共查询到20条相似文献,搜索用时 15 毫秒
1.
Scott J. Goetz 《Journal of the American Water Resources Association》2006,42(1):133-143
Riparian buffer zone management is an area of increasing relevance as human modification of the landscape continues unabated. Land and water resource managers are continually challenged to maintain stream ecosystem integrity and water quality in the context of rapidly changing land use, which often offsets management gains. Approaches are needed not only to map vegetation cover in riparian zones, but also to monitor the changes taking place, target restoration activities, and assess the success of previous management actions. To date, these objectives have been difficult to meet using traditional techniques based on aerial photos and field visits, particularly over large areas. Recent advances in remote sensing have the potential to substantially aid buffer zone management. Very high resolution imagery is now available that allows detailed mapping and monitoring of buffer zone vegetation and provides a basis for consistent assessments using moderately high resolution remote sensing (e.g., Landsat). Laser‐based remote sensing is another advance that permits even more detailed information on buffer zone properties, such as refined topographic derivatives and multidimensional vegetation structure. These sources of image data and map information are reviewed in this paper, examples of their application to riparian buffer mapping and stream health assessment are provided, and future prospects for improved buffer monitoring are discussed. 相似文献
2.
Kurt J. Robinson Robert M. Ragan 《Journal of the American Water Resources Association》1993,29(6):1003-1008
ABSTRACT: The reauthorization of the Clean Water Act reemphasizes the need for regional scale monitoring and management of nonpoint pollution loads. The magnitude of the task will require that local governments and their consultants integrate information systems and modeling if they are to manage the massive data sets and conduct the array of simulations that will be needed to support the decision making processes. Interfacing geographic information systems (GIS) and nonpoint pollution modeling is a logical approach. The objective of the present study was to use the 37,000-acre area defined by the Kensington Quadrangle sheet in Montgomery County, Maryland, to show that GIS-supported nonpoint pollution modeling is practical and economically attractive. The purpose of the GIS is to estimate the spatial distribution of nonpoint nitrogen, phosphorous, zinc, lead, BOD, and sediment using a model developed by the Northern Virginia Planning District Commission. The system allows the user to change land uses in subareas to simulate the consequences of additional development or alternate management strategies. The tests show that in-house development of this type of special purpose GIS is a practical alternative to vendor supplied systems and that the required databases can be developed quite reasonably. 相似文献
3.
Abstract: The spatial scale and location of land whose development has the strongest influence on aquatic ecosystems must be known to support land use decisions that protect water resources in urbanizing watersheds. We explored impacts of urbanization on streams in the West River watershed, New Haven, Connecticut, to identify the spatial scale of watershed imperviousness that was most strongly related to water chemistry, macroinvertebrates, and physical habitat. A multiparameter water quality index was used to characterize regional urban nonpoint source pollution levels. We identified a critical level of 5% impervious cover, above which stream health declined. Conditions declined with increasing imperviousness and leveled off in a constant state of impairment at 10%. Instream variables were most correlated (0.77 ≤ |r| ≤ 0.92, p < 0.0125) to total impervious area (TIA) in the 100‐m buffer of local contributing areas (~5‐km2 drainage area immediately upstream of each study site). Water and habitat quality had a relatively consistent strong relationship with TIA across each of the spatial scales of investigation, whereas macroinvertebrate metrics produced noticeably weaker relationships at the larger scales. Our findings illustrate the need for multiscale watershed management of aquatic ecosystems in small streams flowing through the spatial hierarchies that comprise watersheds with forest‐urban land use gradients. 相似文献
4.
