首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abundance of fecal caliform bacteria is a weak index of the presence of human pathogens in wastewater entering coastal waters. In spite of this, use of fecal caliform indices for management purposes is widespread. To gain insight into interpretation of fecal coliform data, we evaluated size of stocks of fecal coliforms in water, sediments, and sea wrack, in Buttermilk Bay, a coastal embayment in Massachusetts. Sediments contained most of the fecal coliforms. Fecal coliforms in sediments were as much as one order of magnitude more abundant than in the water column or in sea wrack. The fecal coliforms in sediments of Buttermilk Bay were so abundant that resuspension of fecal coliforms from just the top 2 cm of muddy sediments could add sufficient cells to the water column to have the whole bay exceed the federal limit of fecal coliforms for shellfishing. The major sources of fecal coliforms to the bay were water-fowls, surface runoff, groundwater, and streams. Waterfowl were the largest source of fecal coliforms during cold months; surface runoff, streams, and groundwater were most important during warm months. Redirection of surface runoff pipes is unlikely to be a very successful management action since contributions via this source are insufficient to account for the measured increases in concentrations of fecal coliforms in water. Removal of waterfowl is also unlikely to be useful, since fecal coliform concentrations leading to closures of shellfish beds and swimming areas are most frequent during warm months when waterfowl are rarest. Rates of loss of fecal caliform cells from the water column by death and tidal exchange were high. Mortality of cells was about an order of magnitude larger than losses by tidal exchange. The amounts of fecal coliforms brought into the bay by waterfowl, surface runoff, groundwater, and streams are an order of magnitude smaller than the losses by mortality and tidal removal. This implies that there is an additional source of fecal coliforms within the bay. We suggest that resuspension of the upper layers of sediments can easily account for the fecal coliforms present in the water. Fecal coliform content of water and shellfish were not correlated. In contrast, sediment and shellfish fecal coliform abundances were significantly related. Monitoring of fecal coliforms in sediments may provide a better assessment of shellfish than sampling of water. The large fecal coliform stock in sediments should be the first priority for management. Efforts ought to be directed toward the reduction of sediment fecal coliform stocks. Lowering nutrient additions to coastal water bodies may be one practical approach.  相似文献   

2.
Understanding trends in stream chemistry is critical to watershed management, and often complicated by multiple contaminant sources and landscape conditions changing over varying time scales. We adapted spatially referenced regression (SPARROW) to infer causes of recent nutrient trends in Chesapeake Bay tributaries by relating observed fluxes during 1992, 2002, and 2012 to contemporary inputs and watershed conditions. The annual flow‐normalized nitrogen flux to the bay from its watershed declined by 14% to 127,000 Mg (metric tons) between 1992 and 2012, due primarily (more than 80% of the decline) to reduced point sources. The remainder of the decline was due to reduced atmospheric deposition (13%) and urban nonpoint sources. Agricultural inputs, which contribute most nitrogen to the bay, changed little, although trends in the average nitrogen yield (flux per unit area) from cropland and pasture to streams in some settings suggest possible effects of evolving nutrient applications or other land management practices. Point sources of phosphorus to local streams declined by half between 1992 and 2012, while nonpoint inputs were relatively unchanged. Annual phosphorus delivery to the bay increased by 9% to 9,570 Mg between 1992 and 2012, however, due mainly to reduced retention in the Susquehanna River at Conowingo Reservoir.  相似文献   

