首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
甲烷煤尘燃烧爆炸试验研究   总被引:2,自引:0,他引:2  
为揭示甲烷煤尘空气混合物爆炸波的传播规律,采用试验分析的方法,建立甲烷煤尘空气混合物燃烧爆炸的3种试验方案,分析不同体积分数的甲烷和不同质量浓度的煤尘消耗不同体积空气时的爆压和爆速等参数的发展趋势,探究爆轰波传播的稳定性,阐明了甲烷煤尘燃烧爆炸的基本特征。试验结果表明,在最优配比条件下,与单一甲烷空气、煤尘空气混合物相比,甲烷煤尘空气混合物的爆压、爆速明显增加。甲烷煤尘空气混合物爆轰比单一的气相、固相混合物爆轰的爆炸压力、爆速明显增加、爆轰更稳定。  相似文献   

2.
利用爆炸激波管技术研究了部分惰性物对爆炸特性的影响。用多通道辐射高温计测量了氮气对汽油爆轰温度的影响。研究表明,增加氮气含量可以较明显地降低汽油爆轰温度。采用化学当量配比氢氧混合物爆轰产生水蒸气的方法研究了水蒸气对汽油爆轰特性的影响。研究表明,水蒸气能明显降低爆炸压力,水蒸气压力增加到0.1MPa时可导致爆炸熄灭;硝基甲烷和氧气混合物中充人氮气后爆炸压力明显下降,采用光多通道分析系统(OMA谱仪)和多台单色谱仪的光谱测量结果表明,反应中间产物的CH3O、CH辐射强度迅速衰减,反应衰竭。  相似文献   

3.
丁烷与空气混合物的爆炸性能测定   总被引:1,自引:0,他引:1  
在不同条件下,对丁烷与空气混合物进行爆炸实验,由微机数采测试系统测定其爆炸参数(爆轰波压力、爆轰波传播速度等)、爆轰极限以及当其形成爆轰时所需的临界起爆能。通过实验测定,为评价丁烷与空气混合物的安全性能提供重要依据  相似文献   

4.
什么是炸药的殉爆 炸药A爆炸后,能够引起与其相距一定距离的炸药B爆炸,这种现象叫做炸药的殉爆(如图1所示)。先发生爆炸的炸药A称为主爆药,引起殉爆的炸药B称为从爆药。能引起从爆药百分之百殉爆的两炸药之间的最大距离L叫做殉爆距离;而百分之百不能引起从爆药殉爆的两炸药之间的最小距离R叫做最小不殉爆距离,或叫殉爆安全距离。殉爆安全距离大于殉爆距离。 主爆药爆炸后,其爆炸能量通过介质传递给从爆药。由于下列原因,可能引起从爆药殉爆: (1)主爆药的爆轰产物直接冲击从爆药。从爆药在炽热爆轰气团和冲击波的作用下达到起爆条件,于是…  相似文献   

5.
为评估甲醇汽油燃爆危险特性,补充完善甲醇汽油的技术指标,采用FRTA爆炸极限测试仪测试研究不同组成甲醇汽油混合物的爆炸下限,并分析甲醇体积分数、初始温度对甲醇汽油爆炸下限的影响。结果表明:甲醇汽油混合物的爆炸下限随甲醇体积分数的增大而升高,从M0的1.129%升高到M100的6.523%;随着初始温度从25℃升高至100℃,M50,M85甲醇汽油的爆炸下限均呈下降趋势,且甲醇体积分数越大,下降趋势越明显,但是M15甲醇汽油混合物的爆炸下限受温度的影响却很小;不同的样品计量方式,会导致不同的爆炸极限测试结果,一般采用样品分压计量,测得的爆炸极限更准确;采用样品体积计量,测得的爆炸上下限均偏高。  相似文献   

6.
防爆起重机     
在充有爆炸性混合物的 车间或厂区,必须使用防爆 起重机,绝对禁止使用一般 用途起重机。这是因为一般 用途的起重机没有防爆措 施,电气设备经常产生火花、电弧或危险温度,引起爆炸性混合物爆炸和自燃。 爆炸性混合物的传爆级别和自然温度组别 爆炸性混合物一般是指可燃性气体、蒸汽与空气形成的混合物、当其达到爆炸极限或自然温度,又恰遇出现的火花、电弧或自燃温度时,就会引起爆炸和燃烧。 爆炸性混合物举例见表l。 表1中的级别是根据爆炸性混合物在标准试验条件下,按传爆能力分为1、2、3、4四个级别。1级最不容易传爆,3级比l、2级容易传…  相似文献   

