首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
序批式生物反应器填埋场脱氮微生物多样性分析   总被引:1,自引:6,他引:1  
为探究序批式生物反应器填埋场脱氮过程中的微生物作用机制,本研究采用建立脱氮功能基因(amoA、nosZ)克隆文库及PCR-RFLP技术对序批式生物反应器填埋场垃圾稳定化后期的主要脱氮功能微生物多样性进行分析.结果表明,矿化垃圾反应器中检测到的氨氧化细菌存在高度多样性,大部分为未知类群,且均为不可培养菌或未经分离获得的细菌,经系统发育树分析系统内氨氧化细菌以β-变形菌门中的亚硝化单胞菌属(Nitrosomonas)为主;新鲜垃圾反应器中反硝化细菌种群丰富,主要有β-变形菌纲中的陶厄氏菌属(Thauera)和硫杆菌属(Thiobacillus).Thauera属在好氧条件下具有反硝化特性,Thiobacillus属中的脱氮硫杆菌(Thiobacillus denitrificans)是一种硫自养反硝化菌,可见新鲜垃圾单元稳定化后期以好氧反硝化和自养反硝化的脱氮途径为主.此外文库中检测到的一部分反硝化细菌可能归属于α-变形菌纲的慢生根瘤菌科(Bradyrhizobiaceae).  相似文献   

2.
同步硝化反硝化系统中反硝化细菌多样性研究   总被引:14,自引:0,他引:14  
采用聚合酶链式反应(PCR)和分子克隆构建nirS克隆文库对同步硝化反硝化系统好氧池中反硝化细菌多样性进行了研究.从克隆文库中随机挑选75个克隆子进行序列测定,对测序结果进行了BLAST比对.结果表明,有74个克隆子分属于3个不同的细菌类群,包括β-Proteobacteria、γ-Proteobacteria和Uncultured bacterium. β-Proteobacteria纲为好氧池内优势菌群,占文库比例的54.41%;其次是γ-Proteobacteria纲,占文库比例的25%.对测序得到的12个OTU用MEGA软件进行系统发育分析,结果显示Thauera属为该系统中最主要的脱氮菌属.  相似文献   

3.
从受氮污染浅层含水层介质中分离纯化得到1株高效异养硝化-好氧反硝化细菌XK51,经过菌落形态、生理生化特性及16S rDNA基因序列分析,鉴定该菌株为假单胞菌属恶臭假单胞菌(Pseudomonas Putida)。脱氮性能结果表明:XK51为兼性反硝化细菌,能在好氧或缺厌氧条件下高效反硝化脱氮,最大和平均反硝化速率分别为27.3,4.4 mg/(L·h),硝酸盐脱除率为95.3%;该菌株同时具有较高异养硝化能力,最大和平均硝化速率分别为4.2,1.4 mg/(L·h),氨氮脱除率为98.5%。XK51最佳碳源为柠檬酸三钠,适宜生长温度为28~35℃,最适温度为30℃;适宜生长pH为6.5~8.0,最适pH为7.0。XK51可同时进行异养硝化及同步硝化-反硝化,培养期间未出现明显亚硝酸盐和硝酸盐累积,在含氮污废水处理和地下水氮污染修复方面具有潜在工程应用价值。  相似文献   

4.
好/厌氧条件下反硝化细菌脱氮特性与功能基因   总被引:1,自引:2,他引:1  
从西安市金盆水库沉积物中分离筛选出1株高效反硝化细菌,经形态学观察和16S r DNA测序鉴定为施氏假单胞菌(Pseudomonas stutzeri),命名为KK99.探究了该菌株在好/厌氧条件下的脱氮特性以及nar G、nir S和nos Z功能基因的表达水平.结果表明,KK99菌株在好/厌氧条件下,均能进行反硝化作用,且在两种不同的条件下均具有高效的脱氮效率.经过24h的培养,其总氮(TN)去除率分别为85.08%和89.05%.胞内功能基因nos Z和nir S的表达量较高,nos Z在好氧条件下的反硝化发挥主要作用,nir S在厌氧条件下的反硝化发挥主要作用,nar G在两种条件下的表达均较低.同时该菌株还具有同步硝化反硝化性能,在好氧条件下,能同时去除硝酸盐氮和氨氮,24 h时,TN去除率为76%.施氏假单胞菌(P.stutzeri KK99)将为微污染水体富营养化控制和总氮削减工程应用提供菌源保障.  相似文献   

