首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During a measurement period from June till November 2004, ammonia fluxes above non-fertilized managed grassland in The Netherlands were measured with a Gradient Ammonia—High Accuracy—Monitor (GRAHAM). Compared with earlier ammonia measurement systems, the GRAHAM has higher accuracy and a quality control system.Flux measurements are presented for two different periods, i.e. a warm, dry summer period (from 18 July till 15 August) and a wet, cool autumn period (23 September till 23 October). From these measurements canopy compensation points were derived. The canopy compensation point is defined as the effective surface concentration of ammonia. In the summer period (negative) deposition fluxes are observed in the evening, night and early morning due to leaf surface wetness, while in the afternoon emission fluxes are observed due to high canopy compensation points. The mean NH3-flux in this period was 4 ng m−2 s−1, which corresponds to a net emission of 0.10 kg N ha−1 over the 28 day sampling period. The NH3-flux in the autumn period mainly shows (negative) deposition fluxes due to small canopy compensation points caused by low temperatures and a generally wet surface. The mean NH3-flux in this period is −24 ng m−2 s−1, which corresponds to a net deposition of 0.65 kg N ha−1 over the 31 day sampling period.Frequency distributions of the NH3-concentration and flux show that despite higher average ambient NH3-concentrations (13.3 μg m−3 in the summer period vs. 6.4 μg m−3 in the autumn period) there are more emission events in the summer period than in the autumn period (about 50% of the time in summer vs. 20% in autumn). This is caused by the high canopy compensation points in summer due to high temperatures and a dry surface. In autumn, deposition dominates due to a generally wet surface that induces low canopy compensation points.For our non-fertilized agricultural grassland site, the derived canopy compensation points (at temperatures between 7 and 29 °C) varied from 0.5 to 29.7 μg m−3 and were on an average 7.0 μg m−3, which is quite high for non-fertilized conditions and probably caused by high nitrogen inputs in the past or high dry deposition amounts from local sources. The average value for the ratio between NH4+ and H+ concentration in the canopy, Γc, that was derived from our data was 2200.  相似文献   

2.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

3.
PM2.5 aerosols were collected in Nanjing, a typical mega-city in China, during summer and winter 2004 and were characterized for aromatic and cyclic compounds using a GC/MS technique to understand the air pollution problem. They include polycyclic aromatic hydrocarbons (PAHs), hopanes, phthalates and hydroxy-PAHs (OH-PAHs). PAHs, hopanes and OH-PAHs presented higher concentrations in winter (26–178, 3.0–18, and 0.013–0.421 ng m−3, respectively) than in summer (12–96, 1.6–11, and 0.029–0.171 ng m−3, respectively) due to an enhanced coal burning for house heating and atmospheric inversion layers developed in the cold season. In contrast, phthalates are more abundant in summer (109–368 ng m−3, average 230 ng m−3) than in winter (33–390 ng m−3, average 170 ng m−3) due to an enhanced evaporation from plastics during the hot season and the subsequent deposition on the pre-existing particles. Generally, all the identified compounds showed higher concentrations in nighttime than in daytime due to inversion layers and increased emissions from heavy-duty trucks at night. PAHs, hopanes and phthalates in Nanjing aerosols are 5–100 times more abundant than those in Los Angeles, USA, indicating a serious air pollution problem in the city. Concentrations of OH-PAHs are 1–3 orders of magnitude less than their parent PAHs and comparable to those reported from other international cities. Source identification using diagnostic ratios of the organic tracers suggests that PAHs in Nanjing urban area are mainly derived from coal burning, whereas hopanes are more attributable to traffic emissions.  相似文献   