7.
《劳动保护》2021,(6):68-69
防爆电气在石油化工企业中最为常见,通常指按规定条件设计制造而不会引起周围爆炸性混合物(爆炸危险场所)爆炸的电气设备称为“防爆电气”。企业在防爆电气施工使用的过程中,容易出现防爆电气完好性缺失的现象(失爆)。  相似文献   

8.
为探究狭长受限空间中油气爆炸失控时的发展状态,探索高效环保的油气爆炸抑制方法,利用长径比155的管道开展92号汽油-空气混合气爆炸发展规律和七氟丙烷主动抑爆技术研究。通过测量不同端部开口条件下油气爆炸超压、火焰传播速度、火焰强度等参数,对比研究空爆和抑爆工况下的油气爆炸变化规律,探讨长直管道中的油气爆炸特性,分析七氟丙烷抑爆效果。结果表明:大长径比管道中,端部开口泄爆对降低油气爆炸破坏能力的作用较小,开口与否对最大超压峰值的出现位置有影响;长直管道空爆时,油气爆炸由爆燃发展成爆轰,管道尾部的爆轰波速可达近2 000 m/s;密闭管道中,爆轰发生前火焰传播呈“已燃区-火焰锋面-待燃区-前驱激波-未燃区”的2波3区结构;主动抑爆方式下七氟丙烷抑爆效果良好,最大超压峰值降低幅度可达90%,火焰传播被及时阻断。  相似文献   

9.
氢氧混合气体爆炸临界条件实验研究   总被引:2,自引:1,他引:1  
可燃气体的燃烧、爆炸是工业生产中常见的灾害性事故,危害极大.通过爆轰管实验装置,采用疏密分布的压力传感器测量氢氧混合气体的爆轰特性,并依据压力和波速在燃烧转爆轰瞬间发生突跃,判断混合气体爆炸的临界条件.实验结果表明,爆炸压力随氢气初始浓度呈∩形变化,50%氢气体积分数为爆炸最佳浓度值;在常温常压下,氢氧混合物爆炸的临界氢气体积分数是15%和90%;化学计量比的氢氧混合气体发生爆炸的临界初始压力为0.01 MPa;氮-氢-氧三元混合气体爆炸的临界氮气体积分数为60%.  相似文献   

10.
为了研究管道内氢气的爆燃转爆轰及其抑制过程,对单个障碍物管道中氢气-空气混合物燃爆过程以及多级泄爆进行了二维数值模拟。基于氢气-空气19步详细化学反应动力学机理,以及k-ε湍流模型、概率密度函数输运方程和同位网格SIMPLE算法,采用计算流体软件Fluent进行模拟。结果表明:密闭管道无泄爆时,在距点火端1.5 m左右爆燃转为爆轰;泄爆口的位置对管道内氢气-空气预混气体的爆炸参数有重要影响,泄爆口位于管道中部时,能降低管道内爆轰超压,泄爆效果较好;位于管道中部单个泄爆口泄爆时,有效降低爆轰超压,管道中部设置2个泄爆口时,能通过压力和混合气体的泄放将管道中已经发生的爆轰衰减为爆燃;当有3个泄爆口泄爆时,管道中没有发生爆轰,达到良好的泄爆效果。  相似文献   

