首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
2015年7月~2016年3月期间在广西玉林市3个空气监测点位共采集环境大气颗粒物PM_(10)样品218份,PM_(2.5)样品202份,利用多波段热/光碳分析仪分析其颗粒物中有机碳和(OC)和元素碳(EC)浓度水平、时空变化、污染特征及可能来源.结果表明,玉林市PM_(10)中OC和EC质量浓度分别为10.99μg·m~(-3)和5.11μg·m~(-3);PM_(2.5)中OC和EC质量浓度分别为7.51μg·m~(-3)和4.70μg·m~(-3).3个监测点位大气中PM_(10)和PM_(2.5)冬季的OC和EC浓度水平均高于其他季节,PM_(10)、PM_(2.5)中OC和EC的相关性较好,R2分别为0.58和0.60(P均小于0.01).应用最小OC/EC比值法对二次有机碳(SOC)含量进行了估算,冬季大气PM_(10)和PM_(2.5)中SOC平均质量浓度分别为14.50μg·m~(-3)和6.74μg·m~(-3),高于其他季节.PM_(10)和PM_(2.5)中SOC/OC比值均0.5,玉林市大气中粗细颗粒物均以SOC为主.夏季PM_(10)和PM_(2.5)中SOC/OC分别为80.6%和77.7%,为四季最高值,与夏季温度较高、光照强烈、有利于光化学反应将OC转化为SOC有关.  相似文献   

2.
天津市春季道路降尘PM2.5和PM10中的元素特征   总被引:1,自引:0,他引:1  
为探究天津市春季道路降尘中元素污染特征及来源,于2015年春季采集了天津市道路降尘样品,通过再悬浮得到PM_(2.5)和PM_(10)滤膜样品,继而测定了滤膜样品中16种元素的含量,通过非参数检验、分歧系数法、富集因子法等研究了道路降尘中元素的污染特征、来源和成分谱的相似性.结果表明,天津市春季道路降尘PM_(2.5)和PM_(10)质量分数平均值在1%~20%之间的元素从大到小依次为:SiAlCaFeMgKNa;PM_(10)和PM_(2.5)中元素成分谱分歧系数为0.06,表明两者元素成分谱很相似;PM_(10)和PM_(2.5)中,元素Cd和Cr强烈富集,Zn、Cu、Pb和As显著富集;道路降尘PM_(2.5)和PM_(10)中元素主要来源于土壤风沙尘、建筑尘、交通尘(汽车尾气的排放、轮胎磨损和刹车片磨损)和煤烟尘.  相似文献   

3.
2005年四季在北京市不同功能区9个采样点采集大气PM10和PM2.5样品,并对其中有机物污染水平、分布特征及不同功能区PM10和PM2.5中有机物的相关性进行了探讨.结果表明,市区PM10和PM2.5中有机物年均值分别为41.39 μg/m3和34.84 μg/m3,是对照区十三陵的1.44倍和1.26倍;冬季有机物污染最严重,分别为春季的1.15、 1.82倍,秋季的2.06、 2.26倍,夏季的4.53、 6.26倍.不同季节PM2.5与PM10中EOM的比值超过0.60, 并呈现一定季节差异.各功能区有机污染表现出工业区(商业区)>居民区(交通区、对照区)的变化趋势,且不同功能区PM2.5中EOM对PM10中EOM的影响程度各异.有机组分的年均值有非烃>沥青质>芳烃>饱和烃的变化规律,而污染源的季节性排放是造成有机物组分季节变化的主要原因.  相似文献   

