首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang J  Ban H  Teng X  Wang H  Ladwig K 《Chemosphere》2006,64(11):1892-1898
Many coal-fired power plants are implementing ammonia-based technologies to reduce NO(x) emissions. Excess ammonia in the flue gas often deposits on the coal fly ash. Ammonia can form complexes with many heavy metals and change the leaching characteristics of these metals. This research tends to develop a fundamental understanding of the ammonia impact on the leaching of some heavy metals, exemplified by Cu(II) and Cd(II), under different pH conditions. Batch results indicated that the adsorption is the main mechanism controlling Cu(II) and Cd(II) leaching, and high concentrations of ammonia (>5,000 mg/l) can increase the release of Cu(II) and Cd(II) in the alkaline pH range. Based on the chemical reactions among fly ash, ammonia, and heavy metal ion, a mathematical model was developed to quantify effects of pH and ammonia on metal adsorption. The adsorption constants (logK) of Cu(2+), Cu(OH)(+), Cu(OH)(2), and Cu(NH(3))(m)(2+) for the fly ash under investigation were respectively 6.0, 7.7, 9.6, and 2.9. For Cd(II), these constants were respectively 4.3, 6.9, 8.8, and 2.6. Metal speciation calculations indicated that the formation of less adsorbable metal-ammonia complexes decreased metal adsorption, therefore enhanced metal leaching.  相似文献   

2.
Lin CJ  Chang JE 《Chemosphere》2001,44(5):1185-1192
Fly ash is a particulate substance containing metal oxides, carbon and other microelements. In this study, fly ashes with different quantities of carbon and minerals prepared by a thermal process in the laboratory were used as adsorbents to investigate the contribution of precipitation and adsorption to the removal of aqueous Cu(II). Experimental results showed that the specific surface area of fly ash increased linearly with the quantity of carbon. The specific surface areas of the carbon and mineral fraction were 60 m2/g and 0.68 m2/g, respectively. The specific adsorption capacities of carbon ranged from 2.2 to 2.8 mg Cu/g carbon, while those for mineral were only about 0.63 to approximately 0.81 mg Cu/g mineral. Consequently, the carbon fraction in fly ash was important in the removal of Cu(II) at pH 5. However, Cu(II) removal owing to precipitation increases with a decreasing carbon fraction and the contribution of copper precipitation was estimated to be approximately 23% to approximately 82% of total removal, depending on the carbon fraction of fly ash.  相似文献   

3.
研究了不同粒径垃圾焚烧底渣的质量分布、物质成分(XRF)、晶体结构(XRD)、PAHs含量、酸反应特性、PAHs含量以及在2种浸出液中的毒性浸出情况。在比较国内外相关研究的基础上,实验得出垃圾焚烧底渣主要分布在粒径大于0.28 mm范围内,相比一些地区的研究结果要偏细;主要的物质成分为SiO2、CaO、Al2O3、Fe2O3、MgO、Na2O和K2O,而主要的晶体结构则分别为CaCO3、SiO2、Ca(OH)2和Mg0.3Ca0.97CO3,都与其他地区的研究结果基本相同;PAHs含量为0.043 4~0.247 mg/kg,与一些研究欧洲地区底渣中PAHs的含量的结果基本相近,且PAHs同类物的含量也随着底渣粒径的减小而增大;同时,实验还得出底渣中8种重金属在2种浸出液中的浸出浓度都未超出危险废物浸出毒性鉴别标准值(GB 5085.3-2007),但当底渣粒径大于0.6 mm时,其对环境中酸性物质的缓冲能力变弱。通过比较国外的一些研究结果,得出如将底渣作为建材利用时,需采用相应防范措施以防止其所含的重金属对周围土壤和水体的影响。希望能为进一步认识、处理和利用垃圾焚烧底渣提供一定的理论参考。  相似文献   

4.
This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system.  相似文献   

5.
In heating treatment of fly ash to reduce PCDD/Fs, cooling process is important to inhibit de novo formation of PCDD/Fs. In this study, assuming that residual carbon is the dominant factor of de novo synthesis, the relation between PCDD/Fs and residual carbon was examined. Firstly, by using MSWI fly ash which was treated in an actually operated facility, both the content of PCDD/Fs and residual carbon were decreased as heating temperature increased. At temperatures higher than 400 degrees C, the reduction rate of residual carbon was higher than 20% and more than 95% of PCDD/Fs was decomposed. In order to simulate a heating treatment process, fly ash was heated at different temperatures and gas atmospheres, oxygen or nitrogen. Heated fly ash was placed for 2 h at 300 degrees C in oxygen to promote de novo synthesis, or cooled immediately. As a result, good correlation between PCDD/Fs and residual carbon was found, therefore it was shown experimentally that residual carbon was the main factor for PCDD/Fs formation by de novo synthesis in fly ash.  相似文献   