3.
To assess historical loads of nitrogen (N), phosphorus (P), and suspended sediment (SS) from the nontidal Chesapeake Bay watershed (NTCBW), we analyzed decadal seasonal trends of flow‐normalized loads at the fall‐line of nine major rivers that account for >90% of NTCBW flow. Evaluations of loads by season revealed N, P, and SS load magnitudes have been highest in January‐March and lowest in July‐September, but the temporal trends have followed similar decadal‐scale patterns in all seasons, with notable exceptions. Generally, total N (TN) load has dropped since the late 1980s, but particulate nutrients and SS have risen since the mid‐1990s. The majority of these rises were from Susquehanna River and relate to diminished net trapping at the Conowingo Reservoir. Substantial rises in SS were also observed, however, in other rivers. Moreover, the summed rise in particulate P load from other rivers is of similar magnitude as from Susquehanna. Dissolved nutrient loads have dropped in the upland (Piedmont and above) rivers, but risen in two small rivers in the Coastal Plain affected by lagged groundwater input. In addition, analysis of fractional contributions revealed consistent N trends across the upland watersheds. Finally, total N:total P ratios have declined in most rivers, suggesting the potential for changes in nutrient limitation. Overall, this integrated study of historical data highlights the value of maintaining long‐term monitoring at multiple watershed locations.  相似文献   

4.
Atmospheric deposition of nitrate nitrogen and ammonium nitrogen has been identified as a major factor in the decline of water quality in the Chesapeake Bay. Reports have indicated that atmospheric deposition may account for 25 to 80% of the total nitrogen load entering the bay. However, uncertainties exist regarding the accuracy of the atmospheric deposition inputs, nitrogen retention coefficients, and in-stream nutrient uptake rates used in these studies. This project was designed to reassess the potential inputs of atmospheric nitrogen deposition to the bay through the use of a high-resolution wet deposition model, improved wet and dry deposition and nutrient retention estimates, existing soils and land use data, and geographic information systems software. Model results indicate that the methods used in previous studies may overestimate the contribution of atmospheric nitrate and ammonium deposition to the Chesapeake Bay watershed (CBW). Wet and dry atmospheric nitrate and ammonium nitrogen deposition estimates to the CBW ranged from 52.7 to 141.9 and 41.9 to 60.1 million kg/yr, respectively, between 1984 and 1996. Dry and total atmospheric deposition loads to the watershed are substantially less than previous estimates. Estimates of the percent contribution of atmospherically deposited nitrogen to the Chesapeake Bay represent between 20 and 32% of the total nitrate and ammonium nitrogen load to the watershed from all nitrogen sources. While these estimates are lower than many other published estimates, regression analysis of model parameters, nitrogen retention coefficients, output, and measured in-stream nitrogen loads indicate that the calculated nitrogen loads may still be too high.  相似文献   

5.
Nutrient load allocations and subsequent reductions in total nitrogen and phosphorus have been applied in the Chesapeake watershed since 1992 to reduce hypoxia and to restore living resources. In 2010, sediment allocations were established to augment nutrient allocations supporting the submerged aquatic vegetation resource. From the initial introduction of nutrient allocations in 1992 to the present, the allocations have become more completely applied to all areas and loads in the watershed and have also become more rigorously assessed and tracked. The latest 2010 application of nutrient and sediment allocations were made as part of the Chesapeake Bay total maximum daily load and covered all six states of the Chesapeake watershed. A quantitative allocation process was developed that applied principles of equity and efficiency in the watershed, while achieving all tidal water quality standards through an assessment of equitable levels of effort in reducing nutrients and sediments. The level of effort was determined through application of two key watershed scenarios: one where no action was taken in nutrient control and one where maximum nutrient control efforts were applied. Once the level of effort was determined for different jurisdictions, the overall load reduction was set watershed‐wide to achieve dissolved oxygen water quality standards. Further adjustments were made to the allocation to achieve the James River chlorophyll‐a standard.  相似文献   

