首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agricultural residue burning is one of the major causes of greenhouse gas emissions and aerosols in the Indo-Ganges region. In this study, we characterize the fire intensity, seasonality, variability, fire radiative energy (FRE) and aerosol optical depth (AOD) variations during the agricultural residue burning season using MODIS data. Fire counts exhibited significant bi-modal activity, with peak occurrences during April-May and October-November corresponding to wheat and rice residue burning episodes. The FRE variations coincided with the amount of residues burnt. The mean AOD (2003-2008) was 0.60 with 0.87 (+1σ) and 0.32 (−1σ). The increased AOD during the winter coincided well with the fire counts during rice residue burning season. In contrast, the AOD-fire signal was weak during the summer wheat residue burning and attributed to dust and fossil fuel combustion. Our results highlight the need for ‘full accounting of GHG’s and aerosols’, for addressing the air quality in the study area.  相似文献   

2.
A negative trend is being revealed in the MODIS aerosol optical depth [AOD] observed over the Southern Balkan/Eastern Mediterranean region. Collection 005 MODIS/Terra and MODIS/Aqua AOD at 470 nm measurements were evaluated against Brewer ground-based measurements over Thessaloniki, Greece and CIMEL ground-based measurements of AOD over Heraklion, Crete. A detailed study of the monthly, seasonal and inter-annual variability of the MODIS/Terra and MODIS/Aqua AOD values over selected locations around the Balkan Peninsula showed that the higher mean AOD values occurred in the spring and summer months, whereas the lowest were found in the winter-time. For all seasons, the highest AODs were observed for the northern-most latitudes with a marked decrease towards the southern-most sites. A statistically significant decreasing trend in aerosol load in the region over all sites as derived from the MODIS/Terra measurements gave the highest per annum change seen for the summer months to be ?4.09 ± 2.34%, and the lowest for the winter months as ?2.55 ± 4.36%, which also shows the higher variability.  相似文献   

3.
Three years of measurement of PM2.5 with 5-min time resolution was conducted from 2005 to 2007 in urban and rural environments in Beijing to study the seasonal and diurnal variations in PM2.5 concentration. Pronounced seasonal variation was observed in the urban area, with the highest concentrations typically observed in the winter and the lowest concentrations generally found in the summer. In the rural area, the maximum in PM2.5 concentration usually appeared during the spring, followed by a second maximum in the summer, while the minimum generally occurred in the winter. Significant diurnal variations in PM2.5 concentration were observed in both urban and rural areas. In the urban area, the PM2.5 concentration displays a bimodal pattern, with peaks between 7:00 and 8:00 a.m. and between 7:00 and 11:00 p.m. The minimum generally appears around noon. The morning peak is attributed to enhanced anthropogenic activity during rush hours. The decreases of boundary layer height and wind speed in the afternoon companying with increased source activity during the afternoon rush hour result in the highest PM2.5 concentration during evening hours. In the rural area, the PM2.5 concentration shows a unimodal pattern with a significant peak between 5:00 and 11:00 p.m.The seasonal and diurnal variations in PM2.5 concentration in the urban area are mostly dominated by the seasonal and diurnal variability of boundary layer and source emissions. The year-to-year variability of rainfall also has an important influence on the seasonal variation of PM2.5 in the urban area. The seasonal and diurnal wind patterns are more important factors for PM2.5 variation in the rural area. Southerly winds carry pollutants emitted in southern urban areas northward and significantly enhance the PM2.5 concentration level in the rural area.  相似文献   

