首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miettinen J  Liew SC 《Ambio》2010,39(5-6):394-401
Peatlands cover around 13 Mha in Sumatra and Kalimantan, Indonesia. Human activities have rapidly increased in the peatland ecosystems during the last two decades, invariably degrading them and making them vulnerable to fires. This causes high carbon emissions that contribute to global climate change. For this article, we used 94 high resolution (10-20 m) satellite images to map the status of peatland degradation and development in Sumatra and Kalimantan using visual image interpretation. The results reveal that less than 4% of the peatland areas remain covered by pristine peatswamp forests (PSFs), while 37% are covered by PSFs with varying degree of degradation. Furthermore, over 20% is considered to be unmanaged degraded landscape, occupied by ferns, shrubs and secondary growth. This alarming extent of degradation makes peatlands vulnerable to accelerated peat decomposition and catastrophic fire episodes that will have global consequences. With on-going degradation and development the existence of the entire tropical peatland ecosystem in this region is in great danger.  相似文献   

2.
The haze episodes that occurred in Malaysia in September-October 1991, August-October 1994 and September-October 1997 have been attributed to suspended smoke particulate matter from biomass burning in southern Sumatra and Kalimantan, Indonesia. In the present study, polar organic compounds in aerosol particulate matter from Malaysia are converted to their trimethylsilyl derivatives and analyzed by gas chromatography-mass spectrometry in order to better assess the contribution of the biomass burning component during the haze episodes. On the basis of this analysis, levoglucosan was found to be the most abundant organic compound detected in almost all samples. The monosaccharides, alpha- and beta-mannose, the lignin breakdown products, vanillic and syringic acids and the minor steroids, cholesterol and beta-sitosterol were also present in some samples. The presence of the tracers from smoke overwhelmed the typical signatures of emissions from traffic and other anthropogenic activities in the urban areas.  相似文献   

3.
The large-scale air pollution episode due to the out-of-control biomass burning for agricultural purposes in Indonesia started in June 1997, has become a severe environmental problem for itself and the neighboring countries. The fire lasted for almost five months. Its impact on the health and ecology in the affected areas is expected to be substantial, costly and possibly long lasting. Air pollution Index as high as 839 has been reported in Malaysia. API is calculated based on the five pollutants: NO2, SO2, O3, CO, and respirable suspended particulates (PM10). It ranges in value from 0 to 500. An index above 101 is considered to be unhealthy and a value over 201 is very unhealthy (Abidin and Shin, 1996).The solvent-extractable organic compounds from four total suspended particulate (TSP) high-volume samples collected in Kuala Lumpur, Malaysia (Stations Pudu and SIRIM) were subjected to characterization – the abundance was determined and biomarkers were identified. Two of the samples were from early September when the fire was less intense, while the other two were from late September when Kuala Lumpur experienced very heavy smoke coverage which could be easily observed from NOAA/AVHRR satellite images. The samples contained mainly aliphatic hydrocarbons such as n-alkanes and triterpanes, alkanoic acids, alkanols, and polycyclic aromatic hydrocarbons. The difference between the early and late September samples was very significant. The total yield increased from 0.6 to 24.3 μg m-3 at Pudu and 1.9 to 20.1 μg m-3 at SIRIM, with increases in concentration in every class. The higher input of vascular plant wax components in the late September samples, when the fire was more intense, was characterized by the distribution patterns of the homologous series n-alkanes, n-alkanoic acids, and n-alkanols, e.g., lower U : R, higher >C22/<C20 for n-alkanoic acids, higher >C20/<C20 for n-alkanols, a shift in Cmax from C16 to C26 for n-alkanoic acids and C18 to C28 for n-alkanols, and the presence of abundant moretane (17β(H), 21α(H)-hopanes). The biomarkers dehydroabietic acid and retene were not found in the samples suggesting there is a difference in the long-distance transport samples of an Asian forest fire and the controlled experiments reported in the literature. Similar to the biomass burning in Amazonia (Abas et al., 1995), the present study also showed an absence of conifer tracers in the smoke aerosols indicating tropical wood sources. Abundant friedelin, a specific biomarker for smoke from oak wood fires (Standley and Simoneit, 1990), was present in the late September samples when the fire was more intense. The results were compared to literature values from an earlier study of the haze episode on 29 September 1991 in Kuala Lumpur, Malaysia (Abas and Simoneit, 1996).  相似文献   