6.
The Linesville spillway of Pymatuning State Park is one of the most visited tourist attractions in Pennsylvania, USA, averaging more than 450,000 visitors · year−1. Carp (Cyprinus carpio Linnaeus) and waterfowl congregate at the spillway where they are fed bread and other foods by park visitors. We hypothesized that the “breadthrowers” constitute a significant nutrient vector to the upper portion of Pymatuning Reservoir. In the summer of 2002, we estimated phosphorus loadings attributable to breadthrowers, and compared these values to background loadings from Linesville Creek, a major tributary to the upper reservoir. Items fed to fish included bread, donuts, bagels, canned corn, popcorn, corn chips, hot dogs, birthday cakes, and dog food. Phosphorus loading associated with park visitors feeding fish was estimated to be 3233 g day−1, and estimated P export from the Linesville Creek watershed was 2235 g·day−1. P loading attributable to breadthrowers exceeded that of the entire Linesville Creek watershed on 33 of the 35 days of study, with only a heavy rainfall event triggering watershed exports that exceeded spillway contributions. Averaged across 5 weeks, breadthrowers contributed 1.45-fold more P to Pymatuning Reservoir than the Linesville Creek watershed. If Linesville Creek P exports are extrapolated to the entire Sanctuary Lake watershed, spillway contributions of P added 48% to the non-point source watershed P entering the lake. Park visitors feeding fish at the Linesville Spillway are a significant source of nutrients entering Sanctuary Lake.  相似文献   

7.
Groundwater serves as the primary drinking water source for over half of the coastal populations of the Southeast and Gulf Coast regions, two of the fastest growing regions in the United States. Increased demand for this resource has exceeded sustainable yields in many areas and induced saltwater intrusion of coastal aquifers. A process associated with coastal groundwater, submarine groundwater discharge (SGD), has been documented as a source of subsurface fluids to coastal ocean environments throughout the Southeast and Gulf Coast regions and is potentially a significant contributor to nearshore water and geochemical budgets (i.e., nutrients, carbon, trace metals) in many coastal regions. The importance of groundwater as a drinking water source for coastal populations and the influences of submarine groundwater discharge to the coastal ocean warrant increased research and management of this resource. This paper highlights findings from recent SGD studies on three hydrogeologically different continental margins (Onslow Bay, NC, southern Florida, and the Louisiana margin), provides background on the common methods of assessing SGD, and suggests a regional management plan for coastal groundwater resources. Suggested strategies call for assessments of SGD in areas of potentially significant discharge, development of new monitoring networks, and the incorporation of a regional coastal groundwater resources council.  相似文献   

8.
Abstract: We present a simple modular landscape simulation model that is based on a watershed modeling framework in which different sets of processes occurring in a watershed can be simulated separately with different models. The model consists of three loosely coupled submodels: a rainfall‐runoff model (TOPMODEL) for runoff generation in a subwatershed, a nutrient model for estimation of nutrients from nonpoint sources in a subwatershed, and a stream network model for integration of point and nonpoint sources in the routing process. The model performance was evaluated using monitoring data in the watershed of the Patuxent River, a tributary to the Chesapeake Bay in Maryland, from July 1997 through August 1999. Despite its simplicity, the landscape model predictions of streamflow, and sediment and nutrient loads were as good as or better than those of the Hydrological Simulation Program‐Fortran model, one of the most widely used comprehensive watershed models. The landscape model was applied to predict discharges of water, sediment, silicate, organic carbon, nitrate, ammonium, organic nitrogen, total nitrogen, organic phosphorus, phosphate, and total phosphorus from the Patuxent watershed to its estuary. The predicted annual water discharge to the estuary was very close to the measured annual total in terms of percent errors for both years of the study period (≤2%). The model predictions for loads of nutrients were also good (20‐30%) or very good (<20%) with exceptions of sediment (40%), phosphate (36%), and organic carbon (53%) for Year 1.  相似文献   

