首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
Abstract:  Not all species are likely to be equally affected by habitat fragmentation; thus, we evaluated the effects of size of forest remnants on trophically linked communities of plants, leaf-mining insects, and their parasitoids. We explored the possibility of differential vulnerability to habitat area reduction in relation to species-specific and food-web traits by comparing species–area regression slopes. Moreover, we searched for a synergistic effect of these traits and of trophic level . We collected mined leaves and recorded plant, leaf miner, and parasitoid species interactions in five 100-m2 transects in 19 Chaco Serrano woodland remnants in central Argentina. Species were classified into extreme categories according to body size, natural abundance, trophic breadth, and trophic level . Species–area slopes differed between groups with extreme values of natural abundance or trophic specialization. Nevertheless, synergistic effects of life-history and food-web traits were only found for trophic level and trophic breadth: area-related species loss was highest for specialist parasitoids. It has been suggested that species position within interaction webs could determine their vulnerability to extinction. Our results provide evidence that food-web parameters, such as trophic level and trophic breadth, affect species sensitivity to habitat fragmentation .  相似文献   

2.
The Effect of Edge on Avian Nest Success: How Strong Is the Evidence?   总被引:16,自引:0,他引:16  
Wildlife biologists historically considered the edge between adjacent habitat types highly productive and beneficial to wildlife. A current dogma is that edges adversely affect a wide range of avian species by increasing depredation and parasitism rates of nests. I critically evaluated existing empirical evidence to test whether there was a gradation in nest success as a function of distance from an edge. Researchers investigating this question have been inconsistent in their experimental designs, making generalizations about edge-effect patterns difficult. The majority of studies I examined found nest success varied near edges, with both depredation rates (10 of 14 artificial nest studies, and 4 of 7 natural nest studies) and parasitism rates (3 of 5 studies) increasing near edges. In addition, there was apositive relationship between nest success and patch size (8 of 8 studies). The most conclusive studies suggest that edge effects usually occur within 50 m of an edge, whereas studies proposing that increased depredation rates extend farther than 50 m from an edge are less convincing. Prior research has probably focused on distances too far from an edge to detect threshold values, and future research should emphasize smaller scales. 100–200 m from an edge at 20–25 m increments. Researchers often use relatively arbitrary habitat characteristics to define an edge. Therefore, I propose that only openings in the forest canopy with a diameter three times or more the height of the adjacent trees should be included in edge analyses. This review suggests that fragmentation of eastern North American temperate forests could lead to increased nest predation and parasitism, and there is need to determine if similar processes occur in other forested regions of North America.  相似文献   

3.
Edge Effects and Isolation: Red-Backed Voles on Forest Remnants   总被引:7,自引:0,他引:7  
Negative effects of habitat edge have been advanced as an important proximate cause of extinction, and a growing literature calls attention to the matrix surrounding habitat remnants as a critical factor determining population persistence. I examined spatial distribution of California red-backed voles ( Clethrionomys californicus ) on 13 forest remnants and five control sites in southwestern Oregon. The species was virtually isolated on remnants, making little use of the regenerating clearcuts surrounding the remnants. The effects of the clearcut also impinged on the remnants as edge effects: six times more voles were captured per trap in the interior of remnants than on the edge. Consequently, the density of voles per unit area on remnants increased with remnant size, despite the potential buildup of population density in small isolates due to limited emigration. I explored potential mechanisms of the negative edge effect on voles and found that the biomass of coarse woody debris, per se, did not explain the vole distribution because both number and volume of logs increased from the interior to the edge of remnants. However, the distribution of the vole's primary food item, hypogeous sporocarps of mycorrhizal fungi, did correspond to the vole edge effect  相似文献   