4.
Measurements of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and particulate mercury (PHg) have been conducted at Lulin Atmospheric Background Station (LABS) in Taiwan since April 2006. This was the first long-term free tropospheric atmospheric Hg monitoring program in the downwind region of East Asia, which is a major Hg emission source region. Between April 13, 2006 and December 31, 2007, the mean concentrations of GEM, RGM, and PHg were 1.73 ng m?3, 12.1 pg m?3, and 2.3 pg m?3, respectively. A diurnal pattern was observed for GEM with afternoon peaks and nighttime lows, whereas the diurnal pattern of RGM was opposite to that of GEM. Spikes of RGM were frequently observed between midnight and early morning with concurrent decreases in GEM and relative humidity and increases in O3, suggesting the oxidation of GEM and formation of RGM in free troposphere (FT). Upslope movement of boundary layer (BL) air in daytime and subsidence of FT air at night resulted in these diurnal patterns. Considering only the nighttime data, which were more representative of FT air, the composite monthly mean GEM concentrations ranged between 1.06 and 2.06 ng m?3. Seasonal variation in nighttime GEM was evident, with lower concentrations usually occurring in summer when clean marine air masses prevailed. Between fall and spring, air masses passed the East Asian continent prior to reaching LABS, contributing to the elevated GEM concentrations. Analysis of GEM/CO correlation tends to support the argument. Good GEM/CO correlations were observed in fall, winter, and spring, suggesting influence of anthropogenic emission sources. Our results demonstrate the significance of East Asian Hg emissions, including both anthropogenic and biomass burning emissions, and their long-range transport in the FT. Because of the pronounced seasonal monsoon activity and the seasonal variation in regional wind field, export of the Asian Hg emissions to Taiwan occurs mainly during fall, winter, and spring.  相似文献   

5.
Holocene biomass burning and global dynamics of the carbon cycle   总被引:10,自引:0,他引:10  
Fire regimes have changed during the Holocene due to changes in climate, vegetation, and in human practices. Here, we hypothesise that changes in fire regime may have affected the global CO2 concentration in the atmosphere through the Holocene. Our data are based on quantitative reconstructions of biomass burning deduced from stratified charcoal records from Europe, and South-, Central- and North America, and Oceania to test the fire-carbon release hypothesis. In Europe the significant increase of fire activity is dated approximately 6000 cal. yr ago. In north-eastern North America burning activity was greatest before 7500 years ago, very low between 7500-3000 years, and has been increasing since 3000 years ago. In tropical America, the pattern is more complex and apparently latitudinally zonal. Maximum burning occurred in the southern Amazon basin and in Central America during the middle Holocene, and during the last 2000 years in the northern Amazon basin. In Oceania, biomass burning has decreased since a maximum 5000 years ago. Biomass burning has broadly increased in the Northern and Southern hemispheres throughout the second half of the Holocene associated with changes in climate and human practices. Global fire indices parallel the increase of atmospheric CO2 concentration recorded in Antarctic ice cores. Future issues on carbon dynamics relatively to biomass burning are discussed to improve the quantitative reconstructions.  相似文献   

6.
Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter), and PM10 (PM < or = 10 microm in aerodynamic diameter). Cropland burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis also showed that crop residue burning emissions are a minor source of CH4 emissions (< 1%) compared with the CH4 emissions from other agricultural sources, specifically enteric fermentation, manure management, and rice cultivation.  相似文献   

7.
Abstract

Aerosol optical depth (AOD) acquired from satellite measurements demonstrates good correlation with particulate matter with diameters less than 2.5 µm (PM2.5) in some regions of the United States and has been used for monitoring and nowcasting air quality over the United States. This work investigates the relation between Moderate Resolution Imaging Spectroradiometer (MODIS) AOD and PM2.5 over the 10 U.S. Environmental Protection Agency (EPA)-defined geographic regions in the United States on the basis of a 2-yr (2005–2006) match-up dataset of MODIS AOD and hourly PM2.5 measurements. The AOD retrievals demonstrate a geographical and seasonal variation in their relation with PM2.5. Good correlations are mostly observed over the eastern United States in summer and fall. The southeastern United States has the highest correlation coefficients at more than 0.6. The southwestern United States has the lowest correlation coefficient of approximately 0.2. The seasonal regression relations derived for each region are used to estimate the PM2.5 from AOD retrievals, and it is shown that the estimation using this method is more accurate than that using a fixed ratio between PM2.5 and AOD. Two versions of AOD from Terra (v4.0.1 and v5.2.6) are also compared in terms of the inversion methods and screening algorithms. The v5.2.6 AOD retrievals demonstrate better correlation with PM2.5 than v4.0.1 retrievals, but they have much less coverage because of the differences in the cloud-screening algorithm.  相似文献   