9.
Streams alter the concentration of nutrients they transport and thereby influence nutrient loading to estuaries downstream; however, the relationship between in-stream uptake, discharge variability, and subsequent nutrient export is poorly understood. In this study, in-stream N and P uptake were examined in the stream network draining a row-crop agricultural operation in coastal North Carolina. The effect of in-stream nutrient uptake on estuarine loading was examined using continuous measurements of watershed nutrient export. From August to December 2003, 52 and 83% of the NH4+ and PO4(3-) loads were exported during storms while concurrent storm flow volume was 34% of the total. Whole-ecosystem mass transfer velocities (Vf) of NH4+ and PO4(3-), measured using short-term additions of inorganic nutrients, ranged from 0.1 to 25 mm min(-1). Using a mass balance approach, this in-stream uptake was found to attenuate 65 to 98% of the NH4+ flux and 78 to 98% of the PO4(3-) flux in small, first-order drainage ditches. For the larger channel downstream, an empirical model based on Vf and discharge was developed to estimate the percentage of the nutrient load retained in-stream. The model predicted that all of the upstream NH4+ and PO4(3-) load was retained during base flow, while 65 and 37% of the NH4+ and PO4(3-) load was retained during storms. Remineralization from the streambed (vs. terrestrial sources) was the apparent source of NH4+ and PO4(3-) to the estuary during base flow. In-stream uptake reduced the dissolved inorganic N to dissolved inorganic P ratio of water exported to the N-limited estuary, thus limiting the potential for estuarine phytoplankton growth.  相似文献   

10.
A detailed study of water and nitrogen (N) discharge from a small, representative subwatershed of Rehoboth Bay, Delaware, was conducted to determine total N loads to the bay. The concentrations of ammonium (NH4(+)), nitrate + nitrite (NO3(-) + NO2(-)), and dissolved and particulate organic N were determined in baseflow and storm waters discharging from Bundicks Branch from October 1998 to April 2002. A novel hydrographic separation model that accounts for significant decreases in baseflow during storm events was developed to estimate N loads during unsampled storms. Nitrogen loads based on gauged flows alone (7100-19,100 kg/yr) significantly underestimated those based on land use-land cover (LULC) and estimated N export factors from different classes of LULC (32,000-40,600 kg/yr). However, when ungauged underflow and associated N loads were included in the total loads (25,500-33,800 kg/yr), there was much better agreement with LULC export models. This suggests that in permeable coastal plain sediments, underflow contributes significantly to N fluxes to estuarine receiving waters, particularly in drier years. Based on the similarity in LULC, N loads from the Bundicks Branch subwatershed were used to estimate upland loads to the entire Rehoboth Bay Watershed (259,000-316,000 kg/yr). These N loads from the watershed were much greater than those from direct atmospheric deposition (49,000-64,500 kg/yr) and from a local wastewater treatment plant (9700-13,700 kg/yr). While the watershed was the principal source of N at all times during the year, the relative contributions from the watershed, wastewater, and direct atmospheric deposition varied predictably with season.  相似文献   

11.
ABSTRACT: Trophic classification of the Canadian nearshore waters of the Great Lakes is attempted using summer, surface water quality data for the early 1970's. A generalized Composite Trophic Index is developed using paired linear relationships for total phosphorus, chlorophyll a, and Secchi depth data for 66 defined nearshore regions. The chlorophyll a and total phosphorus relationship indicates that the nearshore waters contain a low chlorophyll a concentration for a given total phosphorus concentration than observed for the open waters of the Great Lakes or for smaller Canadian lakes. The most eutrophic nearshore regions occur in areas of relatively restricted circulation and/or high nutrient loadings. These include the Bay of Quinte, Toronto and Hamilton harbours, and portions of Lake We's Western Basin. Lakes Huron and Superior are generally oligotrophic, except for some embayments. Although nearshore water quality is highly variable, this apprach represents a reasonable compromise with respect to analytical complexity. The Composite Trophic Index removes biases introduced through the use of a single trophic state indicator and uniquely describes the nearshore water quality in terms generally comparable to other water bodies.  相似文献   

