首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In this paper, an experimental study of the rise and development of a single buoyant plume and a pair of in-line buoyant plumes is presented. The investigations were carried out at small scale in a water filled towing tank using both quantitative flow visualisation and local concentration measurements. The measured plume trajectories for a single plume were compared with the Briggs plume rise equation and predictions from a numerical integral model. Plume trajectories were studied for twin in-line plumes, with particular attention to changes in the plume trajectory, especially any additional rise that resulted from the interaction between the two plumes. Concentration field distributions in cross-sections through both single and interacting twin plumes were obtained from the local concentration measurement system. These showed how the interaction affected the plume structure, notably the double vortex system that occurs in a fully developed plume.  相似文献   

2.
We present a plume rise model which can be applied to situations with arbitrary wind fields and source exit directions and to both dry and wet plumes. The model is an integral model which considers plume properties averaged over the plume cross section. It is validated by means of water tank, wind tunnel, and field experiments (stacks and cooling towers).  相似文献   

3.
Numerical and approximate analytical solutions are compared for turbulent plume rise in a crosswind. The numerical solutions were calculated using the plume rise model of Hoult, Fay and Forney (1969, J. Air Pollut. Control Ass.19, 585–590), over a wide range of pertinent parameters. Some wind shear and elevated inversion effects are included. The numerical solutions are seen to agree with the approximate solutions over a fairly wide range of the parameters. For the conditions considered in the study, wind shear effects are seen to be quite small. A limited study was made of the penetration of elevated inversions by plumes. The results indicate the adequacy of a simple criterion proposed by Briggs (1969, AEC Critical Review Series, USAEC Division of Technical Information extension, Oak Ridge, Tennesse).  相似文献   

4.
In this work an experimental study of mixing of two identical plumes, carried out in a turbulent neutral boundary layer generated in a wind tunnel, is presented. Measurements have been performed with fast flame ionisation detectors (FFIDs) and a two-component Laser-Doppler Anemometer system. Results allow the study of both the average and the fluctuating concentration field, including the turbulent vertical and longitudinal mass fluxes, in single plumes and during the interaction of two identical plumes. This information gives insight into the details of the mixing phase of the two plumes. Results of trajectories and additional rise (due to plume interactions) have been compared with previous measurements carried out in laminar cross-flows, showing similar behaviour. Concentration distributions in plume cross-sections in turbulent cross-flows differ from those measured in laminar cross-flows. Average vertical and longitudinal velocity measurements into the plume core show the strength of the shielding effect of the upwind plume and some details of interaction between the counter-rotating vortex pairs (CVPs). For large values of the alignment angle φ, between the line joining the stacks and the cross-flow, an average negative vertical velocity is measured in the middle of the plume even if its centre of mass is rising. This downward velocity is induced by the slow interaction of the CVPs and generates a vertical stretching of the plume and negative rise enhancement. Vertical turbulent fluxes change sign on the plume centreline and are of opposite sign with respect to the longitudinal turbulent fluxes. Results indicate a good linearity between vertical turbulent fluxes and concentration gradients, with different proportionality for the top and bottom parts of the plume (especially in the near field) indicating that dispersion could be described by a gradient-transfer model.  相似文献   

5.
One of the key elements in estimating the environmental effects associated with the deposition of airborne chemicals and, in particular, salt particles from cooling towers is the drift rate. Eight different experimental methods are currently employed to determine the drift rate from cooling towers. The difficulties associated with the various techniques vary from case to case, but they are mainly associated with collecting a representative sample, maintaining undisturbed air flow, determining the collection efficiency of the various sampling techniques and analyzing the samples for particle size.

Several approaches have been taken to predict the deposition of salt water drift droplets on ground surfaces. Some use a simple analogy with the deposition of industrial dust, others use a combination of plume rise theories in conjunction with the Gaussian diffusion model to predict the air concentration of water droplets from which the ground deposition is then calculated. Other methods calculate the trajectories of the drift droplets accounting for their evaporation or employ diffusion type equations. Estimates derived from the various models used to predict drift deposition appear to vary by a factor of ±10 from each other.