Steven M. Haubner Erhard F Joeres 《Journal of the American Water Resources Association》1996,32(6):1341-1351
ABSTRACT: Geographic Information Systems (GIS) are being used increasingly as a method of preparing, analyzing, and displaying data for watershed analysis and modeling. Although GIS technology is a powerful tool for integrating and analyzing watershed characteristics, the initial preparation of the necessary database is often a time consuming and costly endeavor. This demonstration project assesses the viability of creating a cost-effective spatial database for urban stormwater modeling from existing digital and hard-copy data sources. The GIS was used to provide input parameters to the Source Loading and Management Model (SLANM), an empirical urban stormwater quality model. Land use characteristics, drainage boundaries, and soils information were geocoded and referenced to a base data layer consisting of transportation features. GIS overlay and data manipulation capabilities were utilized to preprocess the input data for the model. Model output was analyzed through postprocessing by GIS, and results were compared to a similar recent modeling study of the same watershed. The project, undertaken for a small urban watershed located in Plymouth, Minnesota, successfully demonstrates that the use of GIS in stormwater management can allow even small communities to reap the benefits of stormwater quality modeling. 相似文献
5.
Amey S. Tilak Michael R. Burchell II Mohamed A. Youssef Richard R. Lowrance Randy G. Williams 《Journal of the American Water Resources Association》2014,50(3):665-682
The riparian ecosystem management model (REMM) was field tested using five years (2005‐2009) of measured hydrologic and water quality data on a riparian buffer located in the Tar‐Pamlico River Basin, North Carolina. The buffer site received NO3‐N loading from an agricultural field that was fertilized with inorganic fertilizer. Field results showed the buffer reduced groundwater NO3‐N concentration moving to the stream over a five‐year period. REMM was calibrated hydrologically using daily field‐measured water table depths (WTDs), and with monthly NO3‐N concentrations in groundwater wells. Results showed simulated WTDs and NO3‐N concentrations in good agreement with measured values. The mean absolute error and Willmott's index of agreement for WTDs varied from 13‐45 cm and 0.72‐0.92, respectively, while the root mean square error and Willmott's index of agreement for NO3‐N concentrations ranged from 1.04‐5.92 mg/l and 0.1‐0.86, respectively, over the five‐year period. REMM predicted plant nitrogen (N) uptake and denitrification were within ranges reported in other riparian buffer field studies. The calibrated and validated REMM was used to simulate 33 years of buffer performance at the site. Results showed that on average the buffer reduced NO3‐N concentrations from 12 mg/l at the field edge to 0.7 mg/l at the stream edge over the simulation period, while the total N and NO3‐N load reductions from the field edge to the stream were 77 and 82%, respectively. 相似文献
6.
Ross S. Lunetta Richard G. Greene John G. Lyon 《Journal of the American Water Resources Association》2005,41(5):1129-1147
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr). 相似文献
7.
Paul J. Kinzel Carl J. Legleiter Jonathan M. Nelson 《Journal of the American Water Resources Association》2013,49(1):183-204
Kinzel, Paul J., Carl J. Legleiter, and Jonathan M. Nelson, 2012. Mapping River Bathymetry with a Small Footprint Green LiDAR: Applications and Challenges. Journal of the American Water Resources Association (JAWRA) 1‐22. DOI: 10.1111/jawr.12008 Abstract: Airborne bathymetric Light Detection And Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly sought after for high‐resolution mapping of fluvial systems. To evaluate the potential utility of bathymetric LiDAR for applications of this kind, we compared detailed surveys collected using wading and sonar techniques with measurements from the United States Geological Survey’s hybrid topographic/bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). These comparisons, based upon data collected from the Trinity and Klamath Rivers, California, and the Colorado River, Colorado, demonstrated that environmental conditions and postprocessing algorithms can influence the accuracy and utility of these surveys and must be given consideration. These factors can lead to mapping errors that can have a direct bearing on derivative analyses such as hydraulic modeling and habitat assessment. We discuss the water and substrate characteristics of the sites, compare the conventional and remotely sensed river‐bed topographies, and investigate the laser waveforms reflected from submerged targets to provide an evaluation as to the suitability and accuracy of the EAARL system and associated processing algorithms for riverine mapping applications. 相似文献
8.