5.
2株好氧反硝化菌的筛选及其强化贫营养生物膜脱氮效果   总被引:1,自引:1,他引:0  
全向春  岑艳  钱殷 《环境科学》2013,34(7):2862-2868
经富集培养、BTB培养基初筛与反硝化能力测定,从城市污水处理厂活性污泥中筛选得到2株好氧反硝化细菌.通过16S rDNA同源性分析对2株菌进行鉴定;并将这2菌株接种到贫营养生物膜体系中以探究它们对系统总氮的去除能力的强化.结果表明,这2株菌分别属于Pseudomonas aeruginosa和Pseudomonas putida,2株好氧反硝化菌单独存在时,对模拟废水的TN去除率分别达78%和82%;2株细菌强化后的生物膜系统对TN去除率达68%和64%,较非强化对照系统分别提高47%和43%,且NH4+-N去除率均接近100%.说明这2株好氧反硝化细菌具有较强的反硝化能力,并能够有效强化生物膜在贫营养条件下的反硝化能力,并且不会抑制生物膜硝化能力,可实现生物膜系统同步硝化反硝化.  相似文献   

6.
活性污泥中好氧反硝化菌的富集筛选及鉴别   总被引:12,自引:2,他引:12  
采用SBR反应器,以硝基氮为底物,通过间歇曝气方式,DO保持5mg/L以上,对活性污泥进行强化驯化,实现好氧反硝化细菌的富集培养。利用琥珀酸钠作为碳源,溴百里酚蓝(BTB)作为pH指示剂,共筛选得到20株BTB琼脂平板阳性菌。通过反硝化性能测定,复筛得到4株好氧反硝化细菌。实验结果表明,琥珀酸盐为碳源、硝酸盐为惟一氮源、C/N<10的条件下,4株菌在4d内的TIN去除率均达到60%以上。通过16SrRNA序列同源性比较成功鉴定出3株菌,初步判断2株属于Pseudomonas菌属、1株属于Delftia菌属。  相似文献   

7.
从燃煤电厂生物滴滤系统填料的生物膜上筛选分离出一株高效好氧反硝化细菌JH8。经生理生化鉴定和16S r DNA序列分析,鉴定该菌为地衣芽孢杆菌(Bacillus licheniformis)。对菌株JH8进行反硝化特性研究,发现该菌可以分别以硝酸盐和亚硝酸盐为氮源,在50℃条件下进行好氧反硝化,24 h内的脱氮率高达86.96%和97.63%。通过单因素实验得到该菌最优脱氮条件:以柠檬酸钠为碳源、转速为160 r/min、C/N为16,优化后该菌24 h内脱氮率可达99%。该菌的分离对于研究高温环境下的好氧反硝化机理具有重要意义。  相似文献   

8.
克隆文库方法分析厌氧氨氧化反应器中细菌群落结构   总被引:5,自引:0,他引:5  
为了认识低基质浓度污水厌氧氨氧化(ANAMMOX)脱氮过程的生物学机制,为ANAMMOX脱氮工艺的优化提供理论依据,通过构建细菌16S rDNA(约1 500 bp)克隆文库和浮霉菌特有16S rDNA(约830 bp)克隆文库对ANAMMOX脱氮反应器中活性污泥的细菌群落结构进行分析。从细菌16S rDNA克隆文库中随机挑选到160个克隆子,共31个分类单元(OTU),与GenBank数据库比对结果表明,厌氧颗粒污泥中的细菌群落具有丰富的多样性,包括:变形菌门(Proteobacteria)、拟杆菌门(Bacteroidete)、硝化螺旋菌门(Nitrospira)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)、Candidate division OP10、浮霉菌门(Planctomycetes)和未知菌,其中,变形菌门和拟杆菌门为优势菌群,分别占41.9%和34.2%。在浮霉菌特有16S rDNA克隆文库的40个克隆子中,34个克隆子属于CandidatusKuenenia属的厌氧氨氧化细菌,它们是ANAMMOX脱氮过程的主要功能菌。  相似文献   

9.
准好氧矿化垃圾床处理渗滤液的脱氮菌群研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为探明准好氧矿化垃圾床处理渗滤液的生物脱氮机理,采用最大或然数计数法以及一系列的生化试验和镜检照片,研究了床层不同高度脱氮菌的数量和菌群结构.结果表明:床内亚硝化菌、硝化菌、厌氧反硝化菌和好氧反硝化菌的平均数量分别为5.3×106,7.5×106,6.9×103和2.5×105 g-1,亚硝化菌、硝化菌和好氧反硝化菌主要富集于反应床的表层和底部,厌氧反硝化菌主要富集于反应床的中部;从床内共分离出3株亚硝化菌,6株硝化菌,5株厌氧反硝化菌和6株好氧反硝化菌.准好氧矿化垃圾床处理渗滤液的生物脱氮机理为同步硝化反硝化,主要发生在反应床的表层和底部.   相似文献   