4.
The cascading effects of biodiversity loss on ecosystem functioning of forests have become more apparent. However, how edge effects shape these processes has yet to be established. We assessed how edge effects alter arthropod populations and the strength of any resultant trophic cascades on herbivory rate in tropical forests of Brazil. We established 7 paired forest edge and interior sites. Each site had a vertebrate-exclosure, procedural (exclosure framework with open walls), and control plot (total 42 plots). Forest patches were surrounded by pasture. Understory arthropods and leaf damage were sampled every 4 weeks for 11 months. We used path analysis to determine the strength of trophic cascades in the interior and edge sites. In forest interior exclosures, abundance of predaceous and herbivorous arthropods increased by 326% and 180%, respectively, compared with control plots, and there were significant cascading effects on herbivory. Edge-dwelling invertebrates responded weakly to exclusion and there was no evidence of trophic cascade. Our results suggest that the vertebrate community at forest edges controls invertebrate densities to a lesser extent than it does in the interior. Edge areas can support vertebrate communities with a smaller contingent of insectivores. This allows arthropods to flourish and indirectly accounts for higher levels of plant damage at these sites. Increased herbivory rates may have important consequences for floristic community composition and primary productivity, as well as cascading effects on nutrient cycling. By interspersing natural forest patches with agroforests, instead of pasture, abiotic edge effects can be softened and prevented from penetrating deep into the forest. This would ensure a greater proportion of forest remains habitable for sensitive species and could help retain ecosystem functions in edge zones.  相似文献   

5.
The effects of landscape fragmentation on nest predation and brood parasitism, the two primary causes of avian reproductive failure, have been difficult to generalize across landscapes, yet few studies have clearly considered the context and spatial scale of fragmentation. Working in two river systems fragmented by agricultural and rural-housing development, we tracked nesting success and brood parasitism in > 2500 bird nests in 38 patches of deciduous riparian woodland. Patches on both river systems were embedded in one of two local contexts (buffered from agriculture by coniferous forest, or adjacent to agriculture), but the abundance of agriculture and human habitation within 1 km of each patch was highly variable. We examined evidence for three models of landscape effects on nest predation based on (1) the relative importance of generalist agricultural nest predators, (2) predators associated with the natural habitats typically removed by agricultural development, or (3) an additive combination of these two predator communities. We found strong support for an additive predation model in which landscape features affect nest predation differently at different spatial scales. Riparian habitat with forest buffers had higher nest predation rates than sites adjacent to agriculture, but nest predation also increased with increasing agriculture in the larger landscape surrounding each site. These results suggest that predators living in remnant woodland buffers, as well as generalist nest predators associated with agriculture, affect nest predation rates, but they appear to respond at different spatial scales. Brood parasitism, in contrast, was unrelated to agricultural abundance on the landscape, but showed a strong nonlinear relationship with farm and house density, indicating a critical point at which increased human habitat causes increased brood parasitism. Accurate predictions regarding landscape effects on nest predation and brood parasitism will require an increased appreciation of the multiple scales at which landscape components influence predator and parasite behavior.  相似文献   

6.
Contribution of Roads to Forest Fragmentation in the Rocky Mountains   总被引:18,自引:0,他引:18  
The contribution of roads to forest fragmentation has not been adequately analyzed. We quantified fragmentation due to roads in a 30,213-ha section of the Medicine Bow-Routt National Forest in sout heastern Wyoming with several indices of landscape structure using a geographic information system. The number of patches, mean patch area, mean interior area, mean area of edge influence, mean patch perimeter, total perimeter, and mean patch shape identified patch- and edge-related landscape changes. Shannon-Wiener diversity, dominance, contagion, contrast, and angular second moment indicated effects on landscape diversity and texture. Roads added to forest fragmentation more than clearcuts by dissecting large patches into smaller pieces and by converting forest interior habitat into edge habitat. Edge habitat created by roads was 1.54–1.98 times the edge habitat created by clearcuts. The total landscape area affected by clearcuts and roads was 2.5–3.5 times the actual area occupied by these disturbances. Fragmentation due to roads could be minimized if road construction is minimized or rerouted so that its fragmentation effects are reduced. Geographic information system technology can be used to quantify the potential fragmentation effects of individual roads and the cumulative effects of a road network on landscape structure.  相似文献   

