首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given the unique biogeochemical, physical, and hydrologic services provided by floodplain wetlands, proper management of river systems should include an understanding of how floodplain modifications influence wetland ecosystems. The construction of levees can reduce river–floodplain connectivity, yet it is unclear how levees affect wetlands within floodplains, let alone the cumulative impacts within an entire watershed. This paper explores spatial relationships between levee and floodplain wetland systems in the Wabash Basin, United States. We used a hydrogeomorphic floodplain delineation technique to map floodplain extents and identify wetlands that may be hydrologically connected to river networks. We then spatially examined the relationship between levee presence, wetland area, and other river network attributes within discrete subbasins. Our results show that cumulative wetland area is relatively constant in subbasins that contain levees, regardless of maximum stream order within the subbasin. In subbasins that do not contain levees, cumulative wetland area increases with maximum stream order. However, we found that wetland distributions around levees can be complex, and further studies on the influence of levees on wetland habitat may need to consider finer resolution spatial scales.  相似文献   

2.
人工湿地-氧化塘工艺组合对氮和磷去除效果研究   总被引:4,自引:1,他引:4  
本文在小试规模上,研究了下行流湿地、推流床湿地、氧化塘和兼性塘四种处理单元的四种工艺组合对氮、磷的去除效果,研究结果表明:下行流湿地 氧化塘工艺组合具有较好的充氧效果,推流床湿地后置也可以提高出水的溶解氧。四种工艺组合对离子和TP、IP的去除无显著差异。人工湿地中硝化作用的发生有利于NH^ 4f-N的去除,增加氧化塘可以提高系统的硝化能力,但同时也会增加出水中的N0^-3-N浓度。  相似文献   

3.
Abstract: In blackwater river estuaries, a large portion of external carbon, nitrogen, and phosphorus load are combined in complex organic molecules of varying recalcitrance. Determining their lability is essential to establishing the relationship between anthropogenic loads and eutrophication. A method is proposed in which organic C, N, and P are partitioned into labile and refractory forms, based upon first‐order decay estimated by biochemical oxygen demand relative to total organic carbon, and C:N and C:P ratios as a function of organic carbon lability. The technique was applied in developing total maximum daily loads for the lower St. Johns, a blackwater Atlantic coastal plain river estuary in Northeast Florida. Point source organic nutrients were determined to be largely labile. Urban runoff was found to have the highest relative labile organic N and P content, followed by agricultural runoff. Natural forest and silviculture runoff were high in refractory organic N and P. Upstream labile C, N, and P loads were controlled by autochthonous production, with 34‐50% of summer total labile carbon imported as algal biomass. Differentiation of labile and refractory organic forms suggests that while anthropogenic nutrient enrichment has tripled the total nitrogen load, it has resulted in a 6.7‐fold increase in total labile nitrogen load.  相似文献   

4.
药用红花氮,磷,钾吸收与转运规律   总被引:4,自引:0,他引:4  
药用红花N、P、K三要素在整个生育期中,主要向该时期生长最活跃的部位运转,以确保其生长发育所需。在植株各器官形成初期,该器官中的N、P、K含量较高.在植株不同器官中,以叶中的养分含量最高。植株中N、P、K三要素含量的顺序为:K>N>P。药用红花对N、P、K养分吸收的高峰时期为分枝孕蕾期,占整个生育期的百分率分别为:83.3%、55.4%、52.9%.K的吸收主要在生育前期和中期,N和P在生育后期还有较大的吸收量。每生产500kg干花需吸收K2O0.82kg、N0.32kg、P2O50.17kg.N、P、K养分的转移主要发生在主茎叶和茎,其中以K的转移率最大.  相似文献   

5.
6.
一些常见的沉水草本植物对水质具有较强的净化作用,能够有效控制氮和磷的浓度.本试验通过模拟氮、磷污染的水质条件,采用篦齿眼子菜对氮、磷营养盐的吸附和去除效果进行研究.结果 表明:设定模拟废水中的初始总氮(TN)浓度在1~50 mg/L范围内,培养30天后的植株对总氮的去除率最高可达85.4%,随着初始培养环境中总氮浓度的...  相似文献   

