首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
张尊举  张连凯  张仁志 《环境工程》2011,29(4):21-22,34
介绍了紧凑式污水处理系统(Bever反应器)在处理回用校园生活污水中的应用,并介绍了Bever反应器的构造。系统运行结果表明:在进水ρ(COD)、ρ(BOD5)、ρ(SS)和ρ(NH3-N)分别为400,300,200,80 mg/L的条件下,该系统对COD、BOD5、SS和NH3-N的去除率均大于93%,系统运行稳定...  相似文献   

2.
利用碳酸钠对膨润土进行改性,探讨其改性条件及改性后膨润土对生活污水中磷的去除效果。实验结果表明,经投加6%的钠化剂、搅拌90min改性后的膨润土对校园生活污水中的总磷和正磷酸盐的去除率可达69.4%和36.8%。  相似文献   

3.
粉煤灰比表面积较大,常被用作吸附材料而广泛应用于污水的处理。主要利用电厂产生的粉煤灰做吸附剂,对生活污水进行处理,考察了pH值、灰水比、粉煤灰粒径、时间等因素对吸附效果的影响。研究结果表明,粉煤灰最佳灰水比为1/30,吸附平衡时间为70min,在弱酸性或弱碱性和较小粒度的条件下,粉煤灰吸附生活污水的效果较好。  相似文献   

4.
改性粉煤灰处理氨氮废水实验研究   总被引:4,自引:0,他引:4  
采用H2SO4和HCl改性粉煤灰,在酸改性基础上用2mol/L NaOH进行改性。对比了原状粉煤灰,酸改性粉煤灰和酸加碱改性粉煤灰分别处理氨氮废水的效果。研究了pH值、粉煤灰投加量、反应时间对处理效果的影响。对于100mg/L氨氮废水最佳处理工艺:粉煤灰投加量2g,pH 11左右,搅拌时间60 min,静置1h,其氨氮去除率可达84%。  相似文献   

5.
为解决传统人工湿地运行过程中存在的短路问题,本研究设计了折流式人工湿地污水处理系统,并将其应用于校园生活污水处理的试验研究。为期18个月的试验研究结果表明,系统的最佳水力停留时间(Hlit)为20h。稳定HRT=20h,24℃下折流式人工湿地对COD、TN、TP去除率分别为76.40%、76.12%、65.37%;温度降至12℃时,系统对COD、TN、TP去除率分别降至67.56%、62.75%、61.33%;运行过程中前6格室和整个系统的SS去除率分别为79.5%和87%。基于试验结果,阐明了折流式人工湿地处理生活污水高效稳定的机理。  相似文献   

6.
粉煤灰虽然是一种固体废弃物,但已广泛应用于污水处理.本实验以锅炉房燃煤产生的粉煤灰为原料进行对生活污水的处理实验,主要研究在不同填料层高度,粉煤灰在单次进水和循环进水的情况下对生活污水中COD的去除率的差异;以及对高浓度垃圾渗滤液进行处理的对比性实验.结果表明,污水中COD的去除率随粉煤灰填料层高度的增加而提高,并且对低浓度生活污水中的COD去除效果较好.  相似文献   

7.
以火电厂贮灰场粉煤灰为吸附剂,以生、活污水为吸附对象,通过间歇吸附试验,分析了各因素对粉煤灰吸附性能的影响,并找出了粉煤灰对生活污水中化学耗氧物质(COD)的吸附规律。  相似文献   

8.
利用粉煤灰合成沸石处理重金属污水研究   总被引:10,自引:0,他引:10  
本研究中利用粉煤灰合成沸石对含有Cu^2 、Pb^2 、Cd^2 的制备水样进行批处理振荡实验,其吸附容量分别为9.56、0.89和0.25mg/l。实验证明,用合成沸石处理含重金属离子污水达到平衡所需的时间约为3h。对污水中重金属离子的去除率随pH值降低而降低,随沸石用量增加而增加。同等条件下,利用粉煤灰处理含Cu^2 的污水,其吸附容量仅为6.49mg/l,低于合成沸石。  相似文献   

9.
粉煤灰表面改性的研究   总被引:16,自引:2,他引:16  
本文利用H-NA,H-R等六种不同的表面活化剂,采用干法和湿法的活化工艺,对粉煤灰的表面进行改性研究。试验表明,活化粉煤灰表面的羟基数目减少,增加了活化剂的相应基团,它在有机介质中的分散性明显好转。用活化粉煤灰作聚氯乙烯和橡胶的填料,制成试样,测试结果表明,与未活化的粉煤灰相比,各种性能均明显改善,除橡胶磨耗减量质量有待进一步提高外,其余各项指标均达到和超过有关标准。因此,这是利用再生资源,降低复合材料成本,保护环境的一种新途径。  相似文献   

10.
改性粉煤灰处理含锌废水的研究   总被引:10,自引:0,他引:10  
利用改性粉煤灰吸附混凝作用,研究了含锌离子浓度为50~200mg/L的模拟废水去除锌离子的一般规律。研究结果表明,以氧化钙为改性剂改性的粉煤灰对含锌废水具有良好的吸附性能,在含锌离子浓度为50~250mg/L,改性粉煤灰用量每100mL为20g,pH为4~11的实验条件下,锌离子的去除率最高可达99.7%。  相似文献   