10.
采用富集培养和BTB(溴百里酚蓝)平板法从活性污泥中分离出一株高效的反硝化菌ADH1。结合16S rDNA系统发育分析结果和生理生化反应,将该菌鉴定为施氏假单胞菌(Pseudomonas stutzeri),经检测该菌株中存在反硝化功能基因nirS和nosZ,并由此推知其具备完整的反硝化酶系。通过这两种功能基因的系统发育分析,从另一角度证实了菌株ADH1属于Pseudomonas sp.。反硝化特性研究结果表明,在静置条件下,该菌在16 h内对NO3--N的转化率达到96.1%,其中84.7%的NO3--N完全经反硝化作用从培养液中去除,剩余的则被菌体同化吸收;而在150 r/min的振荡培养条件下,该菌在10 h对NO3--N的转化率高达97.8%,TN去除率也超过40%。研究结果表明菌株ADH1可能是一株有着良好应用前景的高效好氧反硝化细菌。  相似文献   

11.
张喆  傅金祥  朱京海 《环境工程》2020,38(10):108-113
针对低温污水生物脱氮效率低问题,采用有机高分子复合硬性颗粒(OPCRP)-SBMBBR反应器处理低温污水,与传统SBR反应器对比,通过Miseq高通量测序技术分析了2套反应器中活性污泥的细菌菌群多样性及组成结构丰度差异,揭示高效处理低温污水优势脱氮菌群。结果表明:在水温(6.5±1)℃条件下,OPCRP-SBMBBR反应器出水脱氮效果及污泥沉降速率均明显提高;投加填料有助于提高活性污泥系统内硝化反硝化菌多样性和相对丰度,即优势氨氧化菌(AOB)、亚硝酸盐氧化菌(NOB)、厌氧反硝化菌总相对丰度分别由SBR(R1)的3.9%、3.47%、15.87%增加到OPCRP-SBMBBR(R2)的5.21%、5.26%、23.64%。异养硝化-好氧反硝化菌种红环菌科、Enterobacteriaceae、Terrimonas,分别由R1的2.77%、1.63%、2.43%增加到R2的3.3%、3.11%、2.59%; R2独有的好氧反硝化菌种包括假单胞菌属、氢噬胞菌属等,其相对丰度分别为1.17%、0.79%。R1、R2中优势好氧反硝化菌种总相对丰度分别为10.66%、17.35%,优势硝化菌种...  相似文献   

12.
16S rDNA克隆文库方法分析好氧颗粒污泥细菌组成   总被引:8,自引:2,他引:6  
采用构建16S rDNA克隆文库方法对好氧颗粒污泥的细菌种群多样性进行研究. 随机测定了82个克隆子序列(700 bp),Blast比对结果表明,好氧颗粒污泥中微生物群落具有高度多样性,可分为7个主要类群,其中,β变形菌(β-Proteobacteria)类群和鞘脂杆菌(Sphingobacteria)类群在文库中所占比例最大,分别为34.16%和30.50%;其次是Candidate division TM7类群、黄杆菌(Flavobacteria)类群和γ变形菌(γ-Proteobacteria)类群,分别为9.76%,7.32%和7.32%;放线菌(Actinobacteria)类群和α变形菌(α-Proteobacteria)类群所占比例相对较小,分别为4.88%和1.22%. 序列分析结果表明,好氧颗粒污泥中不仅含有对好氧颗粒污泥形成和稳定运行具有重要作用的食酸菌属(Acidovorax)细菌、假单胞菌(Pseudomonas)等细菌,还含有对CODCr和氨氮具有很好去除能力的Micropruina glycogenica,丛毛单胞菌科(Comamonadaceae)等细菌.   相似文献   

13.
郑少奎  罗焇湝 《环境科学研究》2022,35(10):2338-2347
自1970年代研究者发现聚磷菌(polyphosphate accumulating organism, PAO)并提出经典的强化生物除磷(enhanced biological phosphorus removal, EBPR)工艺“厌氧释磷-好氧摄磷”机理以来,随着EBPR工艺中PAO新菌株的不断发现和生理生化特征研究的不断深入,研究者们对EBPR机理的认识一直在不断更新. 及时总结近40年来EBPR机理的研究进展,基于活性污泥中PAO菌株信息全面归纳PAO多样性特征,以此为依据客观评价目前活性污泥中PAO除磷潜力评价方法的不足并展望未来重点研究方向,对于推动EBPR工艺优化升级将具有非常重要的理论与实际意义. 本文全面调研了1980—2021年国际期刊相关文献,发现传统EBPR机理中厌氧内碳源合成、厌氧释磷意义等受到了较多质疑,反硝化聚磷新机理已获得广泛认同;活性污泥中PAO具有异常丰富的多样性,包含Acinetobacter(29%)、Pseudomonas(15%)、Tetrasphaera(4%)、Alcaligenes(4%)等42个菌属,部分PAO具有反硝化聚磷和异养硝化能力. 在目前主流的活性污泥PAO除磷潜力评价方法中,荧光原位杂交和定量PCR技术只以Accumulibacter或Acinetobacter属PAO为检测对象,高通量测序和变性梯度凝胶电泳技术基于片面的PAO多样性信息作为分析依据,在此基础上PAO丰度所反映的PAO除磷潜力的准确性尚存在疑问,未来需要加强面向活性污泥PAO多样性的探针或特异性引物的研发. 与传统方法相比,EDTA法胞内多聚磷酸盐颗粒含量检测技术较为先进,但需要以PAO和非PAO菌株为参照深入阐明检测结果的边界.   相似文献   