4.
为研究南京北郊不同季节PM_(2.5)中碳质组分的主要来源,分别在2014年1月1—23日和2014年7月3—22日进行PM_(2.5)样品采集,并分析其中有机碳(OC)、元素碳(EC)浓度及总碳同位素组成.结果表明,冬季PM_(2.5)浓度高于夏季,平均值为(146.69±64.67)μg·m-3,OC、EC浓度较高,分别为(14.77±5.58)μg·m-3与(9.01±4.74)μg·m-3;而夏季PM_(2.5)浓度为(57.69±23.80)μg·m-3,OC、EC浓度分别为(5.94±2.20)μg·m-3和(2.78±1.25)μg·m-3.二次有机碳(SOC)占OC比重较小,冬、夏两季分别为36.99%与27.37%,这与采样点紧邻公路主干道使颗粒物未得到充分的二次反应有关.南京北郊冬季δ13C平均值为-25.38‰±0.36‰,夏季为-26.50‰±0.58‰,通过与潜在污染源的δ13C值对比,推断出采样期间冬季主要的潜在碳质污染源为煤炭燃烧及机动车尾气,夏季主要的潜在碳质污染源为生物质燃烧及汽车尾气.  相似文献   

5.
从天气背景场、气象要素、前体物和PM_(2.5)化学组分、气团运动轨迹以及大气氧化性等方面对北京市夏季两种不同的O_3和PM_(2.5)污染状况进行了分析.结果表明,O_3达到中度污染而PM_(2.5)浓度优良(O_3和PM_(2.5)一高一低)污染状况的天气形势场为:高空为偏西北气流,地面受高压后部控制;而O_3和PM_(2.5)同时达到中度污染(O_3和PM_(2.5)两高)的天气形势场为:高空为偏西气流,地面受低压控制.与O_3和PM_(2.5)一高一低污染状况相比,O_3和PM_(2.5)两高时的气象要素特征为:偏南风更为明显和相对湿度更高.O_3和PM_(2.5)两高时污染物浓度演变特征为,O_3和PM_(2.5)的起始浓度较高,PM_(2.5)日变化特征更为明显,而O_3平均浓度却低于O_3和PM_(2.5)一高一低的污染状况.前体物、大气氧化性以及PM_(2.5)化学组分分析的结果表明,较高的起始浓度在不利气象条件下的积累和吸湿增长以及当天较大偏南风造成的区域传输可能是造成O_3和PM_(2.5)两高污染状况中PM_(2.5)浓度达到四级中度污染的主要原因.  相似文献   

6.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

7.
长三角典型站点冬季大气PM2.5中OC、EC污染特征   总被引:1,自引:0,他引:1  
康晖  朱彬  王红磊  施双双 《环境科学》2018,39(3):961-971
对2015年1月9日~2015年1月31日临安、南京和苏州3个站点采集的PM_(2.5)样品(共计279组),使用热光反射法(thermal/optical reflectance,TOR)分析了样品中有机碳(OC)与元素碳(EC)的含量,并研究了长三角地区冬季PM_(2.5)中OC和EC的污染特征.结果表明,采样期间临安、南京和苏州的PM_(2.5)平均质量浓度分别为(123.56±61.11)、(144.77±62.91)和(156.5±68.97)μg·m-3,均超过我国《环境空气质量标准》(GB 3095-2012)规定的PM_(2.5)日均值75μg·m-3;其中3个站点OC与EC的平均质量浓度依次分别为(21.93±11.69)/(6±3.6)、(20.32±10.3)/(5.39±3.07)和(27.08±14.35)/(6.4±4.29)μg·m-3.临安作为长三角大气环境背景点,OC与EC的污染也较为严重.3个站点OC与EC的相关性为临安(R2=0.83)、南京(R2=0.72)和苏州(R2=0.72),表明冬季长三角地区的碳质气溶胶的来源较为一致和稳定.3个站点样品中的OC/EC值均大于2.0,样品的OC/EC值主要分布在2.5~6.0这个区间内,表明燃煤源和机动车尾气排放源是OC与EC的主要来源.使用EC示踪法估算临安、南京和苏州3个站点的二次有机碳(SOC)平均质量浓度分别为(9.23±5.26)、(6.82±4.36)和(12.56±7.52)μg·m-3,在OC中占比为42%、34%和46%,表明SOC是OC的重要组成部分.后向轨迹显示,PM_(2.5)、OC和EC的质量浓度与主要气团的传输路径有较好的相关性,自空气质量较差区域气团的PM_(2.5)、OC和EC的质量浓度是来自空气质量较好区域的1.14~1.7倍、1.55~2.1倍和1.94~2.47倍.  相似文献   