In contrast to the fast development in drift loss measurements, very few attempts have been made to measure actual drift deposition from fresh and salt water cooling towers and to compare experimental results with numerical models.

This paper presents a discussion on the state-of-the-art of measuring and computing drift losses. In particular, drift rate values, droplet size distribution and some typical measured and calculated ground deposition values are discussed.  相似文献   

6.
When multiple stacks are grouped or ganged together at a site, the effluent plumes are often observed to merge downwind, forming a single buoyant plume whose rate of rise is enhanced relative to the rise of the plumes individually. The magnitude of this rise enhancement depends on many factors, and the few available models for rise enhancement do not always agree with one another. In the present study the rise behaviour of pairs of merging, buoyant plumes was studied by physical modelling in a water flume at 1:500 scale. The experiments were conducted at several stack separation distances and various exit velocity ratios for stack pairs aligned with, or perpendicular to, the ambient flow. Limited experiments were also done with the stacks aligned at other angles to the flow. The stack releases were made buoyant by heating the source water, and the resulting plumes were measured with an array of sensitive temperature probes. From these measurements it was possible to determine the plume structure and rise rates. For small stack separations when the stacks are aligned with the ambient flow, the experimental results show that the enhanced rise is close to, and sometimes above, the maximum theoretical rise enhancement factor of 21/3. For the perpendicular orientation there is little or no rise enhancement. The rise enhancement for other stack orientations is somewhere between these two extremes. A plausible physical explanation for the observed behaviour is given, based on initial momentum shielding and line vortex dynamics in the merging plumes.  相似文献   

7.
8.
The purpose of this study was to evaluate the performance of current regulatory algorithms for predicting plume rise for refinerytype sources (short stacks and a wide range of source conditions) and the performance of new or alternate algorithms which may provide better estimates. To meet the objectives, five plume rise algorithms were statistically evaluated against ten field and laboratory plume rise data bases. Two forms of the Briggs plume rise equations were tested because they are almost exclusively used in current EPA regulatory models. Two modified Briggs equations were tested to assess how simple modifications can Improve the accuracy of the estimates. The fifth algorithm was a numerical solution to the basic equations for conservation of mass, momentum, and energy often referred to as an Integral plume rise algorithm. This algorithm was selected because It handles the wide range of source and atmospheric boundary-layer conditions that affect trajectories of plumes from refinery stacks.

Ten independent plume rise data bases were assembled that covered a wide range of source and meteorological conditions. From the data bases, a total of 107 different data sets were obtained and each data set included plume rise observations versus downwind distance for one source and meteorological condition. Each model was run for each data set and the root-mean-square and mean error between model and observation was computed for use in statistically evaluating model performance.

The statistical evaluation of the algorithms showed that the rms error (considering all data bases) for the Integral plume rise algorithm was approximately 30 percent less than the errors for all other algorithms tested. This difference was significant at the 95 percent confidence level. The results suggest that improved plume rise estimates in regulatory models applied to refineries and other appropriate sources could be achieved to reduce costs and improve ambient air quality estimates through the use of an integral plume rise algorithm.  相似文献   

9.
This wind-tunnel study has been conducted as part of a collaborative effort to investigate the effect of large surface roughness on the entrainment of air from a neutrally stable simulated atmospheric boundary layer into a continuous dense-gas plume. The present study examined the entrainment rates of dense-gas plumes as they were transported over two surfaces with similar geometry but significantly different roughness lengths (factor of 6). Extensive measurements of the flow and plume structures over a wide range of source Richardson numbers (Ri*) are reported. Carbon dioxide was released from a two-dimensional source in order to obtain a plume with virtually constant Ri*. Over the small roughness, the plume depths were generally large compared with the element heights, whereas over the large roughness, plume depths were comparable with the element heights. Retardation of mean velocities in the lower levels of the dense plumes (with compensating increases in the upper levels) was observed, as well as strong suppression of turbulence over quite large fractions of the boundary-layer depth. These effects increased as Ri* increased. Propagation of dense gas was observed upstream of the source due to gravity spreading. The flow within the plumes was observed to become laminar at the larger Ri*. The primary measurements comprised longitudinal surface concentration profiles. Where the plumes were fully turbulent, the plots of inverse concentration versus downwind distance formed reasonably straight lines. The sought-after entrainment velocities are proportional to the slopes of these lines and were found to diminish quite rapidly with Ri*. More in-depth analyses and intercomparisons with the results of the other laboratories are contained in a companion paper in this same volume (Briggs et al., 2001, Atmospheric Environment 35, 2265–2284).  相似文献   

