首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Artificial streams can assist in assessing the potential impact of pollutants on the structure and function of aquatic communities. While most artificial streams are constructed within a controlled environment or are maintained by recirculating water, we constructed a series of artificial streams along a river bank using river water on a once through basis. This system was used to develop and test methods for structural and functional analyses of Aufwuchs communities. Only the flow rate and stream depth were controlled while individual streams were perturbed to obtain communities of altered ecological condition. This experimental system provided a relatively inexpensive series of treated and untreated streams which allowed an evaluation and comparison of methods using communities under various stressed and nonstressed conditions. Without the stabilizing effects of a controlled atmosphere or recirculating water, our approach demonstrated a degree of variability which approached that of the river. We inferred that the Aufwuchs community present in the artificial streams maintained a high degree of structural complexity and functional dynamism, providing a strong test of our methods and an opportunity to examine current ecological theory.  相似文献   

2.
Headwater streams have a significant nexus or physical, chemical, and/or biological connection to downstream reaches. Generally, defined as 1st‐3rd order with ephemeral, intermittent, or perennial flow regimes, these streams account for a substantial portion of the total stream network particularly in mountainous terrain. Due to their often remote locations, small size, and large numbers, conducting field inventories of headwater streams is challenging. A means of estimating headwater stream location and extent according to flow regime type using publicly available spatial data is needed to simplify this complex process. Using field‐collected headwater point of origin data from three control watersheds, streams were characterized according to a set of spatial parameters related to topography, geology, and soils. These parameters were (1) compared to field‐collected point of origin data listed in three nearby Jurisdictional Determinations, (2) used to develop a geographic information system (GIS)‐based stream network for identifying ephemeral, intermittent, and perennial streams, and (3) applied to a larger watershed and compared to values obtained using the high‐resolution National Hydrography Dataset (NHD). The parameters drainage area and local valley slope were the most reliable predictors of flow regime type. Results showed the high‐resolution NHD identified no ephemeral streams and 9 and 65% fewer intermittent and perennial streams, respectively, than the GIS model.  相似文献   

3.
ABSTRACT: Artificial substrates were designed using rock filled polyethylene bags which were perforated with holes. The substrates trapped waterborne sediment and detritus which enhanced microhabitat complexity. Colonization was compared in side-by-side tests with multiple plate samplers in mountain streams ranging from second to seventh order. After 41 days the bag samples contained more sediment and detritus and more animals than did multiple plates. Plastic bags exceeded multiple plate samples by a factor of nearly 8 for individuals and 1.5 for taxa expressed as numbers/sampler. Although detritus amounts differed significantly between samplers, catch composition was similar in habitat preference and functional groups. Most taxa were “lotic erosional” or “lotic erosional-depositional” detritivores. The plastic bags better represented the streambed fauna judged by their greater similarity to dip net samples. Bag samplers had 4.5 × the colonization area of multiple plates, hence would be expected to support more species. Catch/m2 of colonization area was not significantly different between samplers. Functionally the plastic bags act as detritus retention devices, offering a diverse, highly dynamic microhabitat for colonization. Results are interpretable in terms of research on microdistribution of stream benthos and the river continuum model. This study supports the conclusion that stream benthos abundance and diversity are related to the amount of detritus. Maximum diversity and numbers of individuals occurred in samples from third and fourth order streams. Grazers reached peak abundances in the same streams where the continuum model predicts P>R Shredders reached maximum abundances in third and fourth order streams where the riparian canopy was greatest. Predator abundance changed little with stream size. Although bag samples required more sorting time, the samplers are catch effective, inexpensive, and adaptable.  相似文献   

4.
ABSTRACT: A network flow algorithm has been developed for the optimization of real‐time operation of a multiple reservoir system. Two purposes have been considered in the operation: flood control and hydropower generation. A special network structure was developed which allows the consideration of river routing. A multiobjective formulation is utilized thus allowing generation of a non‐dominated curve. The effect of imperfect forecast on the performance of the real‐time operation model is also evaluated. An application is made to a subsystem of the Brazilian hydroelectric system, located in the Paranapanema river basin. In this case study, the model showed good performance under the largest flood of the historical records.  相似文献   