12.
ABSTRACT: We measured annual discharges of water, sediments, and nutrients from 10 watersheds with differing proportions of agricultural lands in the Piedmont physiographic province of the Chesapeake Bay drainage. Flow-weighted mean concentrations of total N, nitrate, and dissolved silicate in watershed discharges were correlated with the proportion of cropland in the watershed. In contrast, concentrations of P species did not correlate with cropland. Organic P and C correlated with the concentration of suspended particles, which differed among watersheds. Thus, the ratio of N:P:Si in discharges differed greatly among watersheds, potentially affecting N, P or Si limitation of phytoplankton growth in the receiving waters. Simple regression models of N discharge versus the percentage of cropland suggest that croplands discharge 29–42 kg N ha-1 yr-1 and other lands discharge 1.2–5.8 kg N ha-1 yr-1. We estimated net anthropogenic input of N to croplands and other lands using county level data on agriculture and N deposition from the atmosphere. For most of the study watersheds, N discharge amounted to less than half of the net anthropogenic N.  相似文献   

13.
Nitrogen (N) and phosphorus (P) are significant pollutants that can stimulate nuisance blooms of algae. Water quality models (e.g., Water Quality Simulation Program, CE‐QUAL‐R1, CE‐QUAL‐ICM, QUAL2k) are valuable and widely used management tools for algal accrual due to excess nutrients in the presence of other limiting factors. These models utilize the Monod and Droop equations to associate algal growth rate with dissolved nutrient concentration and intracellular nutrient content. Having accurate parameter values is essential to model performance; however, published values for model parameterization are limited, particularly for benthic (periphyton) algae. We conducted a 10‐day mesocosm experiment and measured diatom‐dominated periphyton biomass accrual through time as chlorophyll a (chl a) and ash‐free dry mass (AFDM) in response to additions of N (range 5–11,995 µg nitrate as nitrogen [NO3‐N]/L) and P (range 0.89–59.51 µg soluble reactive phosphorus/L). Resulting half‐saturation coefficients and growth rates are similar to other published values, but minimum nutrient quotas are higher than those previously reported. Saturation concentration for N ranged from 150 to 2,450 µg NO3‐N/L based on chl a and from 8.5 to 60 µg NO3‐N/L when based on AFDM. Similarly, the saturation concentration for P ranged from 12 to 29 µg‐P/L based on chl a, and from 2.5 to 6.1 µg‐P/L based on AFDM. These saturation concentrations provide an upper limit for streams where diatom growth can be expected to respond to nutrient levels and a benchmark for reducing nutrient concentrations to a point where benthic algal growth will be limited.  相似文献   

14.
The disposal of manure on agricultural land has caused water quality concerns in many rural watersheds, sometimes requiring state environmental agencies to conduct total maximum daily load (TMDL) assessments of stream nutrients, such as nitrogen (N) and phosphorus (P). A best management practice (BMP) has been developed in response to a TMDL that mandates a 50% reduction of annual P load to the North Bosque River (NBR) in central Texas. This BMP exports composted dairy manure P through turfgrass sod from the NBR watershed to urban watersheds. The manure-grown sod releases P slowly and would not require additional P fertilizer for up to 20 years in the receiving watershed. This would eliminate P application to the sod and improve the water quality of urban streams. The soil and water assessment tool (SWAT) was used to model a typical suburban watershed that would receive the sod grown with composted dairy manure to assess water quality changes due to this BMP. The SWAT model was calibrated to simulate historical flow and estimated sediment and nutrient loading to Mary's Creek near Fort Worth, Texas. The total P stream loading to Mary's Creek was lower when manure-grown sod was transplanted instead of sod grown with inorganic fertilizers. Flow, sediment and total N yield were the same for both cases at the watershed outlet. The SWAT simulations indicated that the turfgrass BMP can be used effectively to import manure P into an urban watershed and reduce in-stream P levels when compared to sod grown with inorganic fertilizers.  相似文献   