4.
The elemental composition of individual aerosol particles of 0.15–3 μm radius, collected over Kalimantan during the 1997 Indonesian forest fire event, was analyzed using a transmission electron microscope equipped with an energy-dispersive X-ray analyzer (EDX). Although 60–90% of the particles collected at altitudes of 1–5 km contained K, they exhibited high weight ratios of S/K with median values of 9–18 independent of particle size. These were much larger than those (median values of 2–4) obtained from the forest fires in northern Australia. The high weight ratios over Kalimantan are considered to be due to the heterogeneous growth of particles through the oxidation of SO2. In addition to SO2 from the combustion of forest biomass, SO2 originating from the combustion of peat below the ground is believed to have been important in producing the high S/K ratios.  相似文献   

5.
An inventory of air pollutants emitted from forest and agricultural fires in Northeastern Mexico for the period of January to August of 2000 is presented. The emissions estimates were calculated using an emissions factor methodology. The inventory accounts for the emission of carbon monoxide (CO), methane, nonmethane hydrocarbons, ammonia, nitrogen oxides, and particulate matter (PM). Particulate matter emissions include estimates for fine PM and coarse PM. A total of 2479 wildfires were identified in the domain for the period of interest, which represented approximately 810,000 acres burned and 621,130 short tons emitted (81% being CO). The main source of information used to locate and estimate the extent of the fires came from satellite imagery. A geographic information system was used to determine the type of vegetation burned by each fire. More than 54% of the total area burned during the period of study was land on the State of Tamaulipas. However, >58% of the estimated emissions came from the State of Coahuila. This was because of the mix of vegetation types burned in each state. With respect to the temporal distribution, 76.9% of the fires occurred during the months of April and May consuming almost 78% of the total area burned during the period of study. Analysis of wind forward trajectories of air masses passing through the burned areas and 850-mb wind reanalyses indicate possible transboundary transport of the emissions from Mexico to the United States during the occurrence of the major wildfires identified.  相似文献   

6.
Prediction of ambient carbon monoxide (CO) due to haze in the presence of transportation sources at a busy expressway site in Singapore was made using street Canyon and Gaussian line source modules of a regional-scale Indic Airviro dispersion model for the haze episodes that occurred in the years 1994 and 1997. The fleet average emission factors for each vehicle category were estimated from US EPA MOBILE 5 A guidelines as a function of speed, vehicle deterioration rates and model years. One hour CO concentrations during the non-haze period for the year 1995 were first simulated and compared with measured readings to test the accuracy of the proposed approach. The calibrated model was then used to compute hourly CO values for the 1994 and 1997 haze episodes. The difference between the modeled CO values with and without haze provided CO contribution due to haze. An analysis of CO values estimated through modeling with experimental measurements made during haze periods confirmed this unique approach to establish concentration of CO due to haze in the presence of transportation sources.  相似文献   

7.
Abstract

An inventory of air pollutants emitted from forest and agricultural fires in Northeastern Mexico for the period of January to August of 2000 is presented. The emissions estimates were calculated using an emissions factor methodology. The inventory accounts for the emission of carbon monoxide (CO), methane, nonmethane hydrocarbons, ammonia, nitrogen oxides, and particulate matter (PM). Particulate matter emissions include estimates for fine PM and coarse PM. A total of 2479 wildfires were identified in the domain for the period of interest, which represented ~810,000 acres burned and 621,130 short tons emitted (81% being CO). The main source of information used to locate and estimate the extent of the fires came from satellite imagery. A geographic information system was used to determine the type of vegetation burned by each fire. More than 54% of the total area burned during the period of study was land on the State of Tamaulipas. However, >58% of the estimated emissions came from the State of Coahuila. This was because of the mix of vegetation types burned in each state. With respect to the temporal distribution, 76.9% of the fires occurred during the months of April and May consuming almost 78% of the total area burned during the period of study. Analysis of wind forward trajectories of air masses passing through the burned areas and 850-mb wind reanalyses indicate possible transboundary transport of the emissions from Mexico to the United States during the occurrence of the major wildfires identified.  相似文献   