5.
ABSTRACT: A steady-state, one-dimensional water quality model has been formulated to evaluate spatial variations of Biochemical Oxygen Demand, ammonia nitrogen, and dissolved oxygen for nontidal, branched river systems, with point sources of treated wastes and uniform nonpoint-source loads, under aerobic and/or anaerobic stream conditions. For anaerobic conditions, the decay rate of organic matter is assumed to be limited by the rate of oxygen addition to the streams via stream reaeration and net algal photosynthesis and respiration contributions. The model is applicable to stream impact analysis under sustained wet weather conditions, during which storm-runoff loads are generated by storms of sufficiently long duration to approach steady state in the river system.  相似文献   

6.
The National Flood Interoperability Experiment is a research collaboration among academia, National Oceanic and Atmospheric Administration National Weather Service, and government and commercial partners to advance the application of the National Water Model for flood forecasting. In preparation for a Summer Institute at the National Water Center in June‐July 2015, a demonstration version of a near real‐time, high spatial resolution flood forecasting model was developed for the continental United States. The river and stream network was divided into 2.7 million reaches using the National Hydrography Dataset Plus geospatial dataset and it was demonstrated that the runoff into these stream reaches and the discharge within them could be computed in 10 min at the Texas Advanced Computing Center. This study presents a conceptual framework to connect information from high‐resolution flood forecasting with real‐time observations and flood inundation mapping and planning for local flood emergency response.  相似文献   

7.
Objective assessment of habitat compensation is a central yet challenging issue for restoration ecologists. In 1997, a 3.4-km stream channel, designed to divert water around an open pit diamond mine, was excavated in the Barrenlands region of the Canadian Arctic to create productive stream habitat. We evaluated the initial success of this compensation program by comparing multiple biological attributes of the constructed stream during its first three years to those of natural reference streams in the area. The riparian zone of the constructed stream was largely devoid of vegetation throughout the period, in contrast to the densely vegetated zones of reference streams. The constructed stream also contained lower amounts of woody debris, coarse particulate organic matter (CPOM), and epilithon; had lower coverage by macrophytes and bryophytes; and processed leaf litter at a lower rate than reference streams. Species richness and densities of macroinvertebrates were consistently lower in the constructed stream compared to natural streams. This contributed to differences in macroinvertebrate assemblage structure throughout the period, although assemblages showed some convergence by year 3. The effectiveness of the constructed stream to emulate natural streams varied somewhat depending on the biological attribute being evaluated. Assessments based on individual attributes showed that minimal to moderate levels of similarity between the constructed stream and natural streams were achieved. A collective assessment of all biological and ecosystem attributes suggested that the constructed stream was not a good surrogate for natural streams during these first years. Additional time would be required before many characteristics of the constructed stream would resemble those of reference streams. Because initial efforts to improve fish habitat in the constructed stream focused on physical structures (e.g., weirs, vanes, rock, groins), ecological factors limiting fish growth were not considered and likely constrained success. We suggest that a greater focus on organic characteristics and vegetation within the stream and its riparian zone could have accelerated compensation. The addition of woody debris and CPOM, combined with planting of shrubs and herbs along the stream, should provide a source of allochthonous matter for the biotic community while large cobble and boulders should improve the physical stability of stream system, protecting its organic components.  相似文献   