U. S. Tim S. Mostaghimi V O. Shanholtz 《Journal of the American Water Resources Association》1992,28(5):877-887
n integrated approach coupling water quality computer simulation modeling with a geographic information system (GIS) was used to delineate critical areas of nonpoint source (NPS) pollution at the watershed level. Two simplified pollutant export models were integrated with the Virginia Geographic Information System (VirGIS) to estimate soil erosion, sediment yield, and phosphorus (P) loading from the Nomini Creek watershed located in Westmoreland County, Virginia. On the basis of selected criteria for soil erosion rate, sediment yield, and P loading, model outputs were used to identily watershed areas which exhibit three categories (low, medium, high) of non-point source pollution potentials. The percentage of the watershed area in each category, and the land area with critical pollution problems were also identified. For the 1505-ha Nomini Creek watershed, about 15, 16, and 21 percent of the watershed area were delineated as sources of critical soil erosion, sediment, and phosphorus pollution problems, respectively. In general, the study demonstrated the usefulness of integrating GIS with simulation modeling for nonpoint source pollution control and planning. Such techniques can facilitate making priorities and targeting nonpoint source pollution control programs. 相似文献
9.
ABSTRACT: This study determines the most cost effective spatial pattern of farming systems for improving water quality and evaluates the economic value of riparian buffers in reducing agricultural nonpoint source pollution in a Midwestern agricultural watershed. Economic and water quality impacts of alternative farming systems are evaluated using the CARE and SWAT models, respectively. The water quality benefits of riparian buffers are estimated by combining experimental data and simulated water quality impacts of fanning systems obtained using SWAT. The net economic value of riparian buffers in improving water quality is estimated by total watershed net return with riparian buffers minus total watershed net return without riparian buffers minus the opportunity cost of riparian buffers. Exclusive of maintenance cost, the net economic value of riparian buffers in reducing atrazine concentration from 45 to 24 ppb is $612,117 and the savings in government cost is $631,710. Results strongly support efforts that encourage farmers to develop or maintain riparian buffers adjacent to streams. 相似文献
10.
Stephanie A. Sparkman Dianna M. Hogan Kristina G. Hopkins J.V. Loperfido 《Journal of the American Water Resources Association》2017,53(5):1081-1094
Stormwater runoff and associated pollutants from urban areas in the greater Chesapeake Bay Watershed (CBW) impair local streams and downstream ecosystems, despite urbanized land comprising only 7% of the CBW area. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner to treat stormwater runoff closer to its source. This approach included the development of a novel BMP model to compare traditional and LID design, pioneering the use of comprehensively digitized storm sewer infrastructure and BMP design connectivity with spatial patterns in a geographic information system at the watershed scale. The goal was to compare total watershed pollutant removal efficiency in two study watersheds with differing spatial patterns of BMP design (traditional and LID), by quantifying the improved water quality benefit of LID BMP design. An estimate of uncertainty was included in the modeling framework by using ranges for BMP pollutant removal efficiencies that were based on the literature. Our model, using Monte Carlo analysis, predicted that the LID watershed removed approximately 78 kg more nitrogen, 3 kg more phosphorus, and 1,592 kg more sediment per square kilometer as compared with the traditional watershed on an annual basis. Our research provides planners a valuable model to prioritize watersheds for BMP design based on model results or in optimizing BMP selection. 相似文献
11.