8.
Research is continuing towards the possible detection of air pollution by remote sensing techniques, and satellite imagery has been examined to find evidence of cross-Atlantic transport of air pollution. Pollution masses from industrial areas are often carried out over the Atlantic Ocean by tropospheric winds. However, the pollution mass is generally steered by convergent flows and fronts of extra-tropical cyclones, and wet deposition and scavenging of air pollutants within clouds occur primarily over the cold ocean, especially during the occlusion stage of a cyclone. As a result, the oceanic area from Cape Hatteras to 1500 km ENE of Newfoundland (the SW sector of the Icelandic low area) is often a ‘dumping ground’ (sink region) for air pollution from N America.However, a dust cloud generated by a volcanic eruption and a smoke plume from large-forest fires in western N America have been observed near the W coast of Europe. Saharan dust carried to N America by trade winds have been identified on satellite imagery. The massive smoke generation by large forest fires in Siberia is also identified in the present study. The results of research on forest fire smoke are currently being used by scientists studying the atmospheric effects of a large-scale nuclear war. It is suggested that the area between the S of Japan and the SW section of the Aleutian low is another principal sink of air pollutants and dust originating from NE Asia.  相似文献   

9.
In Canada about 1.3 million hectares (M ha) of forests are destroyed by wildfires each year, and about 63 % of all these fires are man-caused. During the 1980 and 1981 fire seasons, however, about 10 M ha were damaged; estimated annual emissions from forest fires were ~ 224 million tonnes (M t) of CO2; and over 22 M t of CO, total suspended particulates (TSP), hydrocarbons (HC), nitrogen oxides (NOx), etc.One of the major problems resulting from these forest fires was the severe reduction of visibility over large areas. Daily values of TSP recorded at Fort McMurray, Alberta were in the range of 163–257 μg m−3, while TSP observed at Edmonton, about 850km downstream from large fires, were in the range of 134–220 μg m−3. Nevertheless, surface ozone (O3) and total O3 in vertical air columns had evidently decreased in the area affected by smoke plumes. It is plausible that the O3 depletion might have occurred in the lower troposphere from the overwhelming existence of forest fire smoke in the region.  相似文献   

10.
A study was carried out to determine the chemical composition of bulk precipitation, throughfall and stemflow in an urban forest in Kuala Lumpur, Malaysia. The mean weekly rainfall recorded during the period of study was 63.2 mm. Throughfall, stemflow and canopy interception of incident precipitation were 77.1%, 1.2% and 21.7% respectively. Bulk precipitation, througfall and stemflow were acidic, the pH recorded being 4.37, 4.71 and 4.15 respectively. In all cases the dominant ions were NO3, SO4, Cl, NH4, K, Ca and Na. Of the ions studied Ca, K, Cl, SO4, Mg and Mn showed net increases in passing through the forest canopy, while NH4, Na, NO3, Zn, H and Fe showed net retention. This study shows that the urban environment of Kuala Lumpur contributes considerable amounts of materials to the atmosphere, as reflected by the high ionic contents in bulk precipitation, throughfall and stemflow.  相似文献   

11.
The recently completed Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study focused on particulate sulfate source attribution for a 4-month period from July through October 1999. A companion paper in this issue by Schichtel et al. describes the methods evaluation and results reconciliation of the BRAVO Study sulfate attribution approaches. This paper summarizes the BRAVO Study extinction budget assessment and interprets the attribution results in the context of annual and multiyear causes of haze by drawing on long-term aerosol monitoring data and regional transport climatology, as well as results from other investigations. Particulate sulfates, organic carbon, and coarse mass are responsible for most of the haze at Big Bend National Park, whereas fine particles composed of light-absorbing carbon, fine soils, and nitrates are relatively minor contributors. Spring and late summer through fall are the two periods of high-haze levels at Big Bend. Particulate sulfate and carbonaceous compounds contribute in a similar magnitude to the spring haze period, whereas sulfates are the primary cause of haze during the late summer and fall period. Atmospheric transport patterns to Big Bend vary throughout the year, resulting in a seasonal cycle of different upwind source regions contributing to its haze levels. Important sources and source regions for haze at Big Bend include biomass smoke from Mexico and Central America in the spring and African dust during the summer. Sources of sulfur dioxide (SO2) emissions in Mexico, Texas, and in the Eastern United States all contribute to Big Bend haze in varying amounts over different times of the year, with a higher contribution from Mexican sources in the spring and early summer, and a higher contribution from U.S. sources during late summer and fall. Some multiple-day haze episodes result from the influence of several source regions, whereas others are primarily because of emissions from a single source region.  相似文献   