8.
Submicron particles were collected from June to September 2008 in La Jolla, California to investigate the composition and sources of atmospheric aerosol in an anthropogenically-influenced coastal site. Factor analysis of aerosol mass spectrometry (AMS) and Fourier transform infrared (FTIR) spectroscopy measurements revealed that the two largest sources of submicron organic mass (OM) at the sampling site were (1) fossil fuel combustion associated with ship and diesel truck emissions near the ports of Los Angeles and Long Beach and (2) aged smoke from large wildfires burning in central and northern California. During non-fire periods, fossil fuel combustion contributed up to 95% of FTIR OM, correlated to sulfur, and consisted mostly of alkane (86%) and carboxylic acid groups (9%). During fire periods, biomass burning contributed up to 74% of FTIR OM, consisted mostly of alkane (48%), ketone (25%), and carboxylic acid groups (17%), and correlated to AMS-derived factors resembling brush fire smoke, wood smoldering and flaming particles, and biogenic secondary organic aerosol. The two AMS-derived biomass burning factors were identified as oxygenated and hydrocarbon biomass burning aerosol on the basis of spectral similarities to smoldering and flaming smoke particles, respectively. In addition, the ratio of oxygenated to hydrocarbon biomass burning OM shows a clear diurnal trend with an afternoon peak, consistent with photochemical oxidation. Back trajectory analysis indicates that 2–4-day old forest fire emissions include substantial ketone groups, which have both lower O/C and lower m/z 44/OM fraction than carboxylic acid groups. Air masses with more than 4-day old emissions have higher carboxylic acid/ketone group ratios, showing that atmospheric processing of these ketone-containing organic aerosol particles results in increased m/z 44 and O/C. These observations may provide functionally-specific evidence for the type of chemical processing that is responsible for biomass burning particle composition in the atmosphere.  相似文献   

9.
Poor air quality episodes occur often in metropolitan Atlanta, GA. The primary focus of this research is to assess the capability of satellites as a tool in characterizing air quality in Atlanta. Results indicate that intracity PM2.5 (particulate matter < or = 2.5 microm in aerodynamic diameter) concentrations show similar patterns as other U.S. urban areas, with the highest concentrations occurring within the city. PM2.5 and MODIS (Moderate Resolution Imaging Spectroradiometer) aerosol optical depth (AOD) have higher values in the summer than spring, yet MODIS AOD doubles in the summer unlike PM2.5. Most (80%) of the Ozone Monitoring Instrument aerosol index (AI) is below 0.5 with little differences between spring and summer. Using this value as a constraint of the carbonaceous aerosol signal in the urban area, aerosol transport events such as wildfire smoke associated with higher positive AI values can be identified. The results indicate that MODIS AOD is well correlated with PM2.5 on a yearly and seasonal basis with correlation coefficients as high as 0.8 for Terra and 0.7 for Aqua. A possible alternative view of the PM2.5 and AOD relationship is seen through the use of AOD thresholds. These probabilistic thresholds provide a means to describe the air quality index (AQI) through the use of multiyear AOD records for a specific area. The National Ambient Air Quality Standards (NAAQS) are used to classify the AOD into different AQI codes and probabilistically determine thresholds of AOD that represent most of a specific AQI category. For example, 80% of cases of moderate AQI days have AOD values between 0.5 and 0.6. The development of AOD thresholds provides a useful tool for evaluating air quality from the use of satellites in regions where there are sparse ground-based measurements of PM2.5.  相似文献   