7.
The concept of trophic levels is one of the oldest in ecology and informs our understanding of energy flow and top-down control within food webs, but it has been criticized for ignoring omnivory. We tested whether trophic levels were apparent in 58 real food webs in four habitat types by examining patterns of trophic position. A large proportion of taxa (64.4%) occupied integer trophic positions, suggesting that discrete trophic levels do exist. Importantly however, the majority of those trophic positions were aggregated around integer values of 0 and 1, representing plants and herbivores. For the majority of the real food webs considered here, secondary consumers were no more likely to occupy an integer trophic position than in randomized food webs. This means that, above the herbivore trophic level, food webs are better characterized as a tangled web of omnivores. Omnivory was most common in marine systems, rarest in streams, and intermediate in lakes and terrestrial food webs. Trophic-level-based concepts such as trophic cascades may apply to systems with short food chains, but they become less valid as food chains lengthen.  相似文献   

8.
Bird populations in North America's grasslands have declined sharply in recent decades. These declines are traceable, in large part, to habitat loss, but management of tallgrass prairie also has an impact. An indirect source of decline potentially associated with management is brood parasitism by the Brown-headed Cowbird (Molothrus ater), which has had substantial negative impacts on many passerine hosts. Using a novel application of regression trees, we analyzed an extensive five-year set of nest data to test how management of tallgrass prairie affected rates of brood parasitism. We examined seven landscape features that may have been associated with parasitism: presence of edge, burning, or grazing, and distance of the nest from woody vegetation, water, roads, or fences. All five grassland passerines that we included in the analyses exhibited evidence of an edge effect: the Grasshopper Sparrow (Ammodramus savannarum), Henslow's Sparrow (A. henslowii), Dickcissel (Spiza americana), Red-winged Blackbird (Agelaius phoeniceus), and Eastern Meadowlark (Sturnella magna). The edge was represented by narrow strips of woody vegetation occurring along roadsides cut through tallgrass prairie. The sparrows avoided nesting along these woody edges, whereas the other three species experienced significantly higher (1.9-5.3x) rates of parasitism along edges than in prairie. The edge effect could be related directly to increase in parasitism rate with decreased distance from woody vegetation. After accounting for edge effect in these three species, we found evidence for significantly higher (2.5-10.5x) rates of parasitism in grazed plots, particularly those burned in spring to increase forage, than in undisturbed prairie. Regression tree analysis proved to be an important tool for hierarchically parsing various landscape features that affect parasitism rates. We conclude that, on the Great Plains, rates of brood parasitism are strongly associated with relatively recent road cuts, in that edge effects manifest themselves through the presence of trees, a novel habitat component in much of the tallgrass prairie. Grazing is also a key associate of increased parasitism. Areas managed with prescribed fire, used frequently to increase forage for grazing cattle, may experience higher rates of brood parasitism. Regardless, removing trees and shrubs along roadsides and refraining from planting them along new roads may benefit grassland birds.  相似文献   

9.
The response of an ecosystem to perturbations is mediated by both antagonistic and facilitative interactions between species. It is thought that a community's resilience depends crucially on the food web--the network of trophic interactions--and on the food web's degree of compartmentalization. Despite its ecological importance, compartmentalization and the mechanisms that give rise to it remain poorly understood. Here we investigate several definitions of compartments, propose ways to understand the ecological meaning of these definitions, and quantify the degree of compartmentalization of empirical food webs. We find that the compartmentalization observed in empirical food webs can be accounted for solely by the niche organization of species and their diets. By uncovering connections between compartmentalization and species' diet contiguity, our findings help us understand which perturbations can result in fragmentation of the food web and which can lead to catastrophic effects. Additionally, we show that the composition of compartments can be used to address the long-standing question of what determines the ecological niche of a species.  相似文献   