12.
The 2003 active fire observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), on board NASA's Terra and Aqua satellites, were analyzed to assess burning activity in the cropland areas of the Mississippi River Valley region. Agricultural burning was found to be an important contributor to fire activity in this region, accounting for approximately one-third of all burning. Agricultural fire activity showed two seasonal peaks: the first, smaller peak, occurring in June during the spring harvesting of wheat; and the second, bigger peak, in October during the fall harvesting of rice and soy. The seasonal signal in agricultural burning was predominantly evident in the early afternoon MODIS Aqua fire detections. A strong diurnal agricultural fire signal was prevalent during the fall harvesting months, as suggested by the substantially higher number (approximately 3.5 times) of fires detected by MODIS Aqua in the early afternoon, compared with those detected by MODIS Terra in the morning. No diurnal variations in agricultural fire activity were apparent during the springtime wheat-harvesting season. The seasonal and diurnal patterns in agricultural fire activity detected by MODIS are supported by known crop management practices in this region. MODIS data provide an important means to characterize and monitor agricultural fire dynamics and management practices.  相似文献   

13.
In the last few decades, fire and smoke-haze occurrence increased in Indonesia by intentionally set land clearing fires and higher fire susceptibility of disturbed forests. Particularly, during El Niño years with prolonged droughts in Indonesia, land clearing fires become uncontrolled wildfires and produce large amounts of gaseous and particulate emissions. This paper investigates the influence of smoke-haze aerosols from such fires on clouds and precipitation over Indonesia during the El Niño event 1997/1998 by numerical modelling. Warm precipitation formation in both layered and convective clouds is calculated dependent on the atmospheric aerosol concentration. In the smoke-haze affected regions of Indonesia, aerosol–cloud interactions induce events with both precipitation suppression and increase compared to a reference simulation without aerosol–cloud interactions. The effect of precipitation suppression is found to dominate with about 2/3 of all precipitation modification events pointing to a prolongation of smoke-haze episodes. The corresponding convective cloud top height of shallow clouds is increased whereas distinct lower deep convective cloud top heights are found. The remaining about 1/3 events are characterised by increased precipitation and cloud liquid water content, accompanied by lower convective cloud top heights of shallow clouds and higher deep convective clouds.  相似文献   

14.
Chau KW  Jiang YW 《Chemosphere》2003,52(9):1615-1621
The rapid economic development in The Pearl River delta region (PRDR) has exerted serious potential pollution threats to areas in the vicinity, which have complicated the task of environmental protection in Hong Kong and Macau. In this paper, a three-dimensional numerical pollutant transport model coupled with a synchronised numerical hydrodynamic model, is developed and employed to simulate the unsteady transport of a representative water quality variable chemical oxygen demand in The Pearl River Estuary. It is demonstrated that there exists a transboundary pollutant transport action between Guangdong Province and Hong Kong for the pollutants in the wastewater discharged from PRDR.  相似文献   

15.
This study integrated estimated oxidation ratio of sulfur (SOR) and oxidation ratio of nitrogen (NOR) with source-receptor modeling results to identify the effects of terrain and monsoons on ambient aerosols in an urban area (north basin) and a rural area (south basin) of the Taichung Basin. The estimated results indicate that the conversion of sulfur mainly occurs in fine particles (PM2.5), whereas the conversion of nitrogen occurs in approximately equal quantities of PM2.5 and coarse particles (PM2.510). The results show a direct relationship for PM2.5 between the modeling results with SOR and NOR. The high PM2.5 SOR, NOR, and secondary aerosol values all occurred in the upwind area during both monsoons; this shows that the photochemical reaction and the terrain effect on the pollutant transmission were significant in the basin. Additionally, the urban heat island effect on the urban area and the valley effect on the rural area were significant. The results show that secondary aerosol in PM2.5–10 contributed approximately 10 % during both monsoons, and the difference in the contribution from secondary aerosol between both areas was small. Vehicle exhaust emissions and wind-borne dust were two crucial PM2.5–10 contributors during both monsoons; their average contributions in both areas were higher than 34 and 32 %, respectively.  相似文献   