Travis Warziniack 《Journal of the American Water Resources Association》2014,50(3):683-695
This study builds a general equilibrium model of ecosystem services, with sectors of the economy competing for use of the environment. The model recognizes that production processes in the real world require a combination of natural and human inputs, and understanding the value of these inputs and their competing uses is necessary when considering policies of resource conservation. We demonstrate the model with a numerical example of the Mississippi‐Atchafalaya river basin, in which grain production in the upper basin causes hypoxia that causes damages to the downstream fishing industry. We show that the size of damages is dependent on both environmental and economic shocks. While the potential damages to fishing are large, most of the damage occurs from economic forces rather than a more intensive use of nitrogen fertilizers. We show that these damages are exacerbated by increases in rainfall, which will likely get worse with climate change. We discuss welfare effects from a tax on nitrogen fertilizers and investments in riparian buffers. A 3% nitrogen tax would reduce the size of the hypoxic zone by 11% at a cost of 2% of Iowa's corn output. In comparison, riparian buffers are likely to be less costly and more popular politically. 相似文献
12.
Arthur J. Gold Peter M. Groffman Kelly Addy D. Q. Kellogg Mark Stolt Adam E. Rosenblatt 《Journal of the American Water Resources Association》2001,37(6):1457-1464
ABSTRACT: Inherent site factors can generate substantial variation in the ground water nitrate removal capacity of riparian zones. This paper examines research in the glaciated Northeast to relate variability in ground water nitrate removal to site attributes depicted in readily available spatial databases, such as SSUIRGO. Linking site‐specific studies of riparian ground water nitrate removal to spatial data can help target high‐value riparian locations for restoration or protection and improve the modeling of watershed nitrogen flux. Site attributes, such as hydric soil status (soil wetness) and geomorphology, affect the interaction of nitrate‐enriched ground water with portions of the soil ecosystem possessing elevated biogeochemical transformation rates (i.e., biologically active zones). At our riparian sites, high ground water nitrate‐N removal rates were restricted to hydric soils. Geomorphology provided insights into ground water flowpaths. Riparian sites located on outwash and organic/alluvial deposits have high potential for nitrate‐enriched ground water to interact with biologically active zones. In till deposits, ground water nitrate removal capacity may be limited by the high occurrence of surface seeps that markedly reduce the time available for biological transformations to occur within the riparian zone. To fully realize the value of riparian zones for nitrate retention, landscape controls of riparian nitrate removal in different climatic and physiographic regions must be determined and translated into available spatial databases. 相似文献
13.
Jason W. Oberg Assefa M. Melesss 《Journal of the American Water Resources Association》2006,42(3):565-582
ABSTRACT: Little work is reported where spatial methods are employed to monitor evapotranspiration (ET) changes as a result of vegetation and wetland restoration. A remote sensing approach with the Surface Energy Balance Algorithm for Land (SEBAL) for estimating ET at The Nature Conservancy's Glacial Ridge prairie‐wetland restoration site in northwestern Minnesota is presented. The calibrated 24‐hour ET from SEBAL was estimated with an average error of prediction of ?4.3 percent. Monthly, interseasonal, and seasonal ET for the period of June to September (2000 to 2003) from three adjacent land‐uses: a hydrologic control preserved wetland; a treated or restored site; and a nontreated or impacted wetland, were used in the study. Results from comparing ET behavior to the preserve suggest restoration efforts have affected monthly and seasonal ET within the treated site. Spatial average standard deviations of the seasonal ET within the preserve, treated, and nontreated sites give 47.3, 75.7, and 109.9 mm, respectively, suggesting hydrologic stabilization within the treated site. Monthly and interseasonal comparisons show similar behavior to that of the seasonal data, where monthly correlations suggest increasing agreement within the treated site, approaching those within the preserve. 相似文献
14.
