首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ideal free distribution (IFD) models are perhaps the group of mathematical models of behavior that have been the most widely and successfully applied by empiricists. These models can be applied to nearly any situation in which consumers compete—by any mechanism—for resources that are patchily distributed in their environment. Although IFD models have come to be broadly accepted, experiments that simultaneously test more than a single prediction are rare. Instead, investigators normally either test (1) for a relationship between the distribution of consumers and the distribution of resources or (2) whether average fitnesses are equal across resource patches. We conducted experiments with pea aphids (Acyrthosiphon pisum Harris) feeding on two patches of fava beans (Vicia faba L.) to fully independently parameterize an IFD model with interference competition and then test quantitative predictions about aphid spatial distributions and the payoffs of patch choice. We found a precise fit between aphids’ predicted and observed reproductive successes. Furthermore, by varying patch “quality” in two ways, we were able to show that aphid distributions vary with the mode of resource variation in the predicted manner: aphids (1) matched resources when patches varied in size but not quality and (2) overmatched the good patch when patches varied in quality but not size (predicted as a consequence of weak interference). The close correspondence between quantitative predictions of the model with observed behaviors suggests that IFD theory is a framework with more explanatory power than is generally appreciated.  相似文献   

2.
Home ranges of animals are generally structured by the selective use of resource-bearing patches that comprise habitat. Based on this concept, home ranges of animals estimated from location data are commonly used to infer habitat relationships. Because home ranges estimated from animal locations are largely continuous in space, the resource-bearing patches selected by an animal from a fragmented distribution of patches would be difficult to discern; unselected patches included in the home range estimate would bias an understanding of important habitat relationships. To evaluate potential for this bias, we generated simulated home ranges based on optimal selection of resource-bearing patches across a series of simulated resource distributions that varied in the spatial continuity of resources. For simulated home ranges where selected patches were spatially disjunct, we included interstitial, unselected cells most likely to be traveled by an animal moving among selected patches. We compared characteristics of the simulated home ranges with and without interstitial patches to evaluate how insights derived from field estimates can differ from actual characteristics of home ranges, depending on patchiness of landscapes. Our results showed that contiguous home range estimates could lead to misleading insights on the quality, size, resource content, and efficiency of home ranges, proportional to the spatial discontinuity of resource-bearing patches. We conclude the potential bias of including unselected, largely irrelevant patches in the field estimates of home ranges of animals can be high, particularly for home range estimators that assume uniform use of space within home range boundaries. Thus, inferences about the habitat relationships that ultimately define an animal's home range can be misleading where animals occupy landscapes with patchily distributed resources.  相似文献   

3.
Several optimisation models, like the marginal value theorem (MVT), have been proposed to predict the optimal time foraging animals should remain on patches of resources. These models do not clearly indicate, however, how animals can follow the corresponding predictions. Hence, several proximate patch-leaving decision rules have been proposed. Most if not all of these are based on the animals’ motivation to remain on the patches, but the real behaviours involved in such motivation actually still remain to be identified. Since animals are usually exploiting patches of resources by walking, we developed a model simulating the intra-patch movement decisions of time-limited animals exploiting resources distributed in delimited patches in environments with different resource abundances and distributions. The values of the model parameters were optimised in the different environments by means of a genetic algorithm. Results indicate that simple modifications of the walking pattern of the foraging animals when resources are discovered can lead to patch residence times that appear consistent with the predictions of the MVT. These results provide a more concrete understanding of the optimal patch-leaving decision rules animals should adopt in different environments.  相似文献   

4.
Previous studies of interference competition have shown an asymmetric effect on intake rate of foragers on clumped resources, with only subordinate individuals suffering. However, the food distributions in these studies were uniform or highly clumped, whereas in many field situations, food aggregation is intermediate. Here we investigated whether food distribution (i.e., uniform, slightly clumped, and highly clumped) affects the behavioral response of mallards foraging alone or competing with another. Although the amount of food was the same in all distributions, the mallards reached higher intake rates, visited fewer patches, and showed longer average feeding times in the highly clumped distribution. Competing mallards had lower intake rates on the slightly clumped than on the uniform or highly clumped food distributions. Subordinates generally visited more patches and had shorter feeding times per patch, but their intake rates were not significantly lower than those of dominants. Therefore, we propose that subordinates do not necessarily suffer from interference competition in terms of intake rate, but do suffer higher search costs. In addition, although dominants had significantly higher average feeding times on the best quality patches of the highly clumped food distribution, such an effect was not found in the slightly clumped distribution. These findings indicate that in environments where food is aggregated to a lesser extent, monopolization is not the best strategy for dominants. Our results suggest that interference experiments should use food distributions that resemble the natural situation animals are faced with in the field.  相似文献   