15.
Bioassessment is used worldwide to monitor aquatic health but is infrequently used with risk-assessment objectives, such as supporting the development of defensible, numerical water-quality criteria. To this end, we present a generalized approach for detecting potential ecological thresholds using assemblage-level attributes and a multimetric index (Index of Biological Integrity—IBI) as endpoints in response to numerical changes in water quality. To illustrate the approach, we used existing macroinvertebrate and surface-water total phosphorus (TP) datasets from an observed P gradient and a P-dosing experiment in wetlands of the south Florida coastal plain nutrient ecoregion. Ten assemblage attributes were identified as potential metrics using the observational data, and five were validated in the experiment. These five core metrics were subjected individually and as an aggregated Nutrient–IBI to nonparametric changepoint analysis (nCPA) to estimate cumulative probabilities of a threshold response to TP. Threshold responses were evident for all metrics and the IBI, and were repeatable through time. Results from the observed gradient indicated that a threshold was 50% probable between 12.6 and 19.4 g/L TP for individual metrics and 14.8 g/L TP for the IBI. Results from the P-dosing experiment revealed 50% probability of a response between 11.2 and 13.0 g/L TP for the metrics and 12.3 g/L TP for the IBI. Uncertainty analysis indicated a low (typically 5%) probability that an IBI threshold occurred at 10 g/L TP, while there was 95% certainty that the threshold was 17 g/L TP. The weight-of-evidence produced from these analyses implies that a TP concentration > 12–15 g/L is likely to cause degradation of macroinvertebrate assemblage structure and function, a reflection of biological integrity, in the study area. This finding may assist in the development of a numerical water-quality criterion for TP in this ecoregion, and illustrates the utility of bioassessment to environmental decision-making.  相似文献   

16.
ABSTRACT: A previous modeling study used the Generalized Watershed Loading Functions (GWLF) model to simulate stream‐flow, and nutrient and sediment loads to Cannonsville Reservoir from the West Branch Delaware River (WBDR). We made several model revisions, calibrated key parameters, and tested the original GWLF model and a revised GWLF model using more recent data. Model revisions included: addition of unsaturated leakage between unsaturated and saturated subsurface reservoirs; revised timing of sediment export; inclusion of urban sediments and dissolved nutrients; tracking of particulate nutrients from point sources; and revised timing of septic system loads. The revision of sediment yield timing resulted in significant improvements in monthly sediment and particulate phosphorus predictions as compared to the original model. Addition of unsaturated leakage improved hydrologic predictions during low flow months. The other model changes improve realism without adding significant model complexity or data requirements. Goodness of fit of revised model predictions versus stream measurements, as measured by the Nash‐Sutcliff coefficient of model efficiency, exceeded 0.8 for streamflow‐0.7 for sediment yield and dissolved nitrogen (N) and 0.6 for particulate and dissolved phosphorus (P). The revised GWLF model, with limited calibration, provides reasonable estimates of monthly streamflow, and nutrient and sediment loads in the Cannonsville watershed.  相似文献   

17.
/ Freshwater inflow is one of the most influential landscape processes affecting community structure and function in lagoons, estuaries, and deltas of the world; nevertheless there are few reviews of coastal impacts associated with altered freshwater inputs. A conceptual model of the possible influences of freshwater inflows on biogeochemical and trophic interactions was used to structure this review, evaluate dominant effects, and discuss tools for coastal management. Studies in the Gulf of Mexico were used to exemplify problems commonly encountered by coastal zone managers and scientists around the world. Landscape alteration, impacting the timing and volume of freshwater inflow, was found to be the most common stress on estuarine systems. Poorly planned upstream landscape alterations can impact wetland and open-water salinity patterns, nutrients, sediment fertility, bottom topography, dissolved oxygen, and concentrations of xenobiotics. These, in turn, influence productivity, structure, and behavior of coastal plant and animal populations. Common biogeochemical impacts include excessive stratification, eutrophication, sediment deprivation, hypoxia, and contamination. Common biological impacts include reduction in livable habitats, promotion of "exotic" species, and decreased diversity. New multiobjective statistical models and dynamic landscape simulations, used to conduct policy-relevant experiments and integrate a wide variety of coastal data for freshwater inflow management, assume that optimum estuarine productivity and diversity is found somewhere between the stress associated with altered freshwater flow and the subsidy associated with natural flow. These models attempt to maximize the area of spatial overlap where favorable dynamic substrates, such as salinity, coincide with favorable fixed substrates, such as bottom topography. Based upon this principle of spatial overlap, a statistical performance model demonstrates how population vitality measurements (growth, survival, and reproduction) can be used to define sediment, freshwater, and nutrient loading limits. Similarly, a spatially articulate landscape simulation model demonstrates how cumulative impacts and ecosystem processes can be predicted as a function of changes in freshwater, sediment, and nutrient inflows.KEY WORDS: Resource management; Landscape impacts; Freshwater discharge; Coastal, ecosystem models; Coastal wetlands  相似文献   