6.
Li CW  Liu CK  Yen WS 《Chemosphere》2006,63(2):353-358
A nonionic surfactant, polyoxyethylene Octyl phenyl ether (Triton-X), is added to a micellar-enhanced ultrafiltration process to lower the critical micellar concentration (CMC) of an anionic surfactant, sodium dodecyl sulfate (SDS). The effects of adding Triton-X on the copper removal efficiency, the permeate SDS concentration, the copper binding capacity of SDS micelles, and membrane fouling are investigated. Our results show that the addition of Triton-X at concentrations greater than its CMC can reduce the SDS dosage required for effective Cu removal, and at the same time, minimize the permeate SDS concentration. Although, no adverse effect on the copper binding capacity of SDS micelle is observed by the addition of Triton-X, the membrane fouling is worsen. Cleaning the membrane with DI water allowed restoring the membrane flux, indicating that the fouling caused by Triton-X was reversible.  相似文献   

7.
The influence of the pesticide glyphosate (GPS) on the adsorption of Cu (II) on montmorillonite has been examined. The complexation of Cu(II) with GPS was studied using anodic stripping voltammetry in differential pulse mode (DPASV). It has been concluded that the complexes present a labile behaviour and GPS shows a low but noticeable degree of heterogeneity, probably due to complexation of Cu bv more than one GPS species. Cu(II) adsorption on montmorillonite is drastically decreased in the presence of GPS, due to several reasons: decrease in free Cu concentration due to formation of Cu-GPS complexes; surface loading of GPS on montmorillonite, obstructing interlamellar Cu2+ adsorption and competitive effect between protons and Cu2+ for interlamellar positions.  相似文献   

8.
Using 19 samples of fly ash collected from various MSW incineration facilities, residual carbon was characterized by gasifiable fraction at 450 degrees C (C450), and the correlations with de novo synthesis of PCDD/Fs were experimentally examined. Fly ashes were classified into three groups by the ratio of C450 to total residual carbon. By comparison of CO and CO2 generation patterns with those of reference materials, unburnt carbon of solid waste and activated carbon powder injected into flue gas were identified as a carbon source in fly ash. In the experiment of de novo synthesis of PCDD/Fs, the content of PCDD/F synthesis depended on C450 regardless of the origin of carbon. In addition, the model to predict the content of PCDD/F synthesis, DeltaPCDD/F=0.989.Cu.C450, fitted well with experimental values.  相似文献   

9.

Background and aim  

Many rivers have to receive treated or untreated wastewater as the main water sources in the world, especially in the countries facing with water shortage. For instance, the Haihe and Huaihe River Basin, which are among areas facing crises for water resources in China, receive 33,400 million tons of wastewater per year. As the sediment has large capacity for sorbing hydrophobic organic pollutants such as polycyclic aromatic hydrocarbons (PAHs), it can act as a natural repository for the contaminants. This means pollutants can release into water phase again under some conditions, such as resuspension, sediment dredging, etc. The objective of this research was to study the trends of PAH release from sediments in rivers receiving much wastewater, such as Yongding New River (YD), Northsewer (NS), and Southsewer (SS) from Haihe River Basin. These rivers received most of the wastewater from Tianjin, China and merge into Bohai Bay finally.  相似文献   

10.
The purpose of this study is to compare the relative contribution of different mechanisms to the enhanced adsorption of Cu(II), Pb(II) and Cd(II) by variable charge soils due to incorporation of biochars derived from crop straws. The biochars were prepared from the straws of canola and peanut using an oxygen-limited pyrolysis method at 350 °C. The effect of biochars on adsorption and desorption of Cu(II), Pb(II) and Cd(II) by and from three variable charge soils from southern China was investigated with batch experiments. Based on the desorption of pre-adsorbed heavy metals, the electrostatic and non-electrostatic adsorptions were separated. EDTA was used to replace the heavy metals complexed with biochars and to evaluate the complexing ability of the biochars with the metals. The incorporation of biochars increased the adsorption of Cu(II), Pb(II) and Cd(II) by the soil; peanut straw char induced a greater increase in the adsorption of the three metals. The increased percentage of Cd(II) adsorption induced by biochars was much greater than that for the adsorption of Cu(II) and Pb(II). Cu(II) adsorption on three variable charge soils was enhanced by the two biochars mainly through a non-electrostatic mechanism, while both electrostatic and non-electrostatic mechanisms contributed to the enhanced adsorption of Pb(II) and Cd(II) due to the biochars. Peanut straw char had a greater specific adsorption capacity than canola straw char and thus induced more non-electrostatic adsorption of Cu(II), Pb(II) and Cd(II) by the soils than did the canola straw char. The complexing ability of the biochars with Cu(II) and Pb(II) was much stronger than that with Cd(II) and thus induced more specific adsorption of Cu(II) and Pb(II) by the soils than that of Cd(II). Biochars increased heavy metal adsorption by the variable charge soils through electrostatic and non-electrostatic mechanisms, and the relative contribution of the two mechanisms varied with metals and biochars.  相似文献   