10.
Multi-year records of MODIS, micro-pulse lidar (MPL), and aerosol robotic network (AERONET) Sun/sky radiometer measurements were analyzed to investigate the seasonal, monthly and geographical variations of columnar aerosol optical properties over east Asia. Similar features of monthly and seasonal variations were found among the measurements, though the observational methodology and periods are not coincident. Seasonal and monthly cycles of MODIS-derived aerosol optical depth (AOD) over east Asia showed a maximum in spring and a minimum in autumn and winter. Aerosol vertical extinction profiles measured by MPL also showed elevated aerosol loads in the middle troposphere during the spring season. Seasonal and spatial distributions were related to the dust and anthropogenic emissions in spring, but modified by precipitation in July–August and regional atmospheric dispersion in September–February. All of the AERONET Sun/sky radiometers utilized in this study showed the same seasonal and monthly variations of MODIS-derived AOD. Interestingly, we found a peak of monthly mean AOD over industrialized coastal regions of China and the Yellow Sea, the Korean Peninsula, and Japan, in June from both MODIS and AERONET Sun/sky radiometer measurements. Especially, the maximum monthly mean AOD in June is more evident at the AERONET urban sites (Beijing and Gwangju). This AOD June maximum is attributable to the relative contribution of various processes such as stagnant synoptic meteorological patterns, secondary aerosol formation, hygroscopic growth of hydrophilic aerosols due to enhanced relative humidity, and smoke aerosols by regional biomass burning.  相似文献   

11.
Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990–2005, 1995–2005, and 2000–2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.  相似文献   

12.
There is a long history of fire management in African savannas, but knowledge of historical and current use of fire is scarce in savanna-woodland biomes. This study explores past and present fire management practices and perceptions of the Khwe (former hunter-gatherers) and Mbukushu (agropastoralists) communities as well as government and non-government stakeholders in Bwabwata National Park in north-east Namibia. Semi-structured interviews and focus groups were used in combination with satellite data (from 2000 to 2015), to investigate historical and current fire management dynamics. Results show that political dynamics in the region disrupted traditional fire practices, specifically a policy of fire suppression was initiated by colonial governments in 1888 and maintained during independence until 2005. Both the Khwe and Mbukushu communities use early season (i.e. between April and July) fires for diverse interrelated historical and current livelihood activities, and park management for managing late season fires. The Mbukushu community also use late season burns to prepare land for crops. In this study, we use a pyrogeographic framework to understand the human dimension of fires. This study reveals how today’s fire management practices and policies, specifically the resurgence of early season burning are entrenched in the past. Understanding and acknowledging the social and cultural dynamics of fire, alongside participatory stakeholder engagement is critical for managing fires in the future.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01351-7) contains supplementary material, which is available to authorized users.  相似文献   

13.
Using one year of Aerosol Optical Depth (AOD) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite and particular matter (PM) contents measured at eleven sites located mostly in the eastern China in 2007, the relationship between columnar AOD and hourly and daily average (DA) PM were established. The peak AOD observed from MODIS was generally consistent with the surface PM measurements in eastern China, where Zhengzhou had the maximum annual mean PM10 of 182.1 μg m?3, while Longfengshan had the minimum annual mean of 38.1 μg m?3. Ground level observations indicated that PM concentration varies widely across different regions, which was mainly due to the difference in weather conditions and anthropogenic emissions. The coarse particles accounted for the main air pollution in Zhengzhou and Benxi whiles the fine particles, however, were the main constituents in other sites. Results showed that MODIS AOD (averaged over the box of 5 × 5 and 3 × 3 pixels) had a better positive correlation with the coincident hourly average (HA) PM concentration than with DA due to diurnal variation in PM mass measurements. After correcting AOD for relative humidity (RH), the correlation did not improve significantly, suggesting that the RH was not the main factor affecting the correlation of PM with AOD. The statistical regression analysis between MODIS AOD and PM mass suggested that the satellite-derived AOD is a useful tool for mapping PM distribution over large spatial domains.  相似文献   