5.
Optimal patch time allocation for time-limited foragers   总被引:1,自引:0,他引:1  
The Charnov Marginal Value Theorem (MVT) predicts the optimal foraging duration of animals exploiting patches of resources. The predictions of this model have been verified for various animal species. However, the model is based on several assumptions that are likely too simplistic. One of these assumptions is that animals are living forever (i.e., infinite horizon). Using a simple dynamic programming model, we tested the importance of this assumption by analysing the optimal strategy for time-limited foragers. We found that, for time-limited foragers, optimal patch residence times should be greater than those predicted from the classic, static MVT, and the deviation should increase when foragers are approaching the end of their life. These predictions were verified for females of the parasitoid Anaphes victus (Hymenoptera: Mymaridae) exploiting egg patches of its host, the carrot weevil Listronotus oregonensis (Coleoptera: Curculionidae). As predicted by the model, females indeed remained for a longer time on host patches when they approached the end of their life. Experimental results were finally analysed with a Cox regression model to identify the patch-leaving decision rules females used to behave according to the model’s predictions.  相似文献   

6.
Interference competition is often due to kleptoparasitism (food stealing). In which case, the attack distance, the distance over which one animal attacks another in an attempt to steal food, determines to a large extent the competitor density range over which interference significantly affects the intake rate of foraging animals.We develop a simple model of kleptoparasitism containing three parameters: attack distance, the density of foraging animals and a single dimensionless parameter α which summarizes the non-geometrical aspects of the interference process. Dominant and subdominant animals are not considered separately. The model predicts that the average intake rate will decrease exponentially with animal density and that a measure of the strength of interference depends on attack distance squared.The simple model is compared with a much more detailed individual-based foraging model from the literature. Simulated average intake rates are indeed well approximated by an exponential decrease with competitor density. Also the measure of interference behaves in the way expected from the simple model. By explaining the shape of the relationship between intake rate and animal density, the simple model provides insight into the behaviour of the detailed behavioural model.Insight into the role of geometry is important in the interpretation of field results and in the further development of detailed foraging models.  相似文献   

7.
Abstract: Habitat fragmentation and the division of populations into spatially separated units have led to the increasing use of metapopulation models to characterize these populations. One prominent model that has served as a heuristic tool was introduced by Levins and is based on a collection of simplifying assumptions that exclude information on the dynamics and spatial distribution of local populations. Levins's and similar models predict the proportion of occupied habitat patches at equilibrium and the conditions needed to avoid total extinction. There are many obvious concerns about using such models, including how realistic alterations might change the predictions and whether occupancy has any relationship to population-level processes. Although many of the assumptions of these simple models are known to be unrealistic, we do not know how the assumptions affect model predictions. We simulated a metapopulation, and our results show that assumptions such as homogeneity of habitat patches, random migration among patches, equivalent extinction probabilities in all patches, and a large number of patches can lead to large overestimations of habitat occupancy. But when we explicitly modeled the underlying population dynamics within each patch, we found (1) that there was a strong correlation between proportion of occupied patches and total metapopulation size and (2) that the distribution of individuals among patches was relatively insensitive to model assumptions. Thus, our results show that although realistic modifications will change model predictions for occupancy, occupancy and population trends will be correlated. These correlations between occupancy and population size suggest that occupancy models may have some utility in conservation applications.  相似文献   