11.
Environmental Science and Pollution Research - A new one-pot synthesis method optimized by a 23 experimental design was developed to prepare a biosorbent, sugarcane bagasse cellulose succinate...  相似文献   

12.
采用农业废弃物麦秆为原料制备黄原酸酯,通过傅立叶变换红外光谱FT-IR、扫描电子显微镜SEM等技术对麦秆黄原酸酯物理化学性质进行表征,并对水中Cu2+进行吸附特性研究,考察了不同条件对Cu2+吸附效果的影响,并将其应用于跌水式吸附法对含重金属沼液进行处理,为麦秆黄原酸酯应用于实际污水处理提供理论参考。结果表明,麦秆黄原酸酯对Cu2+的吸附行为符合伪二级动力学吸附模型与Langmuir等温吸附方程,298 K时,Cu2+的饱和吸附量为28.33 mg/g,溶出率为4.97%,对Cu2+的固持能力较强;黄原酸酯跌水吸附法对于含量为50 mg/L以下的Cu2+废水去除率达到80%以上,对实际沼液中Pb、Zn、Cd、Cu的去除率为44.42%~90.16%,去除顺序为Cd>Pb>Cu>Zn。  相似文献   

13.
Spent sorbents in water treatment processes have potential risks to the environment if released without proper treatment. The aim of this work was to investigate the potential regeneration of commercially prepared nano-TiO2 (anatase) for the removal of Pb (II), Cu (II), and Zn (II) by pH 2 and ethylenediaminetetraacetic acid (EDTA) solutions. The percent of metal adsorption/desorption decreased with the increasing number of regeneration cycles, and the extent of decrease varied for each metal. Competitive effects were observed for the adsorption/desorption of different metals when the nano-TiO2 was regenerated by EDTA solutions. Nano-TiO2 was able to treat simulated metal polluted water with greater than 94 % adsorption and greater than 92 % desorption after four cycles of regeneration using pH 2 solution. These results demonstrated that nano-TiO2 can be regenerated and reused using pH 2 solution compared to an EDTA solution for aquatic metal removal, which makes nanosorbents promising and economically and environmentally more attractive in the application of water purification.  相似文献   

14.
The aim of the present study was to assess the effect of the exposure of Leporinus obtusidens (Piava) to zinc and copper on catalase activity in the liver, delta-aminolevulinate dehidratase (delta-ALA-D) activity in liver, muscle, brain and kidney, and thiobarbituric reactive species (TBARS) in brain, muscle and liver. In addition, hematological parameters were measured in blood. The fish were exposed to 10% and 20% of the derived LC(50) values, 2.3 and 4.6 mg Zn l(-1) and 0.02 and 0.04 mg Cu l(-1), and sampled on days 30 and 45. Exposure to Zn(II) and Cu(II) decreased hematological parameters and also delta-ALA-D activity mainly in liver and kidney at all concentrations tested. Liver catalase activity increased after zinc or copper exposure at all concentrations and exposure times tested. Thiobarbituric reactive substances (TBARS) increased in the brain and liver of the fish exposed to zinc(II) for 45 days at both metal concentrations. In muscle, zinc(II) increased TBARS production at both exposure times and concentrations tested. Copper(II) exposure reduced the TBARS levels in liver at both concentrations and times tested. In brain, there was a decrease in TBARS levels only after 45 days of exposure. In muscle, this decrease was observed after 30 days of exposure at both concentrations. Although zinc and copper are required as microelements in the cells, our results showed that the sublethal concentrations of these metals can change biochemical parameters which may alter normal cellular function. These results pointed out the differential sensitivity of fish tissues to essential, but also toxic and environmentally relevant metals. The alterations of distinct biochemical parameters in fish tissues certainly contribute to the toxicity of Zn and Cu, and are of importance for an area that has been growing and has still been poorly explored in the literature.  相似文献   