7.
西藏高寒湿地在生态平衡、生态建设和经济社会发展中发挥着重要作用。本文以西藏拉萨河流域内各个典型高寒湿地为研究对象,通过系统聚类法和综合污染指数法,对流域内各项水质指标进行综合分析和评价。结果表明:各个湿地的总N、Cu元素含量都超出了Ⅰ类水质标准;总P、Zn没有超标;Mn元素含量除了塘嘎郭湿地超标3倍外,其他均小于国家标准;Fe元素含量除了塘嘎郭湿地超标7倍外,其他均小于标准。总N、总P、pH值、Cu、Fe等因子对拉萨河流域内各个高寒湿地水质污染贡献最大。拉萨河水体有机污染较重,其余各个湿地有水体富营养化的趋势,同时流域内湿地独特的自然因素造成该流域内重金属污染偏高。对策建议包括应加大对城市污水的治理,加强流域内及周边矿藏资源的开发管理等。  相似文献   

8.
土地利用/覆被变化是生态环境演变最重要的因素之一,其研究对于促进区域生态经济协调发展有重要意义。根据1976年和2006年玛纳斯河流域两期遥感影像资料,基于生态经济学的最新方法采用卫星遥感技术以及Costanza等的生态系统服务价值评价手段,对期间玛纳斯河流域生态服务系统服务功能价值变化进行分析研究。结果表明:①玛纳斯流域土地利用结构变化在30年间表现为草地、林地、不断减少,而耕地、水域、沙地和建设用地不断增加,反映出人类因素及生态环境恶化的趋势;②该流域生态系统服务功能价值总额由1976年123.831 08元减少至2006年101.521 08元。减幅:18.02%,年均减少0.741 08元,通过对玛纳斯河流域生态系统服务功能价值进行评价,为玛纳斯河流域生态开发和治理,以及环境整治提供决策依据。  相似文献   

9.
污水生物脱氮除磷技术研究进展   总被引:14,自引:1,他引:14  
本文综述了城市污水生物脱氮除磷技术研究及应用进展,分析了目前应用的脱氮除磷工艺机理及其特点,探讨了城市污水生物脱氮除磷工艺深入研究的方向。  相似文献   

10.
剩余污泥经臭氧破解后其中碳、氮和磷的变化   总被引:1,自引:0,他引:1  
在臭氧对污泥进行减量的过程中,针对臭氧作用后污泥中碳、氮和磷数量的变化,对污水处理厂的剩余污泥进行了不同累计时间的臭氧作用研究,结果表明经臭氧破解后污泥中的TN没有较大改变,污泥中的TP最终呈减少趋势,破解液中的COD虽有所增加,但破解液回流到生物系统中反而可以补充反硝化过程中有机碳的不足,从而促进污水生物处理的脱氮除磷作用,臭氧的引入不仅可以减少污水处理厂的运行成本,同时可为城镇污水处理厂全面升级改造提供一定的参考。  相似文献   

11.
生物滴滤池是农村生活污水处理的主要技术之一,但其存在氮、磷去除能力有限,稳定性不高等缺点。为提高新型分层生物滴滤池的氮磷去除效率,探索最佳工艺条件,本文采用新型分层生物滴滤池为试验装置,考察了滤料种类、水力负荷、回流比等对装置去除污水中氮磷性能的影响。结果表明,当滤料为炉渣、水力负荷为4 m3·m-2·d-1、回流比为2:1时滤池去除氮磷的效果最好,对NH4+-N、TN、TP、COD的平均去除率分别可达到87.08%、57.37%、66.04%、80.78%;采用较高的回流比是滴滤池提高脱氮效果的一条有效途径。  相似文献   

12.
南盘江上游水污染严重、水资源短缺,而且缺水与污染相互影响.本文以社会经济和水资源这个复杂的耦合系统为研究对象,以促进社会经济持续发展、改善水质、合理利用有限的水资源为总目标,在水污染和水资源供需现状分析、趋势预测的基础上,从水质水量综合决策出发,探讨了南盘江上游水资源的管理对策.  相似文献   