10.
A reactive plume model that treats secondary aerosol formation is used to investigate the major physical and chemical processes that affect the rate of sulfate and nitrate aerosol formation in power plant plumes. The reactive plume model is evaluated with experimental data collected in three power plant plumes, and model performance is shown to be quite satisfactory. One of these case studies is used to perform singleparameter and multi-parameter analyses of the sensitivity of sulfate and nitrate aerosol concentrations to various meteorological, air quality and chemical kinetic parameters. The results suggest that sulfate aerosol concentrations are most sensitive to relative humidity and temperature at high relative humidity, whereas nitrate aerosol concentrations are most sensitive to temperature, particularly at low relative humidity. The importance of the NOx/reactive hydrocarbon chemistry to sulfate and nitrate aerosol formation is examined.  相似文献   

11.
Data from 137 sets of plume observations, comprising nearly 1 500 data points, are correlated with two simple formulae. These formulae, one for the buoyancy-dominated rise region and the other for the stratification-dominated levelled-off region of a plume, represent an approximate form of the entrainment theory of Hoult, et al. (1968)1 for the case of uniform atmospheric stratification and zero wind shear. The observations, which are those of the Tennessee Valley Authority and of Bringfelt (1968),6 were made of plumes whose source strengths ranged from 0.4 to 111 Mw and which were emitted from stacks of heights between 21 and 183 m. The two formulae are found to correlate the data equally well over all values of the stack exit and meteorological parameters, provided only that the bulk mean velocity of the stack gases exceeds the mean wind speed by at least 20%. The ratio of observed to calculated plume rise is found to be distributed log normally about the mean value.

The median rise at large distances downstream was found to differ insignificantly from that given by the effective stack height formula recommended recently11 for large buoyant plumes. Based upon the correlation, two formulae are recommended for computing median plume rise at all distances downstream of the stack. The formulae include an estimate of the expected uncertainty in the predicted rise.  相似文献   

12.
German power plants are required to meet new emission standards which limit the maximum sulfur dioxide (SOs) concentration in flue gas discharges to 400 mg m−3. To achieve this level of reduction in SO2 concentration, wet scrubbing is necessary for large plants using lignite or hard coal.Wet scrubbing results in a significant reduction in the flue gas temperature leading to low effective stack heights. Instead of using stack gas reheating to achieve the plume rise necessary to satisfy local environmental standards, it was proposed to discharge the scrubbed flue gas from the existing natural-draft cooling towers (NDCT). This method should be effective in reducing local ground-level concentrations since NDCT-plumes are typically very buoyant (densimetric Froude number below 1 ) and normally reach considerable heights of rise. Only under strong wind conditions does the situation reverse itself. For such strong winds, the NDCT-plume is subject to tower and building downwash with the possibility of unacceptably high ground-level concentrations.For a 2700 MWe lignite-fired power plant near Cologne, a wind tunnel study was carried out to investigate the effects of tower and building downwash effects on the ground-level concentrations of SO2 produced by discharging the scrubbed flue gas from the natural-draft cooling towers. Also, a comparison was made between the ground-level concentrations produced by the cooling tower discharge method and those produced by a traditional stack. It was found that for low and intermediate wind speeds, the groundlevel concentrations are lower for the case of the cooling tower discharge. Only for strong winds, which occur only very rarely at most German sites, did the conventional stack discharge appear to be superior.  相似文献   