8.
Abstract: The controversy (  Berger 1990, 1999 ; Wehausen 1999 ) over rapid extinction in bighorn sheep ( Ovis canadensis ) has focused on population size alone as a correlate to persistence time. We report on the persistence and population performance of 24 translocated populations of bighorn sheep. Persistence in these sheep was strongly correlated with larger patch sizes, greater distance to domestic sheep, higher population growth rates, and migratory movements, as well as to larger population sizes. Persistence was also positively correlated with larger average home-range size ( p = 0.058, n = 10 translocated populations) and home-range size of rams ( p = 0.087, n = 8 translocated populations). Greater home-range size and dispersal rates of bighorn sheep were positively correlated to larger patches. We conclude that patch size and thus habitat carrying capacity, not population size per se, is the primary correlate to both population performance and persistence. Because habitat carrying capacity defines the upper limit to population size, clearly the amount of suitable habitat in a patch is ultimately linked to population size. Larger populations (250+ animals) were more likely to recover rapidly to their pre-epizootic survey number following an epizootic ( p = 0.019), although the proportion of the population dying in the epizootic also influenced the probability of recovery ( p = 0.001). Expensive management efforts to restore or increase bighorn sheep populations should focus on large habitat patches located ≥23 km from domestic sheep, and less effort should be expended on populations in isolated, small patches of habitat.  相似文献   

9.
Kitzberger T  Chaneton EJ  Caccia F 《Ecology》2007,88(10):2541-2554
Resource pulses often involve extraordinary increases in prey availability that "swamp" consumers and reverberate through indirect interactions affecting other community members. We developed a model that predicts predator-mediated indirect effects induced by an epidemic prey on co-occurring prey types differing in relative profitability/preference and validated our model by examining current-season and delayed effects of a bamboo mass seeding event on seed survival of canopy tree species in mixed Patagonian forests. The model shows that predator foraging behavior, prey profitability, and the scale of prey swamping influence the character and strength of short-term indirect effects on various alternative prey. When in large prey-swamped patches, nonselective predators decrease predation on all prey types. Selective predators, instead, only benefit prey of similar quality to the swamping species, while very low or high preference prey remain unaffected. Negative indirect effects (apparent competition) may override such positive effects (apparent mutualism), especially for highly preferred prey, when prey-swamped patches are small enough to allow predator aggregation and/or predators show a reproductive numerical response to elevated food supply. Seed predation patterns during bamboo (Chusquea culeou) masting were consistent with predicted short-term indirect effects mediated by a selective predator foraging in large prey-swamped patches. Bamboo seeds and similarly-sized Austrocedrus chilensis (ciprés) and Nothofagus obliqua (roble) seeds suffered lower predation in bamboo flowered than nonflowered patches. Predation rates on the small-seeded Nothofagus dombeyi (coihue) and the large-seeded Nothofagus alpina (rauli) were independent of bamboo flowering. Indirect positive effects were transient; three months after bamboo seeding, granivores preyed heavily upon all seed types, irrespective of patch flowering condition. Moreover, one year after bamboo seeding, predation rates on the most preferred seed (rauli) was higher in flowered than in nonflowered patches. Despite rapid predator numerical responses, short-term positive effects can still influence community recruitment dynamics because surviving seeds may find refuge beneath the litter produced by bamboo dieback. Together, our theoretical analysis and experiments indicate that indirect effects experienced by alternative prey during and after prey-swamping episodes need not be universal but can change across a prey quality spectrum, and they critically depend on predator-foraging rules and the spatial scale of swamping.  相似文献   

10.
Dispersal in Spatially Explicit Population Models   总被引:4,自引:0,他引:4  
Abstract: Ruckelshaus et al. (1997) outlined a simulation model of dispersal between patches in a fragmented landscape. They showed that dispersal success—the proportion of dispersers successfully locating a patch—was particularly sensitive to errors in dispersal mortality and concluded that this limits the utility of spatially explicit population models in conservation biology. I contend that, although they explored error propagation in a simple dispersal model, they did not explore how errors are propagated in spatially explicit population models, as no consideration of population processes was included. I developed a simple simulation model to investigate the effect of varying dispersal success on predictions of patch occupancy and population viability, the conventional outputs of spatially explicit population models. The model simulates births and deaths within habitat patches and dispersal as the transfer of individuals between them. Model predictions were sensitive to changes in dispersal success across a restricted range of within-patch growth rates, which depended on the dispersal initiation mechanism, patch carrying capacities, and number of generations simulated. Predictions of persistence and patch occupancy were generally more sensitive to changes in dispersal success (1) under presaturation rather than saturation dispersal; (2) at lower patch carrying capacities; and (3) over longer time periods. The framework I present provides a means of assessing, quantitatively, the regions of parameter space for which differences in dispersal success are likely to have a large effect on population model outputs. Investigating the effect of the representation of dispersal behavior within the demographic and landscape context provides a more useful assessment of whether our lack of knowledge is likely to cause unacceptable uncertainty in the predictions of spatially explicit population models.  相似文献   