4.
To investigate the characteristics of mercury exchange between soil and air in the heavily air-polluted area, total gaseous mercury (TGM) concentration in air and Hg exchange flux were measured in Wanshan Hg mining area (WMMA) in November, 2002 and July–August, 2004. The results showed that the average TGM concentrations in the ambient air (17.8–1101.8 ng m−3), average Hg emission flux (162–27827 ng m−2 h−1) and average Hg dry deposition flux (0–9434 ng m−2 h−1) in WMMA were 1–4 orders of magnitude higher than those in the background area. It is said that mercury-enriched soil is a significant Hg source of the atmosphere in WMMA. It was also found that widely distributed roasted cinnabar banks are net Hg sources of the atmosphere in WMMA. Relationships between mercury exchange flux and environmental parameters were investigated. The results indicated that the rate of mercury emission from soil could be accelerated by high total soil mercury concentration and solar irradiation. Whereas, highly elevated TGM concentrations in the ambient air can restrain Hg emission from soil and even lead to strongly atmospheric Hg deposition to soil surface. A great amount of gaseous mercury in the heavily polluted atmosphere may cycle between soil and air quickly and locally. Vegetation can inhibit mercury emission from soil and are important sinks of atmospheric mercury in heavily air-polluted area.  相似文献   

5.
Dry deposition modelling typically assumes that canopy resistance (Rc) is independent of ammonia (NH3) concentration. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to a moorland composed of a mixture of Calluna vulgaris (L.) Hull, Eriophorum vaginatum L. and Sphagnum spp. Ammonia was applied at a wide range of concentrations (1–100 μg m−3). The physical and environmental properties and the testing of the chamber are described, as well as results for the moorland vegetation using the ‘canopy resistance’ and ‘canopy compensation point’ interpretations of the data.Results for moorland plant species demonstrate that NH3 concentration directly affects the rate of NH3 deposition to the vegetation canopy, with Rc and cuticular resistance (Rw) increasing with increasing NH3 concentrations. Differences in Rc were found between night and day: during the night Rc increases from 17 s m−1 at 10 μg m−3 to 95 s m−1 at 80 μg m−3, whereas during the day Rc increases from 17 s m−1 at 10 μg m−3 to 48 s m−1 at 80 μg m−3. The lower resistance during the day is caused by the stomata being open and available as a deposition route to the plant. Rw increased with increasing NH3 concentrations and was not significantly different between day and night (at 80 μg m−3 NH3 day Rw=88 s m−1 and night Rw=95 s m−1). The results demonstrate that assessments using fixed Rc will over-estimate NH3 deposition at high concentrations (over ∼15 μg m−3).  相似文献   

6.
Static chamber method was adopted to measure the surface exchanges of NO and NO2 between three kinds of agricultural lands and the atmosphere during spring–summer period in the Yangtze Delta, China. The average NO fluxes were 20.9, 27.4 and 21.4 ng N m−2 s−1, respectively, for cabbage (CA, cultivation of celery occurred along with cabbage), potato (PO) and soybean (SY) fields. The average NO2 fluxes were −1.12, 0.93 and −0.68 ng N m−2 s−1, respectively, for the cabbage, potato and soybean fields. Apparently, negative linear correlation was found between the NO2 fluxes from the CK plot (tilled conventionally but did not cultivate any seeds) and its ambient concentrations, and the compensation point was calculated to be 0.92 ppbv. The total NO emission from the vegetable lands and SY land in this region during spring–summer period was roughly estimated to be 15.9 Gg N, which accounted for about 11.2% of the estimated value of total NO emissions in the July of 1999 from Chinese agricultural fields.  相似文献   

7.
Mercury (Hg) emissions from gasoline, diesel, and liquefied petroleum gas (LPG) vehicles were measured and speciated (particulate, oxidized, and elemental mercury). First, three different fuel types were analyzed for their original Hg contents; 571.1±4.5 ng L−1 for gasoline, 185.7±2.6 ng L−1 for diesel, and 1230.3±23.5 ng L−1 for LPG. All three vehicles were then tested at idling and driving modes. Hg in the exhaust gas was mostly in elemental form (Hg0), and no detectable levels of particulate (Hgp) or oxidized (Hg2+) mercury were measured. At idling modes, Hg concentrations in the exhaust gas of gasoline, diesel, and LPG vehicles were 1.5–9.1, 1.6–3.5, and 10.2–18.6 ng m−3, respectively. At driving modes, Hg concentrations were 3.8–16.8 ng m−3 (gasoline), 2.8–8.5 ng m−3 (diesel), and 20.0–26.9 ng m−3 (LPG). For all three vehicles, Hg concentrations at driving modes were higher than at idling modes. Furthermore, Hg emissions from LPG vehicle was highest of all three vehicle types tested, both at idling and driving modes, as expected from the fact that it had the highest original fuel Hg content.  相似文献   