8.
2015年北京市两次红色预警期间PM2.5浓度特征   总被引:2,自引:1,他引:2  
利用北京市及周边地区大气污染物监测数据,综合分析了2015年北京市两次空气重污染红色预警期间PM2.5浓度变化特征并初步评估了减排措施对PM2.5浓度的影响.结果表明:第1次红色预警期间,北京市PM2.5平均最高小时浓度出现在12月9日19:00,为282μg·m-3,单站最高小时值出现在京东南市界永乐店站,浓度达496μg·m-3.第2次红色预警期间,PM2.5全市平均最高小时浓度出现在12月22日20:00,为421μg·m-3;单站最高小时值出现在京西南市界琉璃河站,浓度达831μg·m-3.两次红色预警累积持续时间均呈现出南部站 > 城区站 > 北部站的特征,且第2次红色预警期间PM2.5浓度南北差异明显大于第1次,PM2.5平均浓度在150μg·m-3以上的面积明显大于第1次,第2次红色预警期间重污染面积可达总面积的93%.两次预警期间气象条件均不利于污染物的扩散,均存在不同程度的二次转化和区域输送现象,极端气象条件是重污染形成的外因,区域污染物排放量大才是导致重污染形成的内因.初步评估结果显示红色预警应急措施实施后,北京市PM2.5环境浓度下降约20%~25%,减排效果显著.  相似文献   

9.
城市PM2.5健康损害评估研究   总被引:3,自引:1,他引:3  
刘帅  宋国君 《环境科学学报》2016,36(4):1468-1476
参考美国Ben MAP软件,提出城市PM_(2.5)健康损害评估的基本框架,并就评估方法和参数使用中的关键问题进行了论述,包括人群健康损害评估指标的确定、空间尺度和时间尺度的选择、健康终点的界定、人群年龄结构的划分、比较的基准的确定,以及"剂量-反应"关系参数和生命价值参数的选择等.本文收集和整理了2014年北京市空气质量监测点PM_(2.5)浓度监测数据及暴露人口、基期死亡率等数据,运用"向标准靠拢(Rollback to Standard)"的方法,估算北京市PM_(2.5)达到空气质量标准情景下的浓度值,以此作为比较的基准,使用美国Ben MAP数据库收录的"剂量-反应"关系参数,分别基于"工资-风险"法模型和人力资本法模型估计生命价值参数,代入本文城市PM_(2.5)健康损害评估的基本框架,计算2014年北京市PM_(2.5)对人群健康的损害.  相似文献   

10.
利用2013年北京市6个站点PM_(2.5)浓度及5个站点气象监测数据,综合采用数理统计、物理识别、数值模拟的方法分析了2013年北京市不同方位PM_(2.5)的背景值.结果表明,2013年北京市西北、东北、东、东南、南、西南这6个方向边界点位的背景浓度在40.3~85.3μg·m-3之间,按由低到高顺序依次为密云水库、八达岭、东高村、榆垡、永乐店和琉璃河;2013年北京市PM_(2.5)北风时段背景值最低,西风时段次之,南风、东风时段明显偏高,不同风向下背景浓度的平均值分别在6.5~27.9、22.4~73.4、67.2~91.7、40.7~116.1μg·m-3之间,表现出北京东、南方向PM_(2.5)背景浓度较高分布特点;模拟的2013年北京市PM_(2.5)背景浓度空间分布呈现出南高北低的特征,周边区域对北京市PM_(2.5)背景浓度空间分布影响显著.  相似文献   