11.
Yoo HJ 《Ecology》2006,87(3):634-647
In spatially heterogeneous systems, utilizing population models to integrate the effects of multiple population rates can yield powerful insights into the relative importance of the component rates. The relative importance of demographic rates and dispersal in shaping the distribution of the western tussock moth (Orgyia vetusta) among patches of its host plant was explored using stage-structured population models. Tussock moth dispersal occurs passively in first-instar larvae and is poor or absent in all other life stages. Spatial surveys suggested, however, that moth distribution is not well explained by passive dispersal; moth populations were greater on small patches and on isolated ones. Further analysis showed that several local demographic rates varied significantly with patch characteristics. Two mortality factors in particular may explain the observed patterns. First, crawler mortality both increased with patch size and was density-dependent. A single-patch difference equation model showed mortality related to patch size is strong enough to overcome the homogenizing effect of density dependence; greater equilibrium densities were predicted for smaller patches. Second, although three rates were found to vary with local patch density, only pupal parasitism by a chalcid wasp could potentially account for higher moth abundances on isolated patches. A spatially explicit simulation model of the multiple-patch system showed that spatial variation in pupal parasitism is indeed strong enough to generate such a pattern. These results demonstrate that habitat spatial structure can affect multiple population processes simultaneously, and even relatively low attack rates imposed on a reproductively valuable life stage of the host can have a dominant effect on population distribution among habitat patches.  相似文献   

12.
Ideal free distributions under predation risk   总被引:1,自引:0,他引:1  
 We examine the trade-off between gathering food and avoiding predation in the context of patch use by a group of animals. Often a forager will have to choose between feeding sites that differ in both energetic gain rate and predation risk. The ideal site will have a high gain rate and low risk of predation. However, intake rate will often decrease when the patch is shared with other foragers and it may be optimal for some individuals to feed elsewhere. Within the framework of ideal free theory, we investigate the distribution of foragers that will equalise individual fitness gains. We focus on a two-patch environment with continuous inputs of food. With reference to existing experimental studies, we examine the effects of risk dilution, food input rates and an animal’s expectations of the future. We identify the effect of total animal numbers when one patch is subject to predation risk and the other is safe. Conditions under which the difference in intake rate in the two patches is constant are identified, as are conditions in which the ratio of animals in the two patches is constant. If current conditions do not alter future expectations an increase in input rates to the patches promotes increased use of the risky patch. Yet, if conditions are assumed to persist indefinitely the opposite effect is seen. When both patches are subject to predation risk, dilution of risk favours more extreme distributions, and may lead to more than one stable distribution. The results of these models are used to critically analyse previous work on the energetic equivalence of risk. This paper is intended to help guide the development of new experimental studies into the energy-risk trade-off. Received: 10 February 1995/Accepted after revision: 1 October 1995  相似文献   

13.
Metacommunity theory allows predictions about the dynamics of potentially interacting species' assemblages that are linked by dispersal, but strong empirical tests of the theory are rare. We analyzed the metacommunity dynamics of Florida rosemary scrub, a patchily distributed pyrogenic community, to test predictions about turnover rates, community nestedness, and responses to patch size, arrangement, and quality. We collected occurrence data for 45 plant species from 88 rosemary scrub patches in 1989 and 2005 and used growth form, mechanism of regeneration after fire, and degree of habitat specialization to categorize species by life history. We tested whether patch size, fire history, and structural connectivity (a measure of proximity and size of surrounding patches) could be used to predict apparent extinctions and colonizations. In addition, we tested the accuracy of incidence-function models built with the patch survey data from 1989. After fire local extinction rates were higher for herbs than woody plants, higher for species that regenerated only from seed than species able to resprout, and higher for generalist than specialist species. Fewer rosemary specialists and a higher proportion of habitat generalists were extirpated on recently burned patches than on patches not burned between 1989 and 2005. Nestedness was highest for specialists among all life-history groups. Estimated model parameters from 1989 predicted the observed (1989-2005) extinction rates and the number of patches with persistent populations of individual species. These results indicate that species with different life-history strategies within the same metacommunity can have substantially different responses to patch configuration and quality. Real metacommunities may not conform to certain assumptions of simple models, but incidence-function models that consider only patch size, configuration, and quality can have significant predictive accuracy.  相似文献   