16.
There is a long history of fire management in African savannas, but knowledge of historical and current use of fire is scarce in savanna-woodland biomes. This study explores past and present fire management practices and perceptions of the Khwe (former hunter-gatherers) and Mbukushu (agropastoralists) communities as well as government and non-government stakeholders in Bwabwata National Park in north-east Namibia. Semi-structured interviews and focus groups were used in combination with satellite data (from 2000 to 2015), to investigate historical and current fire management dynamics. Results show that political dynamics in the region disrupted traditional fire practices, specifically a policy of fire suppression was initiated by colonial governments in 1888 and maintained during independence until 2005. Both the Khwe and Mbukushu communities use early season (i.e. between April and July) fires for diverse interrelated historical and current livelihood activities, and park management for managing late season fires. The Mbukushu community also use late season burns to prepare land for crops. In this study, we use a pyrogeographic framework to understand the human dimension of fires. This study reveals how today’s fire management practices and policies, specifically the resurgence of early season burning are entrenched in the past. Understanding and acknowledging the social and cultural dynamics of fire, alongside participatory stakeholder engagement is critical for managing fires in the future.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01351-7) contains supplementary material, which is available to authorized users.  相似文献   

17.
Outdoor fires, such as wildfires and prescribed burns, can emit substantial amounts of particulate matter and other pollutants into the atmosphere. In Texas, an inventory of forest, grassland and agricultural burning activities revealed that fires consumed vegetation on 1.6 and 1.7 million acres of land, in 1996 and 1997, respectively. Emissions from the fires were estimated based on survey and field data on acres burned and land cover and literature data on fuel consumption and emission factors. Fire data were allocated spatially by county and temporally by month. While fire events can cause high transient air pollutant concentrations, for most criteria pollutants, the fire emissions were a relatively small fraction of the annual emission inventory for the State. For fine particulate matter, however, the annual emission estimates were 40,000 tons/yr, which is likely to represent a significant fraction of the State's emission inventory, especially in the counties where the emissions are concentrated.  相似文献   

18.
We investigated the effects of transboundary pollution between Ontario and New York using both observations and modeling results. Analysis of the spatial scales associated with ozone pollution revealed the regional and international character of this pollutant. A back-trajectory-clustering methodology was used to evaluate the potential for transboundary pollution trading and to identify potential pollution source regions for two sites: CN tower in Toronto and the World Trade Center in New York City. Transboundary pollution transport was evident at both locations. The major pollution source areas for the period examined were the Ohio River Valley and Midwest. Finally, we examined the transboundary impact of emission reductions through photochemical models. We found that emissions from both New York and Ontario were transported across the border and that reductions in predicted O3 levels can be substantial when emissions on both sides of the border are reduced.  相似文献   

19.
Abstract

Data obtained from 24 of the 31 sites of the Pacific Northwest Regional Visibility Experiment Using Natural Tracers (PREVENT) study were analyzed by the Receptor Model Applied to Patterns in Space (RMAPS) multivariate receptor model. Four spatial patterns were found and interpreted as showing the effect of the coal-fired power plant in Centralia, WA; transport from the northwest; the Se-attle-Tacoma urban area; and transport from the southeast. In Mt. Rainier National Park, up to one-third of the sulfate can be attributed to the Centralia power plant. In the North Cascades National Park, 65-82% of the sulfur is accounted for by transport from Canada. The model was applied separately to sites in the northern and southern sections of the study area. The southern sites were affected only by the Centralia, urban, and southeast transport sources; the northern sites were affected only by the northwest transport, urban, and southeast transport sources. This gave two independent estimates of the normalized source contributions of the urban and southeast transport factors, which had a correlation coefficient of more than 0.90.  相似文献   

20.
Emissions from an automobile fire   总被引:1,自引:0,他引:1  
The emissions from automobile fires have been investigated. The main gas phase components were analysed in small-scale tests with representative material from an automobile. A more detailed investigation of full-scale simulated automobile fires was also conducted, including the characterisation of gas phase components, particulates and run-off water from extinguishing activities. Three separate full scale fire tests have been characterised: a fire ignited and developed in the engine compartment; a fire ignited inside the coupé, that was extinguished in the early stages; and a similar fire ignited inside the coupé that was allowed to spread until the entire vehicle was involved in the fire. The quantitative analysis of the smoke gases from the full-scale fires showed that emissions with a potentially negative impact on the environment, or chronic toxic effect on humans, were produced in significant quantities. These emissions included HCl, SO2, VOCs (e.g. benzene), PAHs, and PCDDs/PCDFs. Analysis of run-off water indicated that it was severely contaminated, containing elevated levels of both organic compounds and metals. Comparison with data from other vehicle fires found in the literature shows that contamination by lead, copper, zinc, and antimony appears to be significant in water run-off from these types of fires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号