8.
A water surface sampler (WSS) was employed in combination with greased knife-edge surface deposition plates (KSSs) to measure the vapor phase deposition rates of PCBs to the sampler at an urban site, Chicago, IL. This sampler employed a water circulation system that continuously removed deposited PCBs. Total (gas+particle) and particulate PCB fluxes were collected with the WSS and KSSs, respectively. Gas phase PCB fluxes were then calculated by subtracting the KSS fluxes (particulate) from the WSS fluxes (gas+particle). The calculated gas phase PCB fluxes averaged 830±910 ng m−2d−1. This flux value is, in general, higher than the fluxes determined using simultaneously measured air–water concentrations in natural waters and is in the absorption direction. This difference is primarily because the PCBs were continuously removed from the WSS water keeping the water PCB concentration near zero.Concurrently, ambient air samples were collected using a modified high volume air sampler. The gas phase PCB concentrations ranged between 1.10 and 4.46 ng m−3 (average±SD, 2.29±1.28 ng m−3). The gas phase fluxes were divided by the simultaneously measured gas phase ambient concentrations to determine the overall gas phase mass transfer coefficients (MTCs) for PCBs. The average gas phase overall MTCs (Kg) for each homolog group ranged between 0.22 and 1.32 cm s−1 (0.54±0.47 cm s−1). The average MTC was in good agreement with those determined using similar techniques.  相似文献   

9.
Concentrations of different species of mercury in arctic air and precipitation have been measured at Ny-Ålesund (Svalbard) and Pallas (Finland) during 1996–1997. Typical concentrations for vapour phase mercury measured at the two stations were in the range of 0.7–2 ng m−3 whereas particulate mercury concentrations were below 5 pg m−3. Total mercury in precipitation was in the range 3–30 ng l−1. In order to evaluate the transport and deposition of mercury to the arctic from European anthropogenic sources, the Eulerian transport model HMET has been modified and extended to also include mercury species. A scheme for chemical conversion of elemental mercury to other species of mercury and deposition characteristics of different mercury species have been included in the model. European emission inventories for three different forms of Hg (Hg0, HgCl2 and Hgp) have been implemented in the numerical grid system for the HMET model.  相似文献   

10.
We present measurements of ammonia (NH3) over a deciduous forest in southern Indiana collected during four field campaigns; two in the spring during the transition to leaf-out and two during the winter. Above canopy NH3 concentrations measured continuously using two Wet Effluent Diffusion Denuders indicate mean concentrations of 0.6–1.2 μg m−3 during the spring and 0.3 μg m−3 during the winter. Measurements suggest that on average the forest act as a sink of NH3, with a representative daily deposition flux of 1.8 mg-NH3 m−2 during the spring. However, on some days during the spring inverted concentration gradients of NH3 were observed resulting in an apparent upward flux of nearly 0.2 mg-NH3 m−2 h−1. Analyses suggest that this apparent emission flux may be due to canopy emission but evaporation of ammonium nitrate particles may also be partly responsible for the observed inverted concentration gradients.  相似文献   

11.
Fine particle (PM2.5) samples were collected, using a charcoal diffusion denuder, in two urban areas of Chile, Santiago and Temuco, during the winter and spring season of 1998. Molecular markers of the organic aerosol were determined using GC/MS. Diagnostic ratios and molecular tracers were used to investigate the origin of carbonaceous aerosols. As main sources, road and non-road engine emissions in Santiago, and wood burning in Temuco were identified. Cluster analysis was used to compare the chemical characteristics of carbonaceous aerosols between the two urban environments. Distinct differences between Santiago and Temuco samples were observed. High concentrations of isoprenoid (30–69 ng m−3) and unresolved complex mixture (UCM) of hydrocarbons (839–1369 ng m−3) were found in Santiago. High concentrations of polynuclear aromatic hydrocarbons (751±304 ng m−3) and their oxygenated derivatives (4±2 ng m−3), and of n-alk-1-enes (16±13 ng m−3) were observed in Temuco.  相似文献   