13.
This study evaluates the ability of the Catchment SIMulation (CSIM) hydrologic model to describe seasonal and regional variations in river discharge over the entire Baltic Sea drainage basin (BSDB) based on 31 years of monthly simulation from 1970 through 2000. To date, the model has been successfully applied to simulate annual fluxes of water from the catchments draining into the Baltic Sea. Here, we consider spatiotemporal bias in the distribution of monthly modeling errors across the BSDB since it could potentially reduce the fidelity of predictions and negatively affect the design and implementation of land‐management strategies. Within the period considered, the CSIM model accurately reproduced the annual flows across the BSDB; however, it tended to underpredict the proportion of discharge during high‐flow periods (i.e., spring months) and overpredict during the summer low flow periods. While the general overpredictions during summer periods are spread across all the subbasins of the BSDB, the underprediction during spring periods is seen largely in the northern regions. By implementing a genetic algorithm calibration procedure and/or seasonal parameterization of subsurface water flows for a subset of the catchments modeled, we demonstrate that it is possible to improve the model performance albeit at the cost of increased parameterization and potential loss of parsimony.  相似文献   

14.
Ji, Yuhe, Liding Chen, and Ranhao Sun, 2012. Temporal and Spatial Variability of Water Supply Stress in the Haihe River Basin, Northern China. Journal of the American Water Resources Association (JAWRA) 48(5): 999‐1007. DOI: 10.1111/j.1752‐1688.2012.00671.x Abstract: Water resources are becoming increasingly stressed under the influence of climate change and population growth in the Haihe River Basin, Northern China. Assessing the temporal and spatial variability of water supply stress is urgently needed to mitigate water crisis caused by water resource reallocation. Water supply and use data were compiled for the time period of 1998‐2003 in this synthesis study. The Water Supply Stress Index (WSSI) as defined as Water Demand/Water Supply was used to quantitate whether water supply could meet the demand of human activities across the study region. We found a large spatial gradient of water supply stress in the study region, being much higher in the eastern subbasins (ranging from 2.56 to 4.31) than the west subbasins (ranging from 0.56 to 1.92). The eastern plain region not only suffered more serious water supply stress but also had a much higher interannual variability than the western hilly region. The uneven spatial distribution of water supply stress might result from the distribution of land use, population, and climate. Future climate change and rapid economic development are likely to aggravate the existing water crisis in the study region.  相似文献   

15.
We examined the impacts of changes in land cover and soil conditions on the flow regime of the upper Delaware River Basin using the Water Availability Tool for Environmental Resources. We simulated flows for two periods, c. 1600 and 1940, at three sites using the same temperature and precipitation conditions: the East Branch, West Branch, and mainstem Delaware River at Callicoon, New York. The 1600 period represented pristine forest and soils. The 1940 period included reduced forest cover, increased agriculture, and degraded soils with reduced soil macropore fractions. A model‐sensitivity test examined the impact of soil macropore and land cover change separately. We assessed changes in flow regimes between the 1600 and 1940 periods using a variety of flow statistics, including established ecological limits of hydrologic alteration (ELOHA) thresholds. Reduced forest soil macropore fraction significantly reduced summer and fall baseflows. The 1940 period had significantly lower Q50 flows (50% exceedance) than the 1600 period, as well as summer and fall Q90 and Q75–Q90 flows below the ELOHA thresholds. The one‐ to seven‐day minimum flows were also lower for the 1940 period, by 17% on the mainstem. 1940 flows were 6% more likely than the 1600 period to fall below the low‐flow threshold for federally endangered dwarf wedgemussel (Alasmidonta heterodon) habitat. In contrast, the 1940 period had higher flows than the 1600 period from late fall to early winter.  相似文献   