13.
Transport and dispersion of pollutants in the lower atmosphere are predicted by using both a Lagrangian particle model (LPM) and an adaptive puff model (APM2) coupled to the same mesoscale meteorological prediction model PMETEO. LPM and APM2 apply the same numerical solutions for plume rise; but, for advection and plume growth, LPM uses a stochastic surrogate to the pollutant conservation equation, and APM2 applies interpolated winds and standard deviations from the meteorological model, using a step-wise Gaussian approach. The results of both models in forecasting the SO2 ground level concentration (glc) around the 1400 MWe coal-fired As Pontes Power Plant are compared under unstable conditions. In addition, meteorological and SO2 glc numerical results are compared to field measurements provided by 17 fully automated SO2 glc remote stations, nine meteorological towers and one Remtech PA-3 SODAR, from a meteorological and air quality monitoring network located 30 km around the power plant.  相似文献   

14.
Following the release of radionuclides from the Chernobyl power plant accident, a long-range transport and deposition model is used to describe the plume dispersion over Europe. The aim of this study is the validation of a fast Lagrangjan model and a better understanding of the relative impact of some mechanisms, such as the initial plume rise. Comparisons between results and 137Cs measurement activity are discussed according to spatial and temporal variations. It is shown that many measurements can be explained only if the initial plume rise taken at 925, 850 and 700mb is considered.  相似文献   

15.
A theory for the rise of a plume in a horizontal wind is proposed in which it is assumed that, for some distance downwind of a high stack, the effects of atmospheric turbulence may be ignored in comparison with the effects of turbulence generated by the plume. The theory, an extension of the local similarity ideas used by Morton, Taylor, and Turner,1 has two empirical parameters which measure the rate that surrounding fluid is entrained into the plume. Laboratory measurements of buoyant plume motion in laminar unstratified cross flow are used to estimate the empirical parameters. Using this determination of the parameters in the theory, the trajectories of atmospheric plumes may be predicted. To make such a prediction, the observed wind velocity and temperature as functions of altitude, and flow conditions at the stack orifice, are used in numerically integrating the equations. The resulting trajectories are compared with photographs, made by Leavitt, et al.,2 of TVA, of plumes from 500 to 600 ft high stacks. Within 10 stack heights downwind of the stack, the root mean square discrepancy between the observed height of the trajectory above ground level and the theoretical value is 14%, which is about the uncertainty in the observed height. The maximum plume rise within the field of observation is within 15% of that predicted by the present theory.  相似文献   

16.
This paper describes an investigation into the behaviour of smoke plumes from pool fires, and the subsequent generation of empirical models to predict plume rise and dispersion from such a combustion source. Synchronous video records of plumes were taken from a series of small-scale (0.06–0.25m2) outdoor methanol/toluene pool fire experiments, and used to produce sets of images from which plume dimensions could be derived. Three models were used as a basis for the multiple regression analysis of the data set, in order to produce new equations for improved prediction. Actual plume observations from a large (20.7 m×14.2 m) aviation fuel pool fire were also used to test the predictions. The two theoretically based models were found to give a better representation of plume rise and dispersion than the empirical model based on measurements of small-scale fires. It is concluded that theoretical models tested on small-scale fires (heat output ≈70 kW) can be used to predict plume behaviour from much larger combustion sources (heat output ≈70 MW) under near neutral atmospheric conditions.  相似文献   