12.
Currently, in operational modelling of NH3 deposition a fixed value of canopy resistance (Rc) is generally applied, irrespective of the plant species and NH3 concentration. This study determined the effect of NH3 concentration on deposition processes to individual moorland species. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to Deschampsia cespitosa (L.) Beauv., Calluna vulgaris (L.) Hull, Eriophorum vaginatum L., Cladonia spp., Sphagnum spp., and Pleurozium schreberi (Brid.) Mitt. Measurements were conducted across a wide range of NH3 concentrations (1–140 μg m−3).NH3 concentration directly affects the deposition processes to the vegetation canopy, with Rc, and cuticular resistance (Rw) increasing with increasing NH3 concentration, for all the species and vegetation communities tested. For example, the Rc for C. vulgaris increased from 14 s m−1 at 2 μg m−3 to 112 s m−1 at 80 μg m−3. Diurnal variations in NH3 uptake were observed for higher plants, due to stomatal uptake; however, no diurnal variations were shown for non-stomatal plants. Rc for C. vulgaris at 80 μg m−3 was 66 and 112 s m−1 during day and night, respectively. Differences were found in NH3 deposition between plant species and vegetation communities: Sphagnum had the lowest Rc (3 s m−1 at 2 μg m−3 to 23 at 80 μg m−3), and D. cespitosa had the highest nighttime value (18 s m−1 at 2 μg m−3 to 197 s m−1 at 80 μg m−3).  相似文献   

13.
《Chemosphere》2007,66(11):2477-2484
Atmospheric Hg transfer to the forest soil through litterfall was investigated in a primary rainforest at Ilha Grande (Southeast Brazil) from January to December 1997. Litter mass deposition reached 10.0 t ha−1 y−1, with leaves composing 50–84% of the total litter mass. Concentrations of Hg in the total fallen litter varied from 20 to 244 ng g−1, with higher concentrations during the dry season, between June and August (225 ± 17 ng g−1), and lower concentrations during the rainy season (99 ± 54 ng g−1). This seasonal variability was reflected in the Hg flux through litterfall, which corresponded to a Hg input to the forest floor of 122 μg m−2 y−1, with average Hg deposition of 16.5 ± 1.5 μg m−2 month−1 during and just after the dry season (June–September) and 7.0 ± 3.6 μg m−2 month−1 in the rest of the year. The variability in meteorological conditions (determining atmospheric Hg availability to foliar scavenging) may explain the pulsed pattern of Hg deposition, since litterfall temporal variability was generally unrelated with such deposition, except by a peak in litterfall production in September. Comparisons with regional data on Hg atmospheric deposition show that litterfall promotes Hg deposition at Ilha Grande two to three orders of magnitude higher than open rainfall deposition in non-industrialized areas and approximately two times higher than open rainfall deposition in industrialized areas in Rio de Janeiro State. The observed input suggests that atmospheric Hg transfer through litterfall may explain a larger fraction of the total Hg input to forest soils in Southeast Brazil than those recorded at higher latitudes.  相似文献   

14.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were measured in bulk deposition at three Danish rural forest sites with a mutual maximum distance of 450 km. At one of the forest sites concentrations in the ambient atmosphere were sampled from a 12 m high tower. Sampling was carried out within a period of 3 years with sampling intervals of 1–2 months. Mean bulk deposition fluxes were 1 ng m−2 yr−1 I-TEQ and deviated less than 30% between the sites. Yearly average PCDD/F concentrations in the atmosphere were 24 fg m−3 I-TEQ with maximum values in the winter period. During winter months atmospheric concentrations of PCDD/F and oxidized sulphur compounds showed a positive correlation, furthermore seasonal bulk deposition showed correlation between PCDD/F and sulphate.  相似文献   