8.
Artificial Neural Network (ANN) is a flexible and popular tool for predicting the non-linear behavior in the environmental system. Here, the feed-forward ANN model was used to investigate the relationship among the land use, fertilizer, and hydrometerological conditions in 59 river basins over Japan and then applied to estimate the monthly river total nitrogen concentration (TNC). It was shown by the sensitivity analysis, that precipitation, temperature, river discharge, forest area and urban area have high relationships with TNC. The ANN structure having eight inputs and one hidden layer with seven nodes gives the best estimate of TNC. The 1:1 scatter plots of predicted versus measured TNC were closely aligned and provided coefficients of errors of 0.98 and 0.93 for ANNs calibration and validation, respectively. From the results obtained, the ANN model gave satisfactory predictions of stream TNC and appears to be a useful tool for prediction of TNC in Japanese streams. It indicates that the ANN model was able to provide accurate estimates of nitrogen concentration in streams. Its application to such environmental data will encourage further studies on prediction of stream TNC in ungauged rivers and provide a useful tool for water resource and environment managers to obtain a quick preliminary assessment of TNC variations.  相似文献   

9.
Vulnerability of river channels to urbanization has been lessened by the extensive construction of artificial water control improvements. The challenge, however, is that traditional engineering practices on isolated parts of a river may disturb the hydrologic continuity and interrupt the natural state of ecosystems. Taking the Xiaoqinghe River basin as a whole, we developed a river channel network design to mitigate river risks while sustaining the river in a state as natural as possible. The river channel risk from drought during low-flow periods and flood during high-flow periods as well as the potential for water diversion were articulated in detail. On the basis of the above investigation, a network with “nodes” and “edges” could be designed to relieve drought hazard and flood risk respectively. Subsequently, the shortest path algorithm in the graph theory was applied to optimize the low-flow network by searching for the shortest path. The effectiveness assessment was then performed for the low-flow and high-flow networks, respectively. For the former, the network connectedness was evaluated by calculating the “gamma index of connectivity” and “alpha index of circuitry”; for the latter, the ratio of flood-control capacity to projected flood level was devised and calculated. Results show that the design boosted network connectivity and circuitry during the low-flow periods, indicating a more fluent flow pathway, and reduced the flood risk during the high-flow periods.  相似文献   

10.
ABSTRACT: The proportionality coefficient, K, and the weighing parameter, X, required for the Muskingum-Cunge Flood Routing Method are dependent on the hydraulic characteristics of the channel and the dynamic characteristic of the flood wave. This work focuses on the determination of the Muskingum-Cunge Flood Routing Method parameters for streams where measured hydrographs are not available (i.e., ungaged streams) with floods that stay within the channel banks. In the present work, a gaged creek was used and a dynamic wave was routed to test the reliability of the parameters determined through the Schaefer and Stevens technique (Schaefer and Stevens, 1978). The predicted outflow hydrographs are compared to the hydrographs obtained for the same stream determined with the Muskingum Routing option of the HEC-1 program. Cypress Creek in Harris County, Texas, was the model for this work; and the corresponding data were extracted from the Grant Road and Westfield, Texas, USGS gaging stations.  相似文献   

11.
Abstract: Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water‐mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two‐thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large‐scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free‐flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large‐scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream‐system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large‐scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.  相似文献   

12.
Wetland protection and restoration strategies that are designed to promote hydrologic resilience do not incorporate the location of wetlands relative to the main stream network. This is primarily attributed to the lack of knowledge on the effects of wetland location on wetland hydrologic function (e.g., flood and drought mitigation). Here, we combined a watershed‐scale, surface–subsurface, fully distributed, physically based hydrologic model with historical, existing, and lost (drained) wetland maps in the Nose Creek watershed in the Prairie Pothole Region of North America to (1) estimate the hydrologic functions of lost wetlands and (2) estimate the hydrologic functions of wetlands located at different distances from the main stream network. Modeling results showed wetland loss altered streamflow, decreasing baseflow and increasing stream peakflow during the period of the precipitation events that led to major flooding in the watershed and downstream cities. In addition, we found that wetlands closer to the main stream network played a disproportionately important role in attenuating peakflow, while wetland location was not important for regulating baseflow. The findings of this study provide information for watershed managers that can help to prioritize wetland restoration efforts for flood or drought risk mitigation.  相似文献   