15.
Heavy metal pollution is a common environmental problem all over the world. The purpose of the research is to examine the applicability of bagasse fly ash (BFA)—an agricultural waste of sugar industry used for the synthesis of zeolitic material. The zeolitic material are used for the uptake of Pb(II) and Cd(II) heavy metal. Bagasse fly ash is used as a native material for the synthesis of zeolitic materials by conventional hydrothermal treatment without (conventional zeolitic bagasse fly ash (CZBFA)) and with electrolyte (conventional zeolitic bagasse fly ash in electrolyte media (ECZBFA)) media. Heavy metal ions Pb(II) and Cd(II) were successfully seized from aqueous media using these synthesized zeolitic materials. In this study, the zeolitic materials were well characterized by different instrumental methods such as Brunauer–Emmett–Teller, XRF, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopic microphotographs. The presence of analcime, phillipsite, and zeolite P in adsorbents confirms successful conversion of native BFA into zeolitic materials. Seizure modeling of Pb(II) and Cd(II) was achieved by batch sorption experiments, isotherms, and kinetic studies. These data were used to compare and evaluate the zeolitic materials as potential sorbents for the uptake of heavy metal ions from an aqueous media. The Langmuir isotherm correlation coefficient parameters best fit the equilibrium data which indicate the physical sorption. Pseudo-second-order and intra-particle diffusion model matches best which indicates that the rate of sorption was controlled by film diffusion. The column studies were performed for the practical function of sorbents, and breakthrough curves were obtained, which revealed higher sorption capacity as compared to batch method. Synthesized zeolitic material (CZBFA and ECZBFA), a low-cost sorbent, was proven as potential sorbent for the uptake of Pb(II) and Cd(II) heavy metal ions.  相似文献   

16.
Zhang T  Wu YX  Huang XF  Liu JM  Xia B  Zhang WH  Qiu RL 《Chemosphere》2012,88(6):730-735
Soil washing is one of the few permanent treatment alternatives for removing metal contaminants. Ethylenediaminetetraacetic acid and its salts (EDTA) is very effective at removing cationic metals and has been utilized globally. However it is ineffective for anionic metal contaminants or metals bound to soil organic matter. The simultaneous removal of cationic and anionic metal contaminants by soil washing is difficult due to differences in their properties. The present study evaluated the potential of a washing process using two synthesized EDTA-derivatives, C6HEDTA (2,2′-((2-((carboxymethyl)(2-(hexanoyloxy)ethyl)amino)ethyl)azanediyl)diacetic acid) and C12HEDTA (2,2′-((2-((carboxymethyl) (2-(dodecanoyloxy)ethyl)amino)ethyl)azanediyl)diacetic acid), which consist of a hydrophilic polycarboxylic moiety and a hydrophobic moiety with a monoalkyl ester group. A series of equilibrium batch experiments at room temperature were conducted to investigate the efficacy of C6HEDTA and C12HEDTA as extractants for both oxyanion Cr(VI) and cationic Cu(II). Results showed that either C6HEDTA or C12HEDTA can extract both Cr(VI) and Cu(II) from humic acid simultaneously. However, C6HEDTA was less effective for Cr(VI) probably because it has no surface activities to increase solubility of humic acid, like C12HEDTA. Extraction of Cr(VI) was mainly attributed to the decreased surface tension and enhanced solubility of organic matter. Extraction of Cu(II) was attributed to both the Cu(II) chelation and enhanced solubility of humic acid. It was demonstrated that the hydrophilic polycarboxylic moiety of C12HEDTA chelates cations while the monoalkyl ester group produces surface active properties that enhance the solubility of humic acid.  相似文献   

17.
Addink R  Altwicker ER 《Chemosphere》2001,44(6):1361-1367
Na37Cl was used to study the role of chlorine in the formation of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) from carbon. Adding Na37Cl to fly ash showed that this compound was a (relatively) poor chloride source; chlorine naturally present on the ash - which could include both chlorine in residual carbon and (metal) chlorides - was found to be ca. 17x more reactive. When both Na37Cl and CuCl2 were added to aqueous extracted fly ash, the percentage of 37Cl from Na37Cl included in PCDD/F increased, compared to the combination of Na37Cl/fly ash. When Na37Cl and CuCl2 were exchanged in water, followed by evaporation of the solvent, and mixed with aqueous extracted fly ash, the percentage of 37Cl included in PCDD/F was much higher. Apparently, direct transfer of 37Cl from CuCl2 to carbon and PCDD/F was much faster than transfer of 37Cl- from Na37Cl via a metal chloride (such as CuCl2) to carbon and PCDD/F. In addition to chlorine in PCDD/F originating from exchanged NaCl/CuCl2, chloride left on the fly ash after aqueous extraction and chlorine present in residual carbon could also have been incorporated in PCDD/F.  相似文献   