11.
北京市PM_(2.5)主要化学组分浓度水平研究与特征分析   总被引:1,自引:1,他引:1  
为研究北京市大气环境PM_(2.5)中主要化学组分特征,于2012年8月—2013年7月期间,在北京市定陵、车公庄、东四、石景山、通州、房山、亦庄和榆垡等8个点位开展为期1年的样品采集,共计采集472组样品,分析每组样品中OC、EC、水溶性离子和18种无机元素等组分.研究结果表明,本次研究的组分重建后和实际PM_(2.5)浓度相关性显著,相关系数为0.94,所测组分平均占PM_(2.5)总量的90%;各点位不同季节PM_(2.5)中主要的组分均为OC、NO_3~-、SO_4~(2-)、NH_4~+,呈南高北低的趋势,冬季OC是夏季的1.7倍,NO_3~-和SO2--4在四季呈交替状态,除榆垡点位的SO_4~(2-)NO_3~-外,其他点位均是NO_3~-SO_4~(2-),4种主要的组分质量浓度分别为(23.1±21.4)、(20.3±23.4)、(19.4±22.2)、(13.6±15.2)μg·m-3,占PM_(2.5)总含量的18.5%、16.3%、15.6%、10.9%;研究水溶性离子发现,8个点位全年SNA/PM_(2.5)比例为42.8%,其中,夏季最高(49.9%),秋季较低(31.1%),NO_3~-/SO_4~(2-)比值平均为1.05,相对往年研究结果 NO_3~-/SO_4~(2-)比值有增加的趋势.  相似文献   

12.
北京市典型排放源PM_(2.5)成分谱研究   总被引:5,自引:1,他引:5  
为了建立和完善北京市PM_(2.5)本地化源谱,对北京市11类排放源PM_(2.5)进行采集,并测定其26种组分,分析了不同排放源源谱的组分特征.结果表明,在有组织排放源中,燃煤电厂PM_(2.5)中OC和Si含量很高,占PM_(2.5)的质量分数分别为8.56%和6.19%(平均值),而供热/工业锅炉排放PM_(2.5)中则是SO_4~(2-)(占48.38%)和OC(11.0%)比例最高,水泥窑炉PM_(2.5)中OC(7.12%)、Ca(4.81)和Si(4.41%)占有较大比例;垃圾焚烧排放的PM_(2.5)中Si、Ca、K和SO_4~(2-)均较高,分别占8.15%、9.36%、7.17%和6.79%,且Cl~-含量(2.5%)高于其他所有源,生物质燃烧源PM_(2.5)中OC(21.7%)、Si(6.75%)、Ca(6.15%)较为丰富,餐饮源PM_(2.5)中OC(19.44%)、SO_4~(2-)(5.76%)和K(3.11%)含量均较高;无组织开放源中,道路扬尘和土壤风沙PM_(2.5)化学组分含量变化较为一致,均是Si(分别为16.8%和9.3%)和OC(分别为8.89%和6.61%)最高,建筑水泥尘PM_(2.5)中Ca(17.46%)含量高于其他源;流动排放源PM_(2.5)中OC、EC比例最高,其中,重型柴油车的OC(29.79%)与EC(26.5%)排放比例相当,而轻型汽油车OC排放占有绝对优势(占75%).本文通过对比国内外部分排放源PM_(2.5)成分谱的差异,指出不同区域相同源类排放的PM_(2.5)化学组分差异较大,在应用受体模型中的化学质量平衡模型(CMB)判断受体颗粒物来源时,应基于本地的排放源成分谱,以避免较大的误差.  相似文献   

13.
廊坊市秋季环境空气中颗粒物组分昼夜变化特征研究   总被引:3,自引:0,他引:3  
为研究廊坊市区秋季环境空气中颗粒物浓度及其组分昼夜变化特征,于2015年9月12—21日在廊坊市进行PM_(2.5)和PM_(10)采样,并对采集的样品无机元素、水溶性离子和碳组分(OC和EC)分析.结果表明,夜间PM_(2.5)和PM_(10)浓度比白天高,且下半夜出现大幅上升.PM_(2.5)/PM_(10)比值为0.49~0.62,下半夜最高.碳组分、Ba、Cr、Cl~-、NO_3~-、SO_4~(2-)、NH_4~+等主要富集在PM_(2.5)中,而Ca、Al、Si、Mg~(2+)和Ca~(2+)等主要富集在PM_(10)中.通过昼夜颗粒物组分对比发现,夜间EC、Cu、Zn、Cr、Pb、Cl~-、NO_3~-和NH_4~+等浓度明显上升.同时,下半夜OC/EC比值明显变小,Cl-、NO_3~-和NH_4~+浓度明显增大,同时段CO和NO_2浓度上升,而SO_2浓度变化平缓.以上表明采样期间廊坊夜间可能存在移动源和部分工业污染源排放.  相似文献   