10.
Abstract: Habitat loss and fragmentation are major threats to the survival of forest-dependent fauna. We examined the abundance of small mammal species in forests, corridors, remnants of araucarian vine forest, and Araucaria cunninghamii plantations and pastures. None of the forest mammal species persisted following conversion of forest to pasture. Plantations supported lowered abundances of a subset of forest species that were mainly habitat generalists with respect to their occurrence in different floristic types of undisturbed native forest. Within plantations, an increased subcanopy cover was associated with a more forest-like small mammal assemblage. Species' responses to habitat fragmentation varied. The floristic habitat generalists were largely tolerant of habitat fragmentation, their abundance being similar in forests, corridors, and remnants, and were capable of persisting in remnants a few hectares in area. Floristic habitat specialists were vulnerable to habitat fragmentation and thus were abundant in continuous forest, were less abundant in corridors, and were generally absent from remnants. Species that avoid the corridor matrix and are therefore constrained to the corridor may be disadvantaged by the linearity of the habitat, consistent with the predictions of central-place foraging theory. Although small remnants and corridors provide habitat for some species, those that are more specialized in their use of undisturbed habitat types require the retention or reestablishment of large intact areas.  相似文献   

11.
Habitat fragmentation affects species distribution and abundance, and drives extinctions. Escalated tropical deforestation and fragmentation have confined many species populations to habitat remnants. How worthwhile is it to invest scarce resources in conserving habitat remnants within densely settled production landscapes? Are these fragments fated to lose species anyway? If not, do other ecological, anthropogenic, and species‐related factors mitigate the effect of fragmentation and offer conservation opportunities? We evaluated, using generalized linear models in an information‐theoretic framework, the effect of local‐ and landscape‐scale factors on the richness, abundance, distribution, and local extinction of 6 primate species in 42 lowland tropical rainforest fragments of the Upper Brahmaputra Valley, northeastern India. On average, the forest fragments lost at least one species in the last 30 years but retained half their original species complement. Species richness declined as proportion of habitat lost increased but was not significantly affected by fragment size and isolation. The occurrence of western hoolock gibbon (Hoolock hoolock) and capped langur (Trachypithecus pileatus) in fragments was inversely related to their isolation and loss of habitat, respectively. Fragment area determined stump‐tailed (Macaca arctoides) and northern pig‐tailed macaque occurrence (Macaca leonina). Assamese macaque (Macaca assamensis) distribution was affected negatively by illegal tree felling, and rhesus macaque (Macaca mulatta) abundance increased as habitat heterogeneity increased. Primate extinction in a fragment was primarily governed by the extent of divergence in its food tree species richness from that in contiguous forests. We suggest the conservation value of these fragments is high because collectively they retained the entire original species pool and individually retained half of it, even a century after fragmentation. Given the extensive habitat and species loss, however, these fragments urgently require protection and active ecological restoration to sustain this rich primate assemblage. Correlaciones Locales y de Paisaje de la Distribución y Persistencia de Primates en los Bosques Lluviosos Remanentes en el Valle del Alto Brahmaputra, Noreste de India  相似文献   