15.
The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L’Alcora, and Borriana) and during the Guy Fawkes celebrations in London. Specific high-profile official firework events during Las Fallas included the afternoon Mascletà and the nightly aerial displays (especially in the climactic final 2 days of the fiesta) and were accompanied by pollution spikes in suspended particles, NO, SO2, and the creation and dispersal of an aerosol cloud enriched in a range of metallic elements. Notable metal aerosol concentration increases recorded during Las Fallas were potassium (from 500 to 5900 ng m−3), aluminium (as Al2O3 from around 600 to 2200 ng m−3), titanium (from 200 to 700 ng m−3), magnesium (from 100 to 500 ng m−3), lead (from 17 to 379 ng m−3), barium (from 39 to 322 ng m−3), strontium (from 3 to 112 ng m−3), copper (from 12 to 71 ng m−3), and antimony (from 1 to 52 ng m−3). Firework-contaminated aerosols of similarly metalliferous composition were also identified at the other monitoring sites, although different sites show variations attributable to other sources such as bonfires and local industry. Unusual levels of the trace elements Ba, Sr and (to a lesser extent) Cu, always in proportions with Ba dominant, along with strongly enhanced K, Pb, and Sb, are identified as being particularly characteristic of firework aerosols. Although firework-related recreational pollution episodes are transient in nature, they are highly concentrated, contribute significantly to total annual metal emissions, and are on average fine enough to be easily inhaled and a health risk to susceptible individuals.  相似文献   

16.
Ammonia-nitrogen flux (NH3-N=(14/17)NH3) was determined from six anaerobic swine waste storage and treatment lagoons (primary, secondary, and tertiary) using the dynamic chamber system. Measurements occurred during the fall of 1998 through the early spring of 1999, and each lagoon was examined for approximately one week. Analysis of flux variation was made with respect to lagoon surface water temperature (∼15 cm below the surface), lagoon water pH, total aqueous phase NHx(=NH3+NH4+) concentration, and total Kjeldahl nitrogen (TKN). Average lagoon temperatures (across all six lagoons) ranged from approximately 10.3 to 23.3°C. The pH ranged in value from 6.8 to 8.1. Aqueous NHx concentration ranged from 37 to 909 mg N l−1, and TKN varied from 87 to 950 mg N l−1. Fluxes were the largest at the primary lagoon in Kenansville, NC (March 1999) with an average value of 120.3 μg N m−2 min−1, and smallest at the tertiary lagoon in Rocky Mount, NC (November 1998) at 40.7 μg N m−2 min−1. Emission rates were found to be correlated with both surface lagoon water temperature and aqueous NHx concentration. The NH3-N flux may be modeled as ln(NH3-N flux)=1.0788+0.0406TL+0.0015([NHx]) (R2=0.74), where NH3-N flux is the ammonia flux from the lagoon surface in μg N m−2 min−1, TL is the lagoon surface water temperature in °C, and [NHx] is the total ammonia-nitrogen concentration in mg N l−1.  相似文献   

17.
Trace elements and metals in the ultrafine (<0.18 μm) and accumulation (0.18–2.5 μm) particulate matter (PM) modes were measured during the winter season, next to a busy Southern California freeway with significant (∼20%) diesel traffic. Both ambient and concentrated size-segregated impactor samples were taken in order to collect enough mass for chemical analysis. Data at this location were compared to a site located 1 mile downwind of the freeway, which was reflective of urban background. The most abundant trace elements in the accumulation mode detected by inductively coupled plasma mass spectroscopy (ICPMS) were S (138 ng m−3), Na (129 ng m−3), and Fe (89 ng m−3) while S (35 ng m−3) and Fe (35 ng m−3) were the most abundant in the ultrafine mode. The concentrations of several trace elements, including Mg, Al, and Zn, and in particular Ca, Cu, and Pb, did not uniformly increase with size within fine PM, an indication that various roadway sources exist for these elements. Calculation of crustal enrichment factors for the two sites indicates that the freeway traffic contributed to enriched levels of ultrafine Cu, Ba, P and Fe and possibly Ca. The results of this study show that trace elements constitute a small fraction of PM mass in the nanoparticle size range, but these can and should be characterized due to their likely importance to human health.  相似文献   