16.
Boomer, Kathleen M.B., Donald E. Weller, Thomas E. Jordan, Lewis Linker, Zhi‐Jun Liu, James Reilly, Gary Shenk, and Alexey A. Voinov, 2012. Using Multiple Watershed Models to Predict Water, Nitrogen, and Phosphorus Discharges to the Patuxent Estuary. Journal of the American Water Resources Association (JAWRA) 1‐25. DOI: 10.1111/j.1752‐1688.2012.00689.x Abstract: We analyzed an ensemble of watershed models that predict flow, nitrogen, and phosphorus discharges. The models differed in scope and complexity and used different input data, but all had been applied to evaluate human impacts on discharges to the Patuxent River or to the Chesapeake Bay. We compared predictions to observations of average annual, annual time series, and monthly discharge leaving three basins. No model consistently matched observed discharges better than the others, and predictions differed as much as 150% for every basin. Models that agreed best with the observations in one basin often were among the worst models for another material or basin. Combining model predictions into a model average improved overall reliability in matching observations, and the range of predictions helped describe uncertainty. The model average was not the closest to the observed discharge for every material, basin, and time frame, but the model average had the highest Nash–Sutcliffe performance across all combinations. Consistently poor performance in predicting phosphorus loads suggests that none of the models capture major controls. Differences among model predictions came from differences in model structures, input data, and the time period considered, and also to errors in the observed discharge. Ensemble watershed modeling helped identify research needs and quantify the uncertainties that should be considered when using the models in management decisions.  相似文献   

17.
Kurten, Gerald L., Aaron Barkoh, Drew C. Begley, and Loraine T. Fries, 2010. Refining Nitrogen and Phosphorus Fertilization Strategies for Controlling the Toxigenic Alga Prymnesium parvum. Journal of the American Water Resources Association (JAWRA) 46(1):170-186. DOI: 10.1111/j.1752-1688.2009.00401.x Abstract: Previous studies have shown that three times weekly applications of phosphorus (30 μg P/l) and nitrogen (300 μg N/l) were effective at reducing the density and toxicity of the alga Prymnesium parvum in limnocorrals simulating a 40-day moronid (e.g., striped bass, Morone saxatilis, and palmetto bass, M. saxatilis ×Morone chrysops) fingerling culture period. However, this fertilization regime produced high pH and unionized ammonia-N concentrations that are detrimental to the survival of moronid fry and fingerlings. In two follow-up experiments we changed the source of N from ammonia to nitrate, reduced fertilization rates, and examined the effect of N-only or P-only fertilization. In the first experiment P fertilization rates were reduced by one-half to 15 μg P/l and NO3-N was substituted for NH3-N at the previously used rate of 300 μg N/l. In the second experiment, N fertilization rates were reduced to 150 μg N/l and the frequency of fertilization was determined by pH and P. parvum responses. Nitrate appeared to be as effective as ammonia as a source of N and when used in combination with P reduced P. parvum cell density and ichthyotoxicity. However, reduced N and P application rates and lower pond water temperatures during the study appeared to have decreased the speed at which fertilization produced these effects. While lower fertilization rates reduced algal productivity, high pH remained a concern for fish culture although pH was reduced to levels that might be acceptable with careful management of fish culture activities. Neither N-only nor P-only fertilization had a measurable effect on algal productivity or eliminated P. parvum and its toxicity. Furthermore, P-only fertilization may have increased P. parvum density and toxicity. For controlling P. parvum density and ichthyotoxicity we recommend a fertilization rate of 212 μg NO3-N/l plus 30 μg PO4-P/l applied three times weekly for aquaculture ponds where high pH is not a concern. Where high pH is a concern we recommend a fertilization rate of 117 μg NO3-N/l plus 16 μg PO4-P/l applied three times weekly with careful attention to afternoon pond pH.  相似文献   