12.
Increasing centralization of the control of fisheries combined with increased knowledge of food-web relationships is likely to lead to attempts to maximize economic yield from entire food webs. With the exception of predator-prey systems, we lack any analysis of the nature of such yield-maximizing strategies. We use simple food-web models to investigate the nature of yield- or profit-maximizing exploitation of communities including two types of three-species food webs and a variety of six-species systems with as many as five trophic levels. These models show that, for most webs, relatively few species are harvested at equilibrium and that a significant fraction of the species is lost from the web. These extinctions occur for two reasons: (1) indirect effects due to harvesting of species that had positive effects on the extinct species, and (2) intentional eradication of species that are not themselves valuable, but have negative effects on more valuable species. In most cases, the yield-maximizing harvest involves taking only species from one trophic level. In no case was an unharvested top predator part of the yield-maximizing strategy. Analyses reveal that the existence of direct density dependence in consumers has a large effect on the nature of the optimal harvest policy, typically resulting in harvest of a larger number of species. A constraint that all species must be retained in the system (a "constraint of biodiversity conservation") usually increases the number of species and trophic levels harvested at the yield-maximizing policy. The reduction in total yield caused by such a constraint is modest for most food webs but can be over 90% in some cases. Independent harvesting of species within the web can also cause extinctions but is less likely to do so.  相似文献   

13.
Tylianakis JM  Tscharntke T  Klein AM 《Ecology》2006,87(12):3047-3057
Global biodiversity decline has prompted great interest in the effects of habitat modification and diversity on the functioning and stability of ecosystem processes. However, the applicability of previous modeled or mesocosm community studies to real diverse communities in different habitats remains ambiguous. We exposed standardized nesting resources for naturally occurring communities of cavity-nesting bees and wasps and their parasitoids in coastal Ecuador, to test the effects of host and parasitoid diversity on an ecosystem function (parasitism rates) and temporal variability in this function. In accordance with predictions of complementary host use, parasitism rates increased with increasing diversity, not simply abundance, of parasitoids. In contrast, parasitism decreased with increasing host diversity, possibly due to positive prey interactions or increased probability of selecting unpalatable species. Temporal variability in parasitism was lower in plots with high mean parasitoid diversity and higher in plots with temporally variable host and parasitoid diversity. These effects of diversity on parasitism and temporal stability in parasitism rates were sufficiently strong to be visible across five different habitat types, representing a gradient of increasing anthropogenic modification. Habitat type did not directly affect parasitism rates, but host and parasitoid diversity and abundance were higher in highly modified habitats, and parasitoid diversity was positively correlated with rates of parasitism. The slope of the richness-parasitism relationship did not vary significantly across habitats, although that for Simpson's diversity was significant only in rice and pasture. We also show that pooling data over long time periods, as in previous studies, can blur the effect of diversity on parasitism rates, and the appropriate spatiotemporal scale of study must be considered.  相似文献   

14.
Forest fragmentation dramatically alters species persistence and distribution and affects many ecological interactions among species. Recent studies suggest that mutualisms, such as pollination and seed dispersal, are more sensitive to the negative effects of forest fragmentation than antagonisms, such as predation or herbivory. We applied meta‐analytical techniques to evaluate this hypothesis and quantified the relative contributions of different components of the fragmentation process (decreases in fragment size, edge effects, increased isolation, and habitat degradation) to the overall effect. The effects of fragmentation on mutualisms were primarily driven by habitat degradation, edge effects, and fragment isolation, and, as predicted, they were consistently more negative on mutualisms than on antagonisms. For the most studied interaction type, seed dispersal, only certain components of fragmentation had significant (edge effects) or marginally significant (fragment size) effects. Seed size modulated the effect of fragmentation: species with large seeds showed stronger negative impacts of fragmentation via reduced dispersal rates. Our results reveal that different components of the habitat fragmentation process have varying impacts on key mutualisms. We also conclude that antagonistic interactions have been understudied in fragmented landscapes, most of the research has concentrated on particular types of mutualistic interactions such as seed dispersal, and that available studies of interspecific interactions have a strong geographical bias (arising mostly from studies carried out in Brazil, Chile, and the United States). Meta‐Análisis de los Efectos de la Fragmentación del Bosque sobre las Interacciones Interespecíficas  相似文献   