18.
The Florida Everglades Dry-Deposition Study (FEDDS) was designed to test the viability of using new and existing measurement techniques in the estimation of the dry-depositional loading of speciated mercury (elemental gaseous, reactive gaseous and particulate) to a mixed sawgrass (Cladium jamaicense) and cattail (Typha domingensis) stand within the Florida Everglades. Measurement intensives were performed during 24 February–04 March 1999 and 05–21 June 2000, which corresponded to the climatological dry and wet seasons in South Florida, respectively. During these intensives, direct measurements of mercury dry-deposition were made using a newly developed surrogate water surface technique. These direct measurements were compared with modeled estimates of mercury dry-deposition to the site that were obtained through the use of an inferential or “bigleaf” model that was modified for use with speciated mercury. On-site measurements of ambient speciated mercury concentrations and numerous micrometeorological variables were used as input to the model.The average mercury dry-deposition measured during the 1999 FEDDS measurement intensive was 13.3±4.0 ng m−2 day−1, while the modeled deposition for this period was 3.4±2.3 ng m−2 day−1. The average mercury dry-deposition measured during the 2000 FEDDS measurement intensive was lower, 5.9±2.8 ng m−2 day−1, while the average modeled deposition for this period was 1.8±0.6 ng m−2 day−1. A least-squares linear regression suggests that the model was able to explain 74% and 73% of the variability in the datasets for the 1999 and 2000 FEDDS intensives, respectively. While reported reductions in total mercury emissions across South Florida between study periods could explain the reductions in both the measured and predicted mercury dry-deposition estimates, the increased presence of cumulus convection during the summer-intensive could have also resulted in a removal of reactive and particulate mercury species within the atmosphere of South Florida.  相似文献   

19.
We reconstructed the historical trends in atmospheric deposition of nitrogen to Cape Cod, Massachusetts, from 1910 to 1995 by compiling data from literature sources, and adjusting the data for geographical and methodological differences. The reconstructed data suggest that NO3-N wet deposition to this region increased from a low of 0.9 kg N ha−1 yr−1 in 1925 to a high of approximately 4 kg N ha−1 yr−1 around 1980. The trend in NO3-N deposition has remained since the early 1980s at around 3.6 kg N ha−1 yr−1. In contrast, NH4-N wet deposition decreased from more than 4 kg N ha−1 yr−1 in the mid 1920s to about 1.5 kg N ha−1 yr−1 from the late-1940s until today. Emissions of NOx-N in the Cape Cod airshed increased at a rate of 2.1 kg N ha−1 per decade since 1910, a rate that is an order of magnitude higher than NO3-N deposition. Estimates of NH3 emissions to the northeast United States and Canada have decreased slightly throughout the century, but the decrease in reconstructed N-NH4+ deposition rates does not parallel emissions estimates. The trend in reconstructed total nitrogen deposition suggests an overall increase through the century at a rate of 0.26 kg N ha−1 per decade. This overall increase in deposition may expose coastal forests to rates of nitrogen addition that, if exceeded, could induce nitrogen saturation and increase nitrogen loads to adjoining estuaries.  相似文献   

20.
Five weeks of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle bound mercury (Hgp) concentrations as well as fluxes of GEM were measured at Maryhill, Ontario, Canada above a biosolids amended field. The study occurred during the autumn of 2004 (October–November) to capture the effects of cool weather conditions on the behaviour of mercury in the atmosphere. The initial concentration of total mercury (Hg) in the amended soil was relatively low (0.4 μg g−1±10%).A micrometeorological approach was used to infer the flux of GEM using a continuous two-level sampling system with inlets at 0.40 and 1.25 m above the soil surface to measure the GEM concentration gradient. The required turbulent transfer coefficients were derived from meteorological parameters measured on site. The average GEM flux over the study was 0.1±0.2 ng m−2 h−1(±one standard deviation). The highest averaged hourly GEM fluxes occurred when the averaged net radiation was highest, although the slight diurnal patterns observed were not statistically significant for the complete flux data series. GEM emission fluxes responded to various local events including the passage of a cold front when the flux increased to 2 ng m−2 h−1 and during a biosolids application event at an adjacent field when depositional fluxes peaked at −3 ng m−2 h−1. Three substantial rain events during the study kept the surface soil moisture near field capacity and only slightly increased the GEM flux. Average concentrations of RGM (2.3±3.0 pg m−3), Hgp (3.0±6.2 pg m−3) and GEM (1.8±0.2 ng m−3) remained relatively constant throughout the study except when specific local events resulted in elevated concentrations. The application of biosolids to an adjacent field produced large increases in Hgp (25.8 pg m−3) and RGM (21.7 pg m−3) concentrations only when the wind aligned to impact the experimental equipment. Harvest events (corn) in adjacent fields also corresponded to higher concentrations of GEM and Hgp but with no elevated peaks in RGM concentrations. Diurnal patterns were not statistically significant for RGM and Hgp at Maryhill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号