18.
在水环境保护长期受到高度重视的背景下,开展流域生态补偿试点是我国保护流域水环境的重要手段。目前我国多为政府主导型流域生态补偿,补偿资金全部来源于财政资金,提高财政支出效率可以让有限的财政资金发挥其最大效用。为明确流域生态补偿试点中的财政支出效率,本文以我国首个跨省界流域生态补偿试点——新安江流域生态补偿试点为案例对象,构建流域生态补偿财政支出效率评价模型,并建立评价指标体系。通过选取试点在2012—2017年的生态补偿财政支出进行效率测算与效率评价,结果显示,财政支出纯技术效率6年均值处在0.9以上的高水平,总体表现较好,但仍有改进空间;规模效率值较低是造成财政支出效率表现不佳的主要原因,生态补偿财政资金的配置规模急需完善。建议提高财政资金的管理水平,有针对性地实施生态补偿项目,建立流域和区域相结合的流域治理体系。  相似文献   

19.
Cyanobacterial blooms in Lake Taihu occurred at the end of April 2007 and had crucial impacts on the livelihood of millions of people living there. Excessive nutrients may promote bloom formation. Atmospheric nitrogen (N) and phosphorus (P) deposition appears to play an important role in algal bloom formation. Bulk deposition and rain water samples were collected respectively from May 1 to November 30, 2007, the period of optimal algal growth, to measure the bulk atmospheric deposition rate, wet deposition rate, and dry deposition rate for total nitrogen (TN; i.e., all species of nitrogen), and total phosphorus (TP; i.e., all species of phosphorus), in northern Lake Taihu, China. The trends of the bulk atmospheric deposition rate for TN and the wet deposition rate for TN showed double peaks during the observation period and distinct influence with plum rains and typhoons. Meanwhile, monthly bulk atmospheric deposition rates for TP showed little influence of annual precipitation. However, excessive rain may lead to high atmospheric N and P deposition rates. In bulk deposition samples, the average percentage of total dissolved nitrogen accounting for TN was 91.2% and changed little with time. However, the average percentage of total dissolved phosphorus accounting for TP was 65.6% and changed substantially with time. Annual bulk atmospheric deposition rates of TN and TP during 2007 in Lake Taihu were estimated to be 2,976 and 84 kg km−2 a−1, respectively. The results showed decreases of 34.4% and 78.7%, respectively, compared to 2002–2003. Annual bulk deposition load of TN for Lake Taihu was estimated at 6,958 t a−1 in 2007 including 4,642 t a−1 of wet deposition, lower than the values obtained in 2002–2003. This may be due to measures taken to save energy and emission control regulations in the Yangtze River Delta. Nevertheless, high atmospheric N and P deposition loads helped support cyanobacterial blooms in northern Lake Taihu during summer and autumn, the period of favorable algal growth.  相似文献   

20.
Abstract: The accuracy of streamflow forecasts depends on the uncertainty associated with future weather and the accuracy of the hydrologic model that is used to produce the forecasts. We present a method for streamflow forecasting where hydrologic model parameters are selected based on the climate state. Parameter sets for a hydrologic model are conditioned on an atmospheric pressure index defined using mean November through February (NDJF) 700‐hectoPascal geopotential heights over northwestern North America [Pressure Index from Geopotential heights (PIG)]. The hydrologic model is applied in the Sprague River basin (SRB), a snowmelt‐dominated basin located in the Upper Klamath basin in Oregon. In the SRB, the majority of streamflow occurs during March through May (MAM). Water years (WYs) 1980‐2004 were divided into three groups based on their respective PIG values (high, medium, and low PIG). Low (high) PIG years tend to have higher (lower) than average MAM streamflow. Four parameter sets were calibrated for the SRB, each using a different set of WYs. The initial set used WYs 1995‐2004 and the remaining three used WYs defined as high‐, medium‐, and low‐PIG years. Two sets of March, April, and May streamflow volume forecasts were made using Ensemble Streamflow Prediction (ESP). The first set of ESP simulations used the initial parameter set. Because the PIG is defined using NDJF pressure heights, forecasts starting in March can be made using the PIG parameter set that corresponds with the year being forecasted. The second set of ESP simulations used the parameter set associated with the given PIG year. Comparison of the ESP sets indicates that more accuracy and less variability in volume forecasts may be possible when the ESP is conditioned using the PIG. This is especially true during the high‐PIG years (low‐flow years).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号