18.
BACKGROUND, AIMS AND SCOPE: Hexavalent chromium [Cr(VI)] cannot react with either carbonate or hydroxide to form chromium precipitates. However, by using a precipitation technology to treat plating wastewater containing Cr(VI), Cu(II), Ni(II) and Zn(II), approximately 78% of Cr(VI) (initial 60 mg/L) was co-removed with the precipitation of Cu(II), Ni(II) and Zn(II) (each 150 mg/L) by dosing with Na2CO3 (Sun 2003). Direct precipitation by forming Cu(II)-Cr(VI) precipitates followed by adsorption of Cr(VI) onto freshly formed Cu-precipitates was subsequently found to be the main mechanism(s) involved in Cr(VI) co-removal with Cu(II) precipitation by dosing Na2CO3 stepwise to various pH values (Sun et al. 2003). This study was. carried out to further characterize the formation of primary precipitates during the early stages of copper precipitation and simultaneous removal of Cr(VI) with Cu(II). METHODS: Test metal-solutions were prepared with industrial grade chemicals: CuCl2 x 2H2O, Na2SO4 and K2Cr2207. NaCO3 was added drop-wise to synthetic metal-solution to progressively increase pH. For each pH increment, removal of soluble metals was detected by atomic absorption spectrophotometer (AAS) and surface morphology of precipitates was analyzed by scanning electron microscope (SEM). To further characterize the formation of primary precipitates, a series of MINEQL+ thermodynamic calculations/analyses and equilibrium calculations/ analyses were conducted. RESULTS AND DISCUSSION: MINEQL+ thermodynamic calculation indicated that, for a system containing 150 mg/L Cu(II) and 60 mg/L Cr(VI) with gradual Na2CO3 dosing, if any precipitates can be formed at pH 5.0 or lower, it should be in the form of CuCrO4. Comparison tests using systems containing the same equivalent of Cu(II) plus Cr(VI) and Cu(II) plus SO4(2-) showed that the precipitation occurred at a pH of around 5.0 in the Cu(II)-Cr(VI) system and around 6.0 in the Cu(II)-SO4(2-) system. The discrepancy of the precipitation was indeed caused by the formation of Cu-Cr precipitates. The initiation of copper removal at pH around 5.0 for the Cu-Cr co-removal test was not attributable to the formation of Cu-CO3 precipitates, instead, it was most likely through the formation of insoluble Cu-Cr precipitates, such as CuCrO4 and CuCrO4 x 2Cu(OH)2. Experimental tests, equilibrium calculations, MINEQL+ thermodynamic calculations and surface morphologies for systems using higher concentrations of Cu(II) and Cr(VI) further verified the most probable composition of primary precipitates is copper-chromate. CONCLUSION: In the Cu-Cr co-removal test with Na2O3 dosing to increase pH and induce metal precipitation, copper-chromate precipitates are the primary precipitates produced and contribute to the initial simultaneous removal of copper and chromium.  相似文献   

19.
20.
Green rusts are mixed Fe(II)/Fe(III) hydroxides that are found in many suboxic environments where they are believed to play a central role in the biogeochemical cycling of iron. X-ray absorption fine structure analysis of hydroxysulfate green rust suspensions spiked with aqueous solutions of AgCH(3)COO, AuCl(n)(OH)(4-n), CuCl(2), or HgCl(2) showed that Ag(I), Au(III), Cu(II), and Hg(II) were readily reduced to Ag(0), Au(0), Cu(0), and Hg(0). Imaging of the resulting solids from the Ag(I)-, Au(III)-, and Cu(II)-amended green rust suspensions by transmission electron microscopy indicated the formation of submicron-sized particles of Ag(0), Au(0), and Cu(0). The facile reduction of Ag(I), Au(III), Cu(II), and Hg(II) to Ag(0), Au(0), Cu(0), and Hg(0), respectively, by green rust suggests that the presence of green rusts in suboxic soils and sediments can have a significant impact on the biogeochemistry of silver, gold, copper, and mercury, particularly with respect to their mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号