13.
Abstract: The effect of stream restoration on hyporheic functions has been neglected, although channel rehabilitation projects have a potential to alter stream‐ground‐water interactions. The present study examined the effect of an artificially constructed gravel bar and re‐meandered stream channel on lateral hyporheic exchange flow and chemistry in two lowland N‐rich streams in southern Ontario, Canada. Nitrate concentrations were relatively high, ranging from 0.5 to 1.3 mg N/l in both streams during spring through fall months. However, nitrate concentrations showed a steep decline as stream water entered the gravel bar and the meander bends. Differences between observed and predicted nitrate concentrations based on conservative ion concentration patterns indicated that 40‐100 and 68‐98% of the nitrate entering the hyporheic zone was removed in the gravel bar and meanders, respectively. Rapid depletion of dissolved oxygen concentrations along lateral hyporheic flow paths and denitrifying potentials assayed by the acetylene block technique in hyporheic sediments suggests that denitrification was an important mechanism of nitrate depletion. Despite the high rate of nitrate removal, the flux of stream water laterally entering the constructed gravel bar and meander bends was very small, and hyporheic nitrate removal was <0.015% of the daily stream load during base‐flow periods in summer and fall. The effects of restoration projects on hyporheic zone dynamics are often limited in lowland streams by low channel gradients and fine floodplain sediments with low interstitial flows that restrict the magnitude of the stream‐hyporheic connection.  相似文献   

14.
ABSTRACT: Urbanization, farming, and other watershed activities can significantly alter storm hydrographs and sediment erosion rates within a watershed. These changes routinely cause severe economic and ecological problems manifested in the form of increased flooding and significant changes in channel morphology. As the activities within a watershed influence the hydrologic, hydraulic, and ecological conditions within a river, interdisciplinary approaches to predict and assess the impacts that different land uses have on streams need to be developed. An important component of this process is ascertaining how hydrologic changes induced by specific watershed activities will affect hydraulic conditions and the accompanying flood levels, sediment transport rates, and habitat conditions within a stream. A conceptual model for using spatially explicit (two‐dimensional) hydraulic models to help evaluate the impacts that changes in flow regime might have on a river is presented. This framework proposes that reproducing and quantifying flow complexity allows one to compare the hydraulic conditions within urban, urbanizing, and non‐urban streams in a more biologically and economically meaningful way. The justification, advantage, and need for such a method is argued through the results of one‐ and two‐dimensional hydraulic model studies. The implementation of this methodology in watershed urbanization studies is described.  相似文献   

15.
Over the past century, channelization, agricultural tiling, and land use changes have resulted in significant stream channel degradation of the Cache River in southern Illinois. With the increasing interest in restoration of the watershed's bottomland forests and swamps, we sought to characterize geomorphic change over the past 110 years to inform restoration and management. A previously surveyed stretch of river was resurveyed in the fall of 2011, following a record flood in the spring of that year. Results suggest that the slope of the channel in this section of the river has increased 345% between 1903 and 1972 (p < 0.01), but has not changed significantly since (p = 0.12). Within that same time period, bank heights increased between 1 and 7 m and bed elevation decreased between 1 and 5 m. Changes in resurveyed cross sections appear to be primarily due to recent flood scour. It appears as though early 20th Century stream channel modifications had immediate effects on the geomorphology of the channel; however, channel geometry is now at or near equilibrium. This case study of the Cache River watershed demonstrates how and why successful restoration will require integration of geomorphic processes of the system.  相似文献   