17.
Background, aim, and scope  The fraction of ambient PM10 that is due to the formation of secondary inorganic particulate sulfate and nitrate from the emissions of two large, brown-coal-fired power stations in Saxony (East Germany) is examined. The power stations are equipped with natural-draft cooling towers. The flue gases are directly piped into the cooling towers, thereby receiving an additionally intensified uplift. The exhausted gas-steam mixture contains the gases CO, CO2, NO, NO2, and SO2, the directly emitted primary particles, and additionally, an excess of ‘free’ sulfate ions in water solution, which, after the desulfurization steps, remain non-neutralized by cations. The precursor gases NO2 and SO2 are capable of forming nitric and sulfuric acid by several pathways. The acids can be neutralized by ammonia and generate secondary particulate matter by heterogeneous condensation on preexisting particles. Materials and methods  The simulations are performed by a nested and multi-scale application of the online-coupled model system LM-MUSCAT. The Local Model (LM; recently renamed as COSMO) of the German Weather Service performs the meteorological processes, while the Multi-scale Atmospheric Transport Model (MUSCAT) includes the transport, the gas phase chemistry, as well as the aerosol chemistry (thermodynamic ammonium–sulfate–nitrate–water system). The highest horizontal resolution in the inner region of Saxony is 0.7 km. One summer and one winter episode, each realizing 5 weeks of the year 2002, are simulated twice, with the cooling tower emissions switched on and off, respectively. This procedure serves to identify the direct and indirect influences of the single plumes on the formation and distribution of the secondary inorganic aerosols. Results and conclusions  Surface traces of the individual tower plumes can be located and distinguished, especially in the well-mixed boundary layer in daytime. At night, the plumes are decoupled from the surface. In no case does the resulting contribution of the cooling tower emissions to PM10 significantly exceed 15 μgm−3 at the surface. These extreme values are obtained in narrow plumes on intensive summer conditions, whereas different situations with lower turbulence (night, winter) remain below this value. About 90% of the PM10 concentrations in the plumes are secondarily formed sulfate, mainly ammonium sulfate, and about 10% originate from the primarily emitted particles. Under the assumptions made, ammonium nitrate plays a rather marginal role. Recommendations and perspectives  The analyzed results depend on the specific emission data of power plants with flue gas emissions piped through the cooling towers. The emitted fraction of ‘free’ sulfate ions remaining in excess after the desulfurization steps plays an important role at the formation of secondary aerosols and therefore has to be measured carefully.  相似文献   

18.
Correct prediction of the initial rise of a plume due to momentum and buoyancy effects is an important factor in dispersion modelling. A new plume rise scheme, based upon conservation equations of mass, momentum and heat, for the Lagrangian model, NAME, is described. The conservation equations are consistent with the well-known analytical plume rise formulae for both momentum- and buoyancy-dominated plumes. The performance of the new scheme is assessed against data from the Kincaid field experiment. Results show that the new scheme adds value to the model and significantly outperforms the previous plume rise scheme. Using data from assessments of atmospheric dispersion models using the Kincaid data set, it is shown that NAME is comparable to other models over short ranges.  相似文献   

19.
Measurements of natural draft cooling tower plume behavior, as well as meteorological variables, were obtained from aircraft flights near major power plants of the American Electric Power System. Persistence of the visible plume to great distances depends essentially on ambient humidity. Atmospheric stability at plume elevation was also important. Cooling tower-induced fog at ground-level was never observed in any of the tests, and aerodynamic downwash of the visible plume was absent also. The cooling towers did cause modification of natural clouds and they occasionally shadowed some local areas from the sun. Merging of the stack and cooling tower plumes was a common occurrence.  相似文献   

20.
The 1981 VISTTA field study characterized the composition and appearance of particle-rich plumes from three different sources. This paper compares the VISTTA observations with the predictions of two plume visibility models. Observations and predictions are analyzed from the perspective of exact solutions to the equations of radiative transfer for a somewhat idealized atmosphere. These solutions, which explicity relate plume/sky contrast to the composition of plume and background and the geometry of sun, plume and observer, are shown to be consistent with the VISTA observations. The simplified relationships are used as the basis for budgeting radiative transfer by the plume and background, and for analyses of the sensitivity of plume appearance to individual variables.The optics predictions of the two models are less accurate for plumes dominated by particle scattering than they are for plumes dominated by NO2 absorption. Inaccurate prediction of plume particle size distributions can be identified as an important source of error. Inaccurate prediction of background sky radiance is suspected as another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号