15.
Habitat loss reduces species diversity, but the effect of habitat fragmentation on number of species is less clear because fragmentation generally accompanies loss of habitat. We compared four methods that aim to decouple the effects of fragmentation from the effects of habitat loss. Two methods are based on species-area relations, one on Fisher's alpha index of diversity, and one on plots of cumulative number of species detected against cumulative area sampled. We used these methods to analyze the species diversity of spiders in 2, 3.2 × 4 km agricultural landscapes in Southern Judea Lowlands, Israel. Spider diversity increased as fragmentation increased with all four methods, probably not because of the additive within-patch processes, such as edge effect and heterogeneity. The positive relation between fragmentation and species diversity might reflect that most species can disperse through the fields during the wheat-growing season. We suggest that if a given area was designated for the conservation of spiders in Southern Judea Lowlands, Israel, a set of several small patches may maximize species diversity over time.  相似文献   

16.
Almaraz P  Oro D 《Ecology》2011,92(10):1948-1958
Theoretical and empirical evidence suggests that body size is a major life-history trait impacting on the structure and functioning of complex food webs. However, long-term analyses of size-dependent interactions within simpler network modules, for instance, competitive guilds, are scant. Here, we model the assembly dynamics of the largest breeding seabird community in the Mediterranean basin during the last 30 years. This unique data set allowed us to test, through a "natural experiment," whether body size drove the assembly and dynamics of an ecological guild growing from very low numbers after habitat protection. Although environmental stochasticity accounted for most of community variability, the population variance explained by interspecific interactions, albeit small, decreased sharply with increasing body size. Since we found a demographic gradient along a body size continuum, in which population density and stability increase with increasing body size, the numerical effects of interspecific interactions were proportionally higher on smaller species than on larger ones. Moreover, we found that the per capita interaction coefficients were larger the higher the size ratio among competing species, but only for the set of interactions in which the species exerting the effect was greater. This provides empirical evidence for long-term asymmetric interspecific competition, which ultimately prompted the local extinction of two small species during the study period. During the assembly process stochastic predation by generalist carnivores further triggered community reorganizations and global decays in population synchrony, which disrupted the pattern of interspecific interactions. These results suggest that the major patterns detected in complex food webs can hold as well for simpler sub-modules of these networks involving non-trophic interactions, and highlight the shifting ecological processes impacting on assembling vs. asymptotic communities.  相似文献   

17.
Top-down regulation of herbivores in terrestrial ecosystems is pervasive and can lead to trophic cascades that release plants from herbivory. Due to their relatively simplified food webs, agroecosystems may be particularly prone to trophic cascades, a rationale that underlies biological control. However, theoretical and empirical studies show that, within multiple enemy assemblages, intraguild predation (IGP) may lead to a disruption of top-down control by predators. We conducted a factorial field study to test the separate and combined effects of predators and parasitoids in a system with asymmetric IGP. Specifically we combined ambient levels of generalist predators (mainly Coccinellidae) of the soybean aphid, Aphis glycines Matsumura, with controlled releases of the native parasitoid Lysiphlebus testaceipes (Cresson) and measured their impact on aphid population growth and soybean biomass and yield. We found that generalist predators provided strong, season-long aphid suppression, which resulted in a trophic cascade that doubled soybean biomass and yield. However, contrary to our expectations, L. testaceipes provided minor aphid suppression and only when predators were excluded, which resulted in nonadditive effects when both groups were combined. We found direct and indirect evidence of IGP, but because percentage parasitism did not differ between predator exclusion and ambient predator treatments, we concluded that IGP did not disrupt parasitism during this study. Our results support theoretical predictions that intraguild predators which also provide strong herbivore suppression do not disrupt top-down control of herbivores.  相似文献   