14.
生物降解是有机污染物去除的重要途径,为探究环境中微生物对2,4-二羟基二苯甲酮(2,4-dihydroxybenzophenone,BP-1)的降解能力,本文以BP-1为唯一碳源,设置好氧和厌氧条件分别驯化富集功能菌群,通过高通量测序技术深度解析群落多样性及功能菌群,在此基础上筛选关键功能菌,并评估其降解效能.结果显示,好氧降解是BP-1降解的主要途径,BP-1在好氧处理系统中的降解速率是厌氧体系的2.74倍.好氧体系中微生物群落多样性显著高于厌氧体系,变形菌门(Proteobacteria,40.66%)是好氧体系中的优势菌门,红环菌目(Rhodocyclales,28.15%)、假单胞菌目(Pseudomonadales,3.11%)、鞘氨醇菌目(Sphingomonadales,2.22%)是变形菌门中占优势地位的菌目.采用选择性培养基从好氧驯化污泥中筛选获得4株BP-1降解菌,经鉴定分别为甲基营养型芽孢杆菌(Bacillus methylotrophicus) BP1.1、解淀粉酶芽孢杆菌(Bacillus amyloliquefaciens) BP1.2、红球菌(Rhodococcus sp.) BP1.3和鞘氨醇单胞菌(Sphingomonas sp.) BP1.4,其中甲基营养型芽孢杆菌BP1.1降解速率最快,在6 h内对BP-1的降解率高达99.9%,显著降低了BP-1引起的急性毒性和类雌激素效应,为高效去除废水中BP-1提供了微生物种质资源.  相似文献   

15.
固定化反硝化聚磷菌同步除磷脱氮实验研究   总被引:3,自引:0,他引:3  
实验采用海藻酸钠和PVA添加膨润土包埋固定经富集驯化的以反硝化聚磷菌(DNPAOs)为主的活性污泥,利用体视显微镜和扫描电子显微镜考察了固定化小球的形态和表面结构,并对厌氧/好氧条件下,包埋小球除磷脱氮性能进行探讨,结果表明:固定化小球具有良好的强化生物除磷和较好的反硝化脱氮性能,体系的COD去除率平均达74.9%,平均除磷效率为95.3%,氨氮平均去除率达到95.2%左右。小球若长时间缺氧,在其内部会出现厌氧区,并产生厌氧放磷现象。  相似文献   

16.
筛选出1株耐盐异养硝化-好氧反硝化菌qy37,通过形态观察、生理生化试验和16S rDNA序列分析,确定其为假单胞菌属(Pseudomonas).研究了异养硝化-好氧反硝化菌qy37的脱氮特性.在以NH4Cl为氮源的异养硝化系统内,该菌32 h内使NH 4+-N由138.52 mg/L降至7.88 mg/L,COD由2 408.39 mg/L降至1 177.49 mg/L,NH2 OH最大积累量为9.42 mg/L,NO 2--N最大积累量仅为0.02 mg/L,推测该菌将NH2OH直接转化为N2O和N2从系统中脱除.在以NaNO2为氮源的好氧反硝化系统内,该菌24 h内使NO 2--N由109.25 mg/L降至2.59 mg/L,NH2OH最大积累量为3.28 mg/L.好氧反硝化系统与异养硝化系统相比菌体生长量高,TN去除率低,COD消耗量低,NH2OH积累量低,并且检测到NO 3--N的积累.认为好氧反硝化在菌体生长和能量利用方面比异养硝化更有效率.在异养硝化-好氧反硝化混合系统内,16 h NH 4+-N去除速率比异养硝化系统提高了37.31%.混合系统的NH2 OH积累量低于异养硝化系统和好氧反硝化系统,但N2 O产出量高于二者.  相似文献   

17.
Introduction The presence of nitrogenous substance has attracted attention because of the role of nitrogen in eutrophication of receiving waters. Denitrification is the ability of bacteria to use nitrogen oxides (NO3- and NO2-) as electron acceptors produ…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号