14.
Using a WRF-SMOKE-CMAQ modeling framework, we investigate the impacts of smoke from prescribed fires on model performance, regional and loc al air quality, health impacts, and visibility in protected natural environments using three different prescribed fire emission scenarios: 100% fire, no fire, and 30% fire. The 30% fire case reflects a 70% reduction in fire activities due to harvesting of logging residues for use as a feedstock for a potential aviation biofuel supply chain. Overall model performance improves for several performance metrics when fire emissions are included, especially for organic carbon, irrespective of the model goals and criteria used. This effect on model performance is more pronounced for the rural and remote IMPROVE sites for organic carbon and total PM2.5. A reduction in prescribed fire emissions (30% fire case) results in significant improvement in air quality in areas in western Oregon, northern Idaho, and western Montana, where most prescribed fires occur. Prescribed burning contributes to visibility impairment, and a relatively large portion of protected class I areas will benefit from a reduced emission scenario. For the haziest 20% days, prescribed burning is an important source of visibility impairment, and approximately 50% of IMPROVE sites in the model domain show a significant improvement in visibility for the reduced fire case. Using BenMAP, a health impact assessment tool, we show that several hundred additional deaths, several thousand upper and lower respiratory symptom cases, several hundred bronchitis cases, and more than 35,000 workday losses can be attributed to prescribed fires, and these health impacts decrease by 25–30% when a 30% fire emission scenario is considered.

Implications: This study assesses the potential regional and local air quality, public health, and visibility impacts from prescribed burning activities, as well as benefits that can be achieved by a potential reduction in emissions for a scenario where biomass is harvested for conversion to biofuel. As prescribed burning activities become more frequent, they can be more detrimental for air quality and health. Forest residue-based biofuel industry can be source of cleaner fuel with co-benefits of improved air quality, reduction in health impacts, and improved visibility.  相似文献   


15.
This study uses monitoring data collected at the Taipei Aerosol Supersite from March 2002 to February 2008 to analyze characteristics such as seasonal fluctuations, diurnal variations, and photochemical-related variations of PM2.5 chemical compositions. The results indicate that the average of PM2.5 mass concentration in Taipei during this period is 30.3 ± 16.0 μg m?3. The highest average concentration of PM2.5 components is that of sulfate, which accounts for 21.1% of the PM2.5 mass, followed by organic carbon (OC) at 15.9%, nitrate at 5.8%, and elemental carbon (EC) at 5.4%. Concentrations of EC, OC, and nitrate have distinctive but similar seasonal fluctuations, which is highest in spring and lowest in fall. Sulfate concentration has less seasonal fluctuations, and the highest value appears during the fall. Similarly, concentrations of EC, OC, and nitrate have notable diurnal variations; however, the diurnal variation of sulfate concentration is not very apparent. These observation data show that EC, OC, and nitrate in PM2.5 in the Taipei metropolis come mainly from local emissions, while sulfate comes mainly from the regional transport of pollutants. This is likely because Taiwan is located on the lee zone of the Asian prevailing winds from fall to spring; its air quality is frequently affected by the transport of air pollutants from Mainland China. In addition, the extent of increase in aerosols is much higher than that of CO, indicating the formation of secondary aerosol when photochemical activity is strong. Based on six years of observation data, this study explores three potential scenarios to set up Taiwan's PM2.5 air quality standard (AQS). The analysis indicates that the optimum standard for 24-h air quality of PM2.5 should be around 50 μg m?3.  相似文献   