14.
The invertebrates living on specimens of the brown alga Pelvetia fastigiata, growing in the intertidal zone at La Jolla, California (USA) in November 1975 were enumerated. Within 7 collecting sites, larger plants generally shelter more animal species and individuals than smaller plants. The number of species on a given plant can be described as an equilibrium number; numbers of species and individuals can become similar on defaunated and transplanted algae of comparable sizes placed at the same experimental site. Such equilibria are site-specific because the colonization, immigration and loss rates of animals differ among the sites studied. Relationships between plant size and the number of animal species and individuals on P. fastigiata also differ among the collecting sites. The between-site differences are related to tidal level, to habitat diversity and to habitat patch-size. Small isolated plants without epiphytes shelter few species. The faunas of larger isolated plants at mid-tide levels generally include many thallus-dwelling, tubiculous, vagrant and epiphyte-dwelling species, but few such species commonly inhabit plants within aggregations of P. fastigiata. Within aggregations, the plants host relatively few epiphytes and thus lack habitat diversity, and the net emigration rates of many animals including epiphyte-dwellers are relatively high. Plants within aggregations, however, usually shelter more animal indivuduals than isolated plants. Thus, faunal diversity is reduced, not increased within the largest patches of P. fastigiata.  相似文献   

15.
Female-limited polymorphism is often attributed to selection to avoid excessive male mating attempts. It is encountered in various taxonomic groups, but is particularly common in damselflies, where one female morph (andromorph) typically resembles the conspecific male in colour pattern, while the other(s) (gynomorph(s)) do not. Two sets of theories have been proposed to explain the phenomenon in damselflies, which can be classified as the learned mate recognition (LMR) and male mimicry (MM) hypotheses. To test predictions of these hypotheses, we evaluated the rate of male sexual response towards female morphs and conspecific males in the damselfly Nehalennia irene. The LMR hypothesis predicts that males should respond sexually to andromorphs at greater rates in populations containing a higher relative frequency of andromorphs. The MM hypothesis predicts that males respond more often sexually to both andromorphs and males as the ratio of andromorphs to males increases. While LMR predicts that the rate of mating attempts towards gynomorphs should vary, the MM predicts that it should be relatively fixed. On experimentally presenting live specimens to focal males in five different populations with extreme variation in female morph frequencies, we observed that as the andromorph frequency and ratio of andromorphs to males increased, the proportion of male mating attempts increased on both andromorphs and males, whereas it decreased on gynomorphs. While the simplest form of the MM hypothesis is rejected, the results support specific predictions of both hypotheses and suggest that future studies should not treat these hypotheses as mutually exclusive.  相似文献   

16.
Availability of food resources and individual characteristics can influence foraging behaviour, which can differ between males and females, leading to different patterns of food/habitat selection. In dimorphic species, females are usually more selective in food choice, show greater bite rates and spend more time foraging than males. We evaluated sexual differences in foraging behaviour in Apennine chamois Rupicapra pyrenaica ornata, during the warm season, before the rut. Both sexes selected nutritious vegetation patches and spent a comparable amount of time feeding. However, males had a significantly greater feeding intensity (bite rate) and a lower search effort for feeding (step rate), as well as they spent more time lying down than females. Females selected foraging sites closer to refuge areas than males. In chamois, sexual size dimorphism is seasonal, being negligible in winter–spring, but increasing to 30–40 % in autumn. Our results suggest that males enhance their energy and mass gain by increasing their food intake rate during the warm season, to face the costs of the mating season (November). Conversely, females seem to prioritize a fine-scale selection of vegetation and the protection of offspring. A great food intake rate of males in the warm season could have developed as a behavioural adaptation leading herbivores to the evolutionary transition from year-round monomorphism to permanent dimorphism, through seasonal dimorphism.  相似文献   