ABSTRACT: Geographic Information Systems (GIS) were used to assess the relationships between land use patterns and the physical habitat and macroinvertebrate fauna of streams within similar sized watersheds. Eleven second or third order watersheds ranging from highly urbanized to heavily forested were selected along Lake Superior's North Shore. Land use patterns within the watersheds were quantified using readily available digital land use/land cover information, with a minimum mapping resolution of 16 ha. Physical habitat features, describing substrate characteristics and stream morphology, were characterized at sample points within each stream. Principle component and correlation analyses were used to identify relationships between macroinvertebrates and stream physical habitat, and between habitat and land use patterns. Substrate characteristics and presence of coarse woody debris were found to have the strongest correlations with macreinvertebrate assemblage richness and composition. Agricultural and urban land use was correlated with substrate characteristics. Algal abundance, associated with macroinvertebrate compositional differences, was correlated with housing density and non-forest land covers. The use of readily available spatial data, even at this relatively coarse scale, provides a means to detect the primary relationships between land use and stream habitat quality; finer-resolution GIS databases are needed to assess more subtle influences, such as those due to riparian conditions. 相似文献
15.
Daniel L. Tufford Carmen L. Samarghitan Hank N. McKellar Dwayne E. Porter James R. Hussey 《Journal of the American Water Resources Association》2003,39(2):301-312
ABSTRACT: Coastal watersheds in the southeastern United States are rapidly changing due to population growth and attendant increases in residential development, industry, and tourism related commerce. This research examined spatial and temporal patterns of nutrient concentrations in streams from 10 small watersheds (< 4 km2) that drain into Murrells Inlet (impacted) and North Inlet (pristine), two high salinity estuaries along the South Carolina coast. Monthly grab samples were collected during baseflow during 1999 and analyzed for total and dissolved inorganic and organic forms of nitrogen and phosphorus. Data were grouped into forested wetland creeks (representing predevelopment reference sites), urban creeks, and urban ponds. DON and NH4 concentrations were greater in forested streams than in urban streams. NO3 and TP concentrations were greatest in urban streams. Seasonally, concentrations were highest during summer for TN, NH4, DON, and TP, while NO3 concentrations were greatest during winter. Nutrient ratios clearly highlighted the reduction in organic nitrogen due to coastal development. Multiple regression models to predict instream nutrient concentrations from land use in Murrells Inlet suggest that effects are not significant (small r2). The findings indicate that broad land use/land cover classes cannot be used to predict nutrient concentrations in streams in the very small watersheds in our study areas. 相似文献
16.
Zeyuan Qiu Tony Prato Gerry Boehrn 《Journal of the American Water Resources Association》2006,42(6):1583-1596
Abstract: This study evaluates the economic value of riparian buffers and open space in a suburban watershed through two nonmarket valuation methods. A contingent valuation survey was implemented in the Dardenne Creek watershed, a suburban watershed of the St. Louis metropolitan area in Missouri, to evaluate the residents' perceptions of and willingness to pay (WTP) for adopting riparian buffers and preserving farmland in a hypothetical real estate market. A hedonic pricing model based on actual sale prices of homes in the watershed was applied to estimate the market value of open space and other environmental conditions such as flood zone and stream proximity in the study area. The results showed that residents' WTP was consistent with the economic values of open space and proximity to streams embedded in existing home prices. Through a better understanding of residents' perceptions and values, riparian buffer and open space programs can be designed and promoted to achieve greater implementation success and environmental benefit. 相似文献
17.
Francisco Olivera Buren B. DeFee 《Journal of the American Water Resources Association》2007,43(1):170-182
Abstract: The capacity of a watershed to urbanize without changing its hydrologic response and the relationship between that response and the spatial configuration of the developed areas was studied. The study was conducted in the Whiteoak Bayou watershed (223 km2), located northwest of Houston, Texas, over an analysis period from 1949 to 2000. Annual development data were derived from parcel data collected by the Harris County Appraisal District. Using these data, measures of the spatial configuration of the watershed urban areas were calculated for each year. Based on regression models, it was determined that the annual runoff depths and annual peak flows depended on the annual precipitation depth, the developed area and the maximum 12‐h precipitation depth on the day and day before the peak flow took place. It was found that, since the early 1970s, when the watershed reached a 10% impervious area, annual runoff depths and peak flows have increased by 146% and 159%, respectively. However, urbanization is responsible for only 77% and 32% of the increase, respectively, while precipitation changes are responsible for the remaining 39% and 96%, respectively. Likewise, an analysis of the development data showed that, starting in the early 1970s, urbanization in the watershed consisted more of connecting already developed areas than of creating new ones, which increases the watershed’s conveyance capacity and explains the change in its response. Before generalizing conclusions, though, further research on other urban watersheds with different urbanization models appears to be necessary. 相似文献
18.