16.
Multi-year inventories of biomass burning emissions were established in the Pearl River Delta (PRD) region for the period 2003–2007 based on the collected activity data and emission factors. The results indicated that emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), ammonia (NH3), methane (CH4), organic carbon (OC), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and fine particulate matter (PM2.5) presented clear declining trends. Domestic biofuel burning was the major contributor, accounting for more than 60% of the total emissions. The preliminary temporal profiles were established with MODIS fire count information, showing that higher emissions were observed in winter (from November to March) than other seasons. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3  km, using GIS-based land use data as spatial surrogates. Large amount of emissions were observed mostly in the less developed areas in the PRD region. The uncertainties in biomass burning emission estimates were quantified using Monte Carlo simulation; the results showed that there were higher uncertainties in organic carbon (OC) and elemental carbon (EC) emission estimates, ranging from ?71% to 133% and ?70% to 128%, and relatively lower uncertainties in SO2, NOx and CO emission estimates. The key uncertainty sources of the developed inventory included emission factors and parameters used for estimating biomass burning amounts.  相似文献   

17.
Contemporary human activities such as tropical deforestation, land clearing for agriculture, pest control and grassland management lead to biomass burning, which in turn leads to land-cover changes. However, biomass burning emissions are not correctly measured and the methods to assess these emissions form a part of current research area. The traditional methods for estimating aerosols and trace gases released into the atmosphere generally use emission factors associated with fuel loading and moisture characteristics and other parameters that are hard to estimate in near real-time applications. In this paper, fire radiative power (FRP) products were extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Geostationary Operational Environmental Satellites (GOES) fire products and new South America generic biomes FRE-based smoke aerosol emission coefficients were derived and applied in 2002 South America fire season. The inventory estimated by MODIS and GOES FRP measurements were included in Coupled Aerosol-Tracer Transport model coupled to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) and evaluated with ground truth collected in Large Scale Biosphere–Atmosphere Smoke, Aerosols, Clouds, rainfall, and Climate (SMOCC) and Radiation, Cloud, and Climate Interactions (RaCCI). Although the linear regression showed that GOES FRP overestimates MODIS FRP observations, the use of a common external parameter such as MODIS aerosol optical depth product could minimize the difference between sensors. The relationship between the PM2.5μm (Particulate Matter with diameter less than 2.5 μm) and CO (Carbon Monoxide) model shows a good agreement with SMOCC/RaCCI data in the general pattern of temporal evolution. The results showed high correlations, with values between 0.80 and 0.95 (significant at 0.5 level by student t test), for the CATT-BRAMS simulations with PM2.5μm and CO.  相似文献   

18.
19.
To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1–1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301–304; Fearnside, 1997. Climatic Change 35, 321–360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr−1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.  相似文献   

20.
Total gaseous mercury (TGM) in the lower atmosphere of northern Wisconsin exhibits strong annual and diurnal cycles similar to those previously reported for other rural monitoring sites across mid-latitude North America. Annually, TGM was highest in late winter and then gradually declined until late summer. During 2002–04, the average TGM concentration was 1.4 ± 0.2 (SD) ng m?3, and the amplitude of the annual cycle was 0.4 ng m?3 (~30% of the long-term mean). The diurnal cycle was characterized by increasing TGM concentrations during the morning followed by decreases during the afternoon and night. The diurnal amplitude was variable but it was largest in spring and summer, when daily TGM oscillations of 20–40% were not uncommon. Notably, we also observed a diurnal cycle for TGM indoors in a room ventilated through an open window. Even though TGM concentrations were an order of magnitude higher indoors, (presumably due to historical practices within the building: e.g. latex paint, fluorescent lamps, thermometers), the diurnal cycle was remarkably similar to that observed outdoors. The indoor cycle was not directly attributable to human activity, the metabolic activity of vegetation or diurnal atmospheric dynamics; but it was related to changes in temperature and oxidants in outdoor air that infiltrated the room. Although there was an obvious difference in the proximal source of indoor and outdoor TGM, similarities in behavior suggest that common TGM cycles may be driven largely by adsorption/desorption reactions involving solid surfaces, such as leaves, snow, dust and walls. Such behavior would imply a short residence time for Hg in the lower atmosphere and intense recycling – consistent with the “ping-pong ball” or “multi-hop” conceptual models proposed by others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号