11.
Decomposing detonation and deflagration properties of ozone/oxygen mixtures   总被引:2,自引:0,他引:2  
In this study, the decomposing detonation and deflagration properties of ozone/oxygen mixtures of up to 20 vol.% of ozone in oxygen under high pressure of up to 1.0 MPa in a tube were experimentally investigated. The mixtures were ignited by an electric spark at the end of the tube. Flame propagation properties such as flame velocity and pressure were measured with thermocouples and piezo electric transducers mounted along the tube. Slow and constant flame propagation profiles were obtained. We also investigated the quenching ability of a wire gauze as well as the concentration limit for flame propagation. However, in spite of slow flame propagation velocity and easy flame quenching properties under these experimental conditions, direct initiation of detonation by the driver detonation of the stoichiometric oxy-hydrogen mixture was easily achieved at much lower concentrations than the limit of deflagration. The observed detonation properties, such as wave velocity and pressure, agreed fairly well with CJ calculated values. The detonation velocity (900–1200 m/s) and the pressure ratio to initial pressures (5–9.5) were not affected by the initial pressure of the mixtures. Near the detonation limit, typical spinning detonations with oscillatory pressure waves were observed.  相似文献   

12.
氢气爆炸特性研究   总被引:3,自引:0,他引:3  
本文研究、总结了氢气与空气(氢气与氧气)的混合物的爆炸特性.即氢气在空气中,在比较低燃烧界限的情况下,只有向上的传播和非常少的超压可以观测得到.正因为氢气的这种特性,将氢应用于科技将极大地推进社会进步,氢燃料将成为一种主要的能源.然而,氢技术应用的成功与否主要取决于氢使用的安全性.所以,必须掌握实际使用时氢气燃烧的性能.本文在日本过去十年实验数据的基础上,通过实验研究了氢气与空气混合物的燃点.研究了氢气、氧气混合物经氮气稀释后,按化学当量比例将不同浓度的氢气与空气进行混合,并得出了低温下的爆炸压力特性.随后,分别讨论了在初始压力下一致的情况下,试管直径相同的状况下,氢气与空气混合浓度相同的情况下,这三种爆轰传播限制之间的关系.得出了在空气中直接点燃的发生爆轰的最小试管直径,最小的装药量之间的关系,进行了爆轰危险性分级.最后,文章概括比较了氢与其他燃料的燃烧特性,评估了氢气燃烧过程中的危险与安全因素.  相似文献   

13.
使用模拟的地下油料储存库装置,对地下油料储存库火灾初期模式进行了实验研究.结合油料地下储存库火灾防治和安全性要求对实验结果进行了分析.结果表明,模拟油料地下储存库起火后,火灾初期模式与实验初始条件、边界条件和装置结构直接相关.在一定条件下,模拟油料地下储存库内出现爆燃向爆轰的转变;不同的环境条件下,火灾的模式不同;油料地下储存库内火灾的发展,油料的持续燃烧及发生燃烧的部位受通气条件和洞内复杂的烟气流向等条件控制.  相似文献   

14.
This paper discusses the results of an experimental program carried out to determine dust cloud deflagration parameters of selected solid-state hydrogen storage materials, including complex metal hydrides (sodium alanate and lithium borohydride/magnesium hydride mixture), chemical hydrides (alane and ammonia borane) and activated carbon (Maxsorb, AX-21). The measured parameters include maximum deflagration pressure rise, maximum rate of pressure rise, minimum ignition temperature, minimum ignition energy and minimum explosible concentration. The calculated explosion indexes include volume-normalized maximum rate of pressure rise (KSt), explosion severity (ES) and ignition sensitivity (IS). The deflagration parameters of Pittsburgh seam coal dust and Lycopodium spores (reference materials) are also measured. The results show that activated carbon is the safest hydrogen storage media among the examined materials. Ammonia borane is unsafe to use because of the high explosibility of its dust. The core insights of this contribution are useful for quantifying the risks associated with use of these materials for on-board systems in light-duty fuel cell-powered vehicles and for supporting the development of hydrogen safety codes and standards. These insights are also critical for designing adequate safety features such as explosion relief venting and isolation devices and for supplementing missing data in materials safety data sheets.  相似文献   