Cody Cox Wayde Morse Christopher Anderson Luke Marzen 《Journal of the American Water Resources Association》2015,51(3):704-718
In this study, we used public participation geographic information systems methods to collect spatial data identifying places that stakeholders in Mobile Bay, Alabama think are important providers of watershed services. These methods allowed us to spatially analyze participatory data from general public respondents and directly compare them with other scientific data in a geographic information systems database. This study identified which places in the region participants believe are important providers of specific watershed services, including fish nurseries, storm protection, flood protection, and water quality protection, which would likely have public support for conservation. Additionally, we assessed the accuracy of participant watershed service identification using land cover data to identify inconsistencies and participant knowledge gaps. This information can be used to target outreach education efforts. We found that the accuracy with which participants correctly identified places with the necessary land cover to provide each service varied considerably. We believe this to be a useful tool for managers to elicit stakeholder input and to identify knowledge gaps regarding the provisioning of watershed services. 相似文献
19.
Stephen J. Ventura Kyehyun Kim 《Journal of the American Water Resources Association》1993,29(2):189-198
ABSTRACT: A geographic information system (GIS) was a useful aid in the assessment of urban nonpoint source pollution and the development of a pollution control strategy. The GIS was used for data integration and display, and to provide data for a nonpoint source model. An empirical nonpoint source loading model driven by land use was used to estimate pollutant loadings of priority pollutants. Pollutant loadings were estimated at fine spatial resolution and aggregated to storm sewer drainage basins (sewersheds). Eleven sewersheds were generated from digital versions of sewer maps. The pollutant loadings of individual land use polygons, derived as the units of analysis from street blocks, were aggregated to get total pollutant loadings within each sewershed. Based on the model output, a critical sewershed was located. Pollutant loadings at major sewer junctions within the critical sewershed were estimated to develop a mitigation strategy. Two approaches based on the installation of wet ponds were investigated - a regional approach using one large wet pond at the major sewer outfall and a multisite approach using a number of smaller sites for each major sewer junction. Cost analyses showed that the regional approach would be more cost effective, though it would provide less pollution control. 相似文献
20.
Rebecca A. Rittenburg Audrey L. Squires Jan Boll Erin S. Brooks Zachary M. Easton Tammo S. Steenhuis 《Journal of the American Water Resources Association》2015,51(2):305-329
We present a conceptual framework that relates agricultural best management practice (BMP) effectiveness with dominant hydrological flow paths to improve nonpoint source (NPS) pollution management. We use the framework to analyze plot, field and watershed scale published studies on BMP effectiveness to develop transferable recommendations for BMP selection and placement at the watershed scale. The framework is based on the location of the restrictive layer in the soil profile and distinguishes three hydrologic land types. Hydrologic land type A has the restrictive layer at the surface and BMPs that increase infiltration are effective. In land type B1, the surface soil has an infiltration rate greater than the prevailing precipitation intensity, but there is a shallow restrictive layer causing lateral flow and saturation excess overland flow. Few structural practices are effective for these land types, but pollutant source management plans can significantly reduce pollutant loading. Hydrologic land type B2 has deep, well‐draining soils without restrictive layers that transport pollutants to groundwater via percolation. Practices that increased pollutant residence time in the mixing layer or increased plant water uptake were found as the most effective BMPs in B2 land types. Matching BMPs to the appropriate land type allows for better targeting of hydrologically sensitive areas within a watershed, and potentially more significant reductions of NPS pollutant loading. 相似文献