were studied in the form of seasonal/diurnal variations, air flow patterns, inversion conditions, and meteorological parameters. The observed winter high is likely due to higher regional emissions, the presence of a shallower boundary layer, and long-range transport of pollutants from the Indo-Gangetic Plain (IGP). Large differences between daytime and nighttime O3 values during winter compared to other seasons suggest that photochemistry is much more active on this site during winter. O3 and CO observations are classified in continental and marine air masses, and continental influence is estimated to increase O3 and CO by up to 20 and 120 ppbv, respectively. Correlation studies between O3 and CO in various seasons indicated the role of CO as one of the O3 precursors. Health risk estimates predict 48 cases of total premature mortality in adults due to ambient tropospheric O3 during the study period. Comparatively low CO concentrations at the site do not lead to any health effects even during winter. This study highlights the possible health risks associated with O3 and CO pollution in Bhubaneswar, but these results are derived from point measurements and should be complemented either with regional scale observations or chemical transport models for use in design of mitigation policies.  相似文献   

18.
Our study was an attempt to conduct a comprehensive and systematical examination of the holiday effect, defined as the difference in air pollutant concentrations between holiday and non-holiday periods. This holiday effect can be applied to other countries with similar national or cultural holidays. Hourly and daily surface measurements of six major air pollutants from thirteen air quality monitoring stations of the Taiwan Environmental Protection Administration during the Chinese New Year (CNY) and non-Chinese New Year (NCNY) periods were used. We documented evidence of a “holiday effect”, where air pollutant concentrations were significantly different between holidays (CNY) and non-holidays (NCNY), in the Taipei metropolitan area over the past thirteen years (1994–2006).The concentrations of NOx, CO, NMHC, SO2 and PM10 were lower in the CNY than in the NCNY period, while the variation in the concentration of O3 was reversed, which was mainly due to the NO titration effect. Similar differences in these six air pollutants between the CNY and NCNY periods were also found in the diurnal cycle and in the interannual variation. For the diurnal cycle, a common traffic-related double-peak variation was observed in the NCNY period, but not in the CNY period. Impacts of dust storms were also observed, especially on SO2 and PM10 in the CNY period. In the 13-year period of 1994–2006, decreasing trends of NOx and CO in the NCNY period implied a possible reduction of local emissions. Increasing trends of SO2 and PM10 in the CNY period, on the other hand, indicated a possible enhancement of long-range transport. These two mechanisms weakened the holiday effect.  相似文献   

19.
Abstract

The objective of this project is to demonstrate how the ambient air measurement record can be used to define the relationship between O3 (as a surrogate for photochemistry) and secondary particulate matter (PM) in urban air. The approach used is to develop a time-series transfer-function model describing the daily PM10 (PM with less than 10 μm aerodynamic diameter) concentration as a function of lagged PM and current and lagged O3, NO or NO2, CO, and SO2. Approximately 3 years of daily average PM10, daily maximum 8-hr average O3 and CO, daily 24-hr average SO2 and NO2, and daily 6:00 a.m.-9:00 a.m. average NO from the Aerometric Information Retrieval System (AIRS) air quality subsystem are used for this analysis. Urban areas modeled are Chicago, IL; Los Angeles, CA; Phoenix, AZ; Philadelphia, PA; Sacramento, CA; and Detroit, MI. Time-series analysis identified significant autocorrelation in the O3, PM10, NO, NO2,CO, and SO2 series. Cross correlations between PM10 (dependent variable) and gaseous pollutants (independent variables) show that all of the gases are significantly correlated with PM10 and that O3 is also significantly correlated lagged up to two previous days. Once a transfer-function model of current PM10 is defined for an urban location, the effect of an O3-control strategy on PM concentrations is estimated by calculating daily PM10 concentrations with reduced O3 concentrations. Forecasted summertime PM10 reductions resulting from a 5 percent decrease in ambient O3 range from 1.2 μg/m3 (3.03%) in Chicago to 3.9 μg/m3 (7.65%) in Phoenix.  相似文献   

20.
Abstract

The ozone (O3) sensitivity to nitrogen oxides (NOx, or nitric oxide [NO] + nitrogen dioxide [NO2]) versus volatile organic compounds (VOCs) in the Mexico City metropolitan area (MCMA) is a current issue of scientific controversy. To shed light on this issue, we compared measurements of the indicator species O3/NOy (where NOy represents the sum of NO + NO2 + nitric acid [HNO3] + peroxyacetyl nitrate [PAN] + others), NOy, and the semiempirically derived O3/NOz surrogate (where NOz surrogate is the derived surrogate NOz, and NOz represents NOx reaction products, or NOy – NOx) with results of numerical predictions reproducing the transition regimes between NOx and VOC sensitivities. Ambient air concentrations of O3, NOx, and NOy were measured from April 14 to 25, 2004 in one downwind receptor site of photo-chemically aged air masses within Mexico City. MCMA-derived transition values for an episode day occurring during the same monitoring period were obtained through a series of photochemical simulations using the Multiscale Climate and Chemistry Model (MCCM). The comparison between the measured indicator species and the simulated spatial distribution of the indicators O3/NOy, O3/NOz surrogate, and NOy in MCMA suggest that O3 in this megacity is likely VOC-sensitive. This is in opposition to past studies that, on the basis of the observed morning VOC/NOx ratios, have concluded that O3 in Mexico City is NOx-sensitive. Simulated MCMA-derived sensitive transition values for O3/NOy, hydrogen peroxide (H2O2)/HNO3, and NOy were found to be in agreement with threshold criteria proposed for other regions in North America and Europe, although the transition crossover for O3/NOz and O3/HNO3 was not consistent with values reported elsewhere. An additional empirical evaluation of weekend/weekday differences in average maximum O3 concentrations and 6:00- to 9:00-a.m. NOx and NO levels registered at the same site in April 2004 indirectly confirmed the above results. A preliminary conclusion is that additional reductions in NOx emissions in MCMA might cause an increase in presently high O3 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号