15.
This paper presents data on the limiting (minimum) concentrations of hydrogen in oxygen, in the presence of added helium, at elevated temperature and pressure related to the practical operational case. A 5 L explosion vessel, an ignition sub-system and a transient pressure measurement sub-system were used. Through a series of experiments carried out using this system, the limiting concentrations of hydrogen in oxygen and helium at different initial pressures and temperatures for the practical operational case were studied, and the influence of ignition energy and initial temperature on the limiting concentration of hydrogen in oxygen and helium was analyzed and discussed. The variation of ignition energy within the studied range is found to have a significant effect on the limiting concentration of hydrogen in oxygen and helium at lower initial temperature. However, when the ignition energy is higher than 32 mJ, the limiting hydrogen concentration remains almost changeless as the initial temperature increases from 21 °C to 90 °C. The limiting explosible concentration of hydrogen–oxygen–helium mixture decreases as the ignition energy increases when the initial temperature is lower. When the initial temperature is higher, the ignition energy has little effect on the limiting hydrogen concentration of hydrogen–oxygen–helium mixtures. When the initial temperature reaches 90 °C, the limiting hydrogen concentration remains almost changeless with an increase in ignition energy. The limiting explosible concentration of hydrogen in the mixtures, at the initial temperature of 21 °C and the ignition energy of 0.5 mJ, is 8.5% and that of oxygen is 11.25%.  相似文献   

16.
An experimental study of flame propagation, acceleration and transition to detonation in stoichiometric hydrogen–methane–air mixtures in 6 m long tube filled with obstacles located at different configurations was performed. The initial conditions of the hydrogen–methane–air mixtures were 1 atm and 293 K. Four different cases of obstacle blockage ratio (BR) 0.7, 0.6, 0.5 and 0.4 and three cases of obstacle spacing were used. The wave propagation was monitored by piezoelectric pressure transducers PCB. Pressure transducers were located at different positions along the channel to collect data concerning DDT and detonation development. Tested mixtures were ignited by a weak electric spark at one end of the tube. Detonation cell sizes were measured using smoked foil technique and analyzed with Matlab image processing toolbox. As a result of the experiments the deflagration and detonation regimes and velocities of flame propagation in the obstructed tube were determined.  相似文献   

17.
The explosion properties of alkane/nitrous oxide mixtures were investigated and were compared with those of the corresponding alkane/oxygen and alkane/air mixtures. The explosion properties were characterized by three parameters: the explosion limit, explosion pressure, and deflagration index. For the same alkane, the order of the lower explosion limits (LELs) of the mixtures was found to be alkane/oxygen  alkane/air > alkane/nitrous oxide. In addition, the mixtures containing nitrous oxide tended to exhibit higher explosion pressures than the corresponding mixtures containing oxygen under fuel-lean conditions. The Burgess–Wheeler law was also observed to hold for the mixtures containing nitrous oxide.  相似文献   

18.
For the explosion safety assessment in industrial setting, detonation dynamic parameters provide important information on the sensitivity and conditions whereby detonations can be favorably occurred. In this study, new measurement of the critical tube diameter and the critical energy for direct initiation of a detonation is reported for a number of hydrocarbon–oxygen mixtures. The simultaneous experimental measurement carried out in this work allows the investigation of the direct scaling between these two dynamic parameter quantities of gaseous detonations. Using the new set of data, this paper also assesses the validity of an existing semi-empirical initiation model, namely, the surface energy model by Lee, and a simplified work done model. Both phenomenological models provide a general relationship between the two dynamic detonation parameters and comparison shows a good agreement between the theoretical results and the experimental measurement. The scaling of critical tube diameter with detonation cell size in this study also confirms the results in the previous literature.  相似文献   

19.
The future widespread use of hydrogen as an energy carrier brings in safety issues that have to be addressed before public acceptance can be achieved. The prediction of the consequences of a major accident release of hydrogen into the atmosphere or the contamination of high-pressure hydrogen storage facilities by air entrainment requires a good knowledge of the explosion parameters of hydrogen–air mixtures. The present paper reviews and comments on the current knowledge of dynamic parameters of hydrogen detonation for hazard assessment. The major problem that remains to be resolved involves the understanding of the effect of turbulence on the cellular detonation structure, the propagation of high-speed deflagrations and the transition from deflagration to detonations. It is recommended that future research should be aimed towards experiments that permit the quantitative understanding of the mechanisms of high-speed turbulent combustion rather towards large-scale tests in complex geometries where minimal quantitative information of fundamental significance could be extracted. In spite of its wide flammability and sensitivity to ignition and detonation initiation, it is felt that hydrogen can be produced, stored and handled safely with the appropriate considerations in the design of the hydrogen facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号