14.
万州城区夏季、冬季PM_(2.5)中有机碳和元素碳的浓度特征   总被引:3,自引:2,他引:3  
在位于三峡库区腹心的山地城市万州城区采集夏季和冬季PM2.5样品,采用热光反射法(Thermal Optical Reflection,TOR)测定了PM2.5中有机碳(OC)和元素碳(EC)的浓度,探讨了其污染特征及来源.结果发现,OC和EC在夏季的平均浓度分别为(7.09±1.86)μg·m-3和(3.49±0.64)μg·m-3;冬季分别为(16.82±6.87)μg·m-3和(6.21±2.06)μg·m-3,高于夏季,这可能与冬季当地居民生物质燃烧的贡献显著增加有关.冬季OC和EC显著线性相关(r=0.89),表明冬季两者的一次污染来源相近.冬季PM2.5中总碳(TC)和水溶性K+含量的相关性(r=0.88)高于夏季(r=0.69),表明冬季生物质燃烧对碳污染贡献显著.利用OC/EC比值法对二次有机碳(SOC)进行估算,SOC的浓度均值在夏季为(2.17±1.46)μg·m-3,占OC比例为28.18%±13.85%;冬季为(4.46±3.69)μg·m-3,占OC的23.13%±12.30%.通过计算PM2.5中8个碳组分丰度,初步判断机动车尾气排放和生物质燃烧是万州城区碳组分的主要来源.  相似文献   

15.
在城市区域内,空气污染物的浓度在小范围内存在显著差异,而离散的地面监测点分布不均匀,且监测范围有限,无法满足污染物暴露评估等研究的需求.本研究基于GIS空间分析和多元逐步回归的模型构建的方法,建立了土地利用回归(LUR)模型,并模拟了北京市2019年PM2.5和PM10浓度的空间分布特征.选择土地覆盖数据、气象数据(风速、降水、温度)和植被覆盖度数据等预测变量,以研究区34个监测站点为中心建立0.1~5 km共7个系列缓冲区,表征不同尺度下各变量对PM2.5和PM10浓度的影响.研究结果表明:①进入PM2.5回归模型中的变量有:年均风速、温度、降水量和周围中等植被覆盖、耕地和不透水面的面积;进入PM10回归模型中的变量有:年均风速和周围中等植被覆盖的面积.两个模型的调整R2分别为0.829和0.677,模型精度较高.②抑制污染物浓度的变量,影响力随着空间范围扩大而增强;使污染物浓度增加的变量,影响力随着空间范围缩小而增强.③浓度模拟结果显示,PM2.5和PM10在西北部山区浓度较低,南偏东的城区浓度较高,并且向南有逐渐增加趋势.4植被覆盖度这一变量不仅进入了上述两个方程,且影响力都强于其他土地利用类型,故以后的模型改进应该考虑植被覆盖度这一因素.  相似文献   

16.
海口市PM_(2.5)和PM_(10)来源解析   总被引:1,自引:1,他引:1       下载免费PDF全文
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著.  相似文献   

17.
北京市大气PM2.5中矿物成分的污染特征   总被引:6,自引:1,他引:6  
为了解北京市大气细粒子中矿物成分的浓度水平和污染特征,在清华园和车公庄进行了连续1a的PM2.5累积周采样和全样品分析.Al、Si、Ca、Mg和Fe等地壳元素的周变化相似,最大周均浓度均出现在春季有强沙尘天气的一周;其季节变化显著,显示季节性的源排放以及气象条件对矿物成分的含量影响显著.土壤尘的季节平均浓度从夏季逐步上升,至次年春季达到最高(21.1 μg·m-3),表明春季频繁发生的沙尘天气对土壤尘细粒子有重要贡献.大量的建筑活动可能大大增加了北京细粒子中Ca的负荷,应加强其排放控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号