16.
Riparian forests attenuate solar radiation, thereby mediating an important component of the thermal budget of streams. Here, we investigate the relationship between riparian degradation, stream temperature, and channel width in the Chehalis River Basin, Washington State. We used lidar data to measure canopy opening angle, the angle formed between the channel center and trees on both banks; we assumed historical tree heights and calculated the change in canopy angle relative to historical conditions. We then developed an empirical relationship between canopy angle and water temperature using existing data, and simulated temperatures between 2002 and 2080 by combining a tree growth model with climate change scenarios from the NorWeST regional prediction. The greatest change between historical and current conditions (~7°C) occurred in developed portions of the river network, with the highest values of change predicted at channel widths less than ~40 m. Tree growth lessened climate change increases in maximum temperature and the length of river exceeding biologically critical thresholds by ~50%–60%. Moreover, the maximum temperature of channels with bankfull widths less than ~50 m remained similar to current conditions, despite climate change increases. Our findings are consistent with a possible role for the riparian landscape in explaining the low sensitivity of stream temperatures to air temperatures observed in some small mountain streams.  相似文献   

17.
Using data related to stream order and the morphological characteristics associated with streams of different discharge rates, an estimate of the river resources of the United States is made. The national totals are: 3,200,000 miles total length of rivers; 15,000 square miles of river surface; and 29 cubic miles of water stored in river channels. Using the same techniques, more exact estimates may be made for individual river basins. Suggestions are given for application of the techniques and river data in the management of water resources.  相似文献   

18.
李莉 《四川环境》2021,(1):104-108
为了充分认识再生水用于城市河道补水后的潜在正面环境价值,构建了案例区规划水系的水量水质模型,并筛选了7项景观生态河流的生态服务价值指标,对案例区的河流生态服务价值进行了评估.以规划补水量为基础条件,规划水系的潜在服务价值总量约为1.995亿元,每增加1倍补水量可增加约0.4~0.5亿元的服务价值.气候调节、洪水调蓄和水...  相似文献   

19.
A study of the impact of two flood control reservoirs and pollution influx was conducted on two streams within the Sandy Creek Watershed, Mercer County, Pennsylvania, USA. Fecal coliforms were significantly reduced in the outflows without affecting water chemistry, thereby improving the overall water quality. The size and composition of the aquatic communities as well as stream metabolism varied seasonably among the different sampling stations. Pollution influx primarily from communities and agricultural drainage had a greater impact on the stream ecosystem than did impounding of the streams. Natural wetlands and riparian vegetation were important factors in reducing the pollution load in these streams. The reestablishment and maintenance of riparian vegetation should therefore be an integral part of the land-use plan for watersheds in order to improve water quality and wildlife habitats. In the future, the maintenance of riparian vegetation should be given prime consideration in the development of watershed projects.  相似文献   

20.
Abstract: Consistency in determining Rosgen stream types was evaluated in 12 streams within the John Day Basin, northeastern Oregon. The Rosgen classification system is commonly used in the western United States and is based on the measurement of five stream attributes: entrenchment ratio, width‐to‐depth ratio, sinuosity, slope, and substrate size. Streams were classified from measurements made by three monitoring groups, with each group fielding multiple crews that conducted two to three independent surveys of each stream. In only four streams (33%) did measurements from all crews in all monitoring groups yield the same stream type. Most differences found among field crews and monitoring groups could be attributed to differences in estimates of the entrenchment ratio. Differences in entrenchment ratio were likely due to small discrepancies in determination of maximum bankfull depth, leading to potentially large differences in determination of Rosgen’s flood‐prone width and consequent values of entrenchment. The result was considerable measurement variability among crews within a monitoring group, and because entrenchment ratio is the first discriminator in the Rosgen classification, differences in the assessment of this value often resulted in different determination of primary stream types. In contrast, we found that consistently evaluated attributes, such as channel slope, rarely resulted in any differences in classification. We also found that the Rosgen method can yield nonunique solutions (multiple channel types), with no clear guidance for resolving these situations, and we found that some assigned stream types did not match the appearance of the evaluated stream. Based on these observations we caution the use of Rosgen stream classes for communicating conditions of a single stream or as strata when analyzing many streams due to the reliance of the Rosgen approach on bankfull estimates which are inherently uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号