18.
Moore JW  Schindler DE  Ruff CP 《Ecology》2008,89(2):306-312
Understanding how abundance regulates the effects of organisms on their ecosystems remains a critical goal of ecology, especially for understanding inter-ecosystem transfers of energy and nutrients. Here we examined how territoriality and nest-digging by anadromous salmon mediate trophic subsidies to stream fishes. Salmon eggs become available for consumption primarily by the digging of salmon that superimpose their nests on previous nests. An individual-based model of spawning salmon predicted that territoriality and habitat saturation produce a nonlinear effect of salmon density on numbers of available eggs to resident predators. Field studies in Alaskan streams found that higher densities of salmon produce disproportionately more eggs in stream drift and in diets of resident fishes (Arctic grayling and rainbow trout). Bioenergetics model simulations indicated that these subsidies produce substantially enhanced growth rates of trout. These results demonstrate that small changes in salmon abundance can drive large changes in subsidies to stream food webs. Thus, the ecological consequences of population declines of keystone species, such as salmon, will be exacerbated when behavior generates nonlinear impacts.  相似文献   

19.
Parasitism at the Landscape Scale: Cowbirds Prefer Forests   总被引:3,自引:0,他引:3  
Landscape-scale examination of parasitism patterns of Brown-headed Cowbirds ( Molothrus ater ) revealed heterogeneous parasitism rates across the mosaic of a forest and associated old-field communities. In a two year study in Dutchess County, New York, we found a significantly higher parasitism rate in the forest-interior community ( n = 301 nests; 17 species) than on the species in the adjacent and nearby old field and edge ( n = 328 nests; 15 species; 32.3% versus 6.5%; p < 0.0001). Cowbirds invaded a mature 1300-ha forest stand even when their traditional host species were available in adjacent old-field and edge habitats. The forest and old-field study areas were located in a 38,000-ha township with 55% forest cover and contained numerous agriculture, dairy, and horse farms that provided favorable habitat for cowbirds. Within-forest examination of parasitism patterns revealed four aspects of cowbird parasitism that contrasted with patterns described in other regions: (1) parasitism was concentrated significantly more often on ground- and low-nesting (nests ≤ 1 m) forest species than on medium- and high-nesting species (nests> 1 m; 35.01% versus 29.93%; p = 0.0393); (2) parasitism was not significantly greater on Neotropical migrant species than on short-distance migrants and residents; (3) the parasitism rate was not higher in nests close to edges; and (4) the parasitism level was low on certain forest species (such as Wood Thrush) that have experienced high parasitism levels in the Midwest. From a management perspective these data suggest that cowbirds exhibit regional differences in host and habitat use; the target host community of a particular cowbird population is unpredictable at the landscape scale; and a landscape scale should be used in designing cowbird studies to accurately assess local population dynamics.  相似文献   

20.
Abstract:  To counteract habitat fragmentation, the connectivity of a landscape should be enhanced. Corridors are thought to facilitate movement between disconnected patches of habitat, and linear strips of habitat connecting isolated patches are a popular type of corridor. On the other hand, the creation of new corridors can lead to fragmentation of the surrounding habitat. For example, heathland corridors connect patches of heathland and alternatively hedgerows connect patches of woodland. Nevertheless, these corridors themselves also break up previously connected patches of their surrounding habitat and in so doing fragment another type of habitat (heathland corridors fragment woodlands and woodland strips or hedgerows fragment heathlands). To overcome this challenge we propose the use of semi-open habitats (a mixture of heathland and woodland vegetation) as conservation corridors to enable dispersal of both stenotopic heathland and woodland species. We used two semi-open corridors with a mosaic of heathland and woody vegetation to investigate the efficiency of semi-open corridors for species dispersal and to assess whether these corridors might be a suitable approach for nature conservation. We conducted a mark-recapture study on three stenotopic flightless carabid beetles of heathlands and woodlands and took an inventory of all the carabid species in two semi-open corridors. Both methodological approaches showed simultaneous immigration of woodland and heathland species in the semi-open corridor. Detrended correspondence analysis showed a clear separation of the given habitats and affirmed that semi-open corridors are a good strategy for connecting woodlands and heathlands. The best means of creating and preserving semi-open corridors is probably through extensive grazing .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号