17.
Summary Along the Caribbean coast of Panama, groups of unrelated female striped parrotfish, Scarus iserti, co-defend a common feeding territory. Field manipulations of group size and composition were performed to examine the benefits and costs accrued by dominant fish within these shared territories. Dominant fish benefit from the presence of relatively large subordinates because they share in the defense of the territory. Removals of these fish caused increases in defense time and decreases in feeding time for dominant group members. Dominants benefit from the presence of small subordinates because they increase the foraging efficiency of dominants. Removals of smaller subordinates caused reductions in the feeding time of dominant fish, although no changes in defense time occurred. Concurrently, dominant fish reduce costs of resource depletion by displacing subordinate group members from good food patches. Dominance interactions within a group reduce the amount of time subordinates spend feeding (subordinate individuals fed at higher rates following the removal of a dominant) and limit a subordinate's access to high quality resources. This combination of benefits and reduced costs ultimately contributes to the economic defensibility of a striped parrotfish territory and has led to the evolution of group territorial behavior in the absence of kin selection and cooperative parental care.  相似文献   

18.
Cues for detecting and responding to perceived predation risk may be indirect, i.e., correlated with the probability of encountering a predator, or direct, i.e., produced by or related to the actual presence of a predator. Research shows, independently, both types of cues can influence anti-predator and foraging behaviours in prey species. However, since animals naturally encounter indirect and direct cues simultaneously, we were interested in quantifying their cumulative effect. Our aim was to evaluate food intake and behaviours (patch use, feeding (rate and time), vigilance) of a nocturnal mammalian herbivore to indirect (open vs. covered microhabitats; illumination) and direct (fox/owl odours) predator cues. We ran a preference trial with four paired treatments using a covered Safe food patch and an open Risk food patch, with one of four combinations of indirect and direct predator cues. Predation risk had a significant effect on both intake and behaviour (including feeding time, rate, and vigilance), but these effects differed depending on cues. No two combinations of cues produced exactly the same effects, illustrating the complexity of interactions that occur between cues. Covered patches were always perceived as less risky than open patches, but unexpectedly, open patches were perceived as riskier when dark rather than light. The strongest suite of (negative) responses to risk was associated with combined indirect and direct cues. These results highlight the importance of considering jointly, intake from a patch, intake rate, and behaviours, such as the proportion of time spent vigilant, when quantifying predation risk, rather than intake alone.  相似文献   

19.
A predator's foraging performance is related to its ability to acquire sufficient information on environmental profitability. This process can be affected by the patchy distribution and clustering of food resources and by the food intake process dynamics.We simulated body mass growth and behaviour in a forager acting in a patchy environment with patchy distribution of both prey abundance and body mass by an individual-based model. In our model, food intake was a discrete and stochastic process and leaving decision was based on the estimate of net energy gain and searching time during their foraging activities. The study aimed to investigate the effects of learning processes and food resource exploitation on body mass and survival of foragers under different scenarios of intra-patch resource distribution.The simulation output showed that different sources of resource variability between patches affected foraging efficiency differently. When prey abundance varied across patches, the predator stayed longer in poorest patches to obtain the information needed and its performance was affected by the cost of sampling and the resulting assessment of the environment proved unreliable. On the other hand, when prey body mass, but not abundance, varied among the patches the predator was quickly able to assess local profitability. Both body mass and survival of the predator were greatly affected by learning processes and patterns of food resource distribution.  相似文献   

20.
Cell cycle analysis of muscle cell division rates offers a new and efficient technique to analyze growth of larval fish. Using this approach, growth of larval walleye pollock was estimated by determining cell proliferation rates, reasoning that growth during early life stages is probably attributed to increases in cell number rather than to increases in cell size. Characteristic patterns of brain and muscle cell division rates were produced in larval walleye pollock by manipulating their diet in the laboratory. The fraction of dividing muscle cells and, to a lesser extent, the fraction of dividing brain cells were direct indicators of fast and slow growth. A model was produced to estimate average growth rate from the fraction of dividing muscle cells. We developed a simple method for preparing and storing the muscle tissue that ensures nucleic acid stability for subsequent analyses and permits sampling in the field. We envision that the cell cycle methodology will have on-site applications, presenting an opportunity to attain real-time estimates of larval fish growth at sea. Determining the proportion of first-feeding larvae with a high fraction of dividing muscle cells may yield a means for predicting the proportion of fast-growing fish, i.e., the potential survivors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号