18.
ABSTRACT: The concentrations of dissolved fixed inorganic nitrogen (ΣN) in Bermuda ground waters can be very high due to both natural and anthropogenic processes. The high anthropogenic flux is due to domestic cesspit operation. Mass balance calculations indicate that ground water seepage, especially rich in ΣN, is a major source of nutrients into the near shore coastal zone of Bermuda. The ground water flux of ΣN is approximately 1.5 to 4 times that of the sewage flux of ΣN to Bermuda's nearshore waters. This input of ΣN may be important in the development of algal blooms in these waters. Our work, coupled with other recent investigations, suggests that the ground water input of nutrients into nearshore marine waters is an important process globally.  相似文献   

19.
ABSTRACT: Loading rates derived from monitoring natural runoff from selected land uses are compared. Land uses selected for evaluation are construction sites, barnyards, and agriculture (dairying). Runoff volumes, sediment, and nutrient fractions were monitored and expressed as areal loadings for comparison purposes. Sediment yield and total phosphorus (total P) loss was directly proportional to runoff (m3/ha). In decreasing order, the loadings for sediment and total P were as follows: construction site > barnyard > general dairying. Runoff from the barnyard area was approximately 10 times higher in soluble phosphorus and ammonium nitrogen than the other land uses under investigation. Areal loss for nitrate nitrogen was highest from the construction site and was attributed to the higher volume of runoff per unit area. Results show that barnyards in a dairying watershed are potentially a major source of sediment and nutrients, especially those dissolved fractions which have the potential for immediate water quality impacts. Relative to general agricultural land, urban construction sites also appear to be a major source of sediment and nutrients. As with barnyard sites, however, the effect of such sites on water quality likely depends on proximity to surface water bodies and other watershed characteristics affecting delivery ratios of contaminants.  相似文献   

20.
Abstract: We examine the potential for nutrient limitation of algal periphyton biomass in blackwater streams draining the Georgia coastal plain. Previous studies have investigated nutrient limitation of planktonic algae in large blackwater rivers, but virtually no scientific information exists regarding how algal periphyton respond to nutrients under different light conditions in smaller, low‐flow streams. We used a modification of the Matlock periphytometer (nutrient‐diffusing substrata) to determine if algal growth was nutrient limited and/or light limited at nine sites spanning a range of human impacts from relatively undisturbed forested basins to highly disturbed agricultural sites. We employed four treatments in both shaded and sunny conditions at each site: (1) control, (2) N (NO3‐N), (3) P (PO4‐P), and (4) N + P (NO3‐N + PO4‐P). Chlorophyll a response was measured on 10 replicate substrates per treatment, after 15 days of in situ exposure. Chlorophyll a values did not approach what have been defined as nuisance levels (i.e., 100‐200 mg/m2), even in response to nutrient enrichment in sunny conditions. For Georgia coastal plain streams, algal periphyton growth appears to be primarily light limited and can be secondarily nutrient limited (most commonly by P or N + P combined) in light gaps and/or open areas receiving sunlight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号