11.
初步研究一种用于高浓度制药废水的预处理工艺方法。采用微生物絮凝剂和粉煤灰过滤相结合的预处理工艺,其综合的效果可以将高浓度制药废水中的COD去除80%,基本脱色澄清,且可以将对生化处理有抑制作用的抗生素效价予以降低。并初步讨论了该工艺在实际生产中的可行性。  相似文献   

12.
酸改性粉煤灰处理焦化废水的工艺研究   总被引:21,自引:0,他引:21  
研究了粉煤灰与少量的硫酸烧渣和适量的固体NaCl混合 ,将混合物在加热条件下用稀硫酸处理 ,制得集物理吸附和化学混凝为一体的混凝剂。这种混凝剂与无机高分子絮凝剂PSA配合用于焦化废水的处理 ,SS、CODCr、色度和酚的去除率分别为 95 %、86 %、96 %和 92 %。混凝沉降速度快 ,污泥体积小 ,处理费用低 ,结合显微照片探讨了酸浸粉煤灰混凝剂对含酚废水的混凝沉降机理  相似文献   

13.
Fenton是酸性条件下Fe2+催化H2O2生成强氧化性的.OH,但调节pH的过程中耗费大量的酸和碱,运行费用昂贵,故Photo-Fenton反应受到重视。维生素制药废水生化后含有大量难降解污染物,以低浓度、难生物降解的实际废水为对象进行深度处理实验,研究改性粉煤灰、H2O2及FeSO4.7H2O的投加量,反应时间等因素的影响和优化。  相似文献   

14.
改性粉煤灰处理含阳离子表面活性剂废水的研究   总被引:7,自引:1,他引:6  
以粉煤灰作为吸附剂 ,研究了含阳离子表面活性剂CTMAB为 2 0~ 12 0mg L的模拟废水去除CTMAB的一般规律。研究结果表明 ,以CaO为改性剂改性的粉煤灰对含阳离子表面活性剂废水具有良好的吸附性能 ,在含CTMAB浓度为 2 0~ 12 0mg L ,改性粉煤灰用量每 2 0 0mL为 2 0~ 2 5g,粒径范围 2 0 0~ 180目 ,pH为 12~ 13的实验条件下 ,CTMAB的去除率最高可达 98%以上  相似文献   

15.
高校生活污水排放的规律性较强,污水量及水中污染物浓度的波动均较小,为了研究出一种适合校园生活污水处理的工艺,总结了近年来校园生活污水的处理方法,以及各种技术的优缺点。结果表明,根据不同的技术特点,不同的水质可以选择不同的污水处理技术,因地适宜。因此,选择一种适合校园的分散式污水处理是今后重点关注的研究方向。  相似文献   

16.
粉煤灰改性及其在废水处理中的应用现状研究   总被引:1,自引:0,他引:1  
粉煤灰是煤高温燃烧后的产物,在形成过程中形成了一定的多孔结构和较大的比表面积,具有一定的吸附能力,可以作为水处理材料。但由于原性粉煤灰吸附性能有限,对水中污染物的去除率较低,不能满足水处理的实际要求。因此,研究热点集中在对粉煤灰进行改性处理,增加粉煤灰中的活性组分,增大粉煤灰的比表面积,提高其性能,从而增强其对废水处理的效果。粉煤灰在废水处理领域的应用,增加了粉煤灰的综合利用途径,同时以废治废,符合节能环保政策。笔者对粉煤灰的改性方法及其在废水处理中的应用现状进行了总结,以期对粉煤灰的在废水处理中的综合利用提供参考。  相似文献   

17.
粉煤灰处理含磷废水的研究进展   总被引:1,自引:0,他引:1  
粉煤灰处理含磷废水是近年来发展起来的一种新方法,由于其价廉易得的特点,在废水处理中有着广泛的研究.综述了利用粉煤灰处理含磷废水的研究进展,介绍了粉煤灰的基本性质,分析了粉煤灰除磷的机理,并讨论了pH值、初始浓度、粒径大小、温度和吸附时间对粉煤灰除磷的影响,指出了目前应用粉煤灰处理含磷废水的几个关键问题.  相似文献   

18.
以粉煤灰为主要原料,通过在粉煤灰中掺杂硫铁矿渣并加盐酸进行改性,将该复合改性产物用于吸附去除废水中的六价铬。该复合改性产物的制备条件为灰渣比10∶1,盐酸质量分数30%,在加热沸腾的状态下改性1 h。当水中Cr6+质量浓度为5 mg/L,p H值为6,吸附剂投加量为40 g/L,吸附反应温度为10℃的条件下,吸附反应1 h后达到平衡,吸附效率为97%以上。该吸附反应符合Langmuir等温方程和Freundlich等温方程,是物理吸附和化学吸附协同作用的结果。研究表明:该复合改性法去除水中的六价铬成本低廉,操作简单,适合处理低浓度含铬废水,有利于固体废弃物的资源化利用。  相似文献   

19.
焚烧处理已成为我国大城市生活垃圾处理的主要方式之一,焚烧飞灰属于危险废物,其处理处置与利用已成为焚烧厂面临的主要问题。飞灰中含有大量的金属,如将其回收利用不仅可以缓解我国金属资源短缺的问题,而且可使飞灰由危险废物转化为惰性固体废物而加以利用。介绍从飞灰中回收金属国内外研究现状并分析了现有工艺存在的问题,建议采用水洗预处理结合酸碱两步浸取,辅之以溶剂选择萃取的方法从一次飞灰中选择性回收Pb、Cu和Zn。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号