首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predation rates and prey selection of the pelagic mysid shrimp, Mysis mixta, were studied experimentally in the northern Baltic Sea in 1998 during their most intensive growth period, from June to October. Functional responses during 5 months were determined by providing the mysids with a natural zooplankton assemblage, diluted to several different concentrations. The results show that ingestion rate increased, along with mysid growth, from early summer to autumn and that saturation level was reached between 400 and 500 μg C l−1. Ingestion rates increased with increasing prey concentration, and sigmoidal curves explained mostly the variation in ingestion rates (explanatory levels of 86–97%). Prey selection was evident in June, July and August, though weaker during the latter 2 months. Selection differed between the studied months but, generally, copepods were more positively selected than cladocerans. Rotifers were the main prey during June and July, when mysids were small, while larger mysids fed on copepods and cladocerans. Of the copepods, Eurytemora affinis was a truly selected species. This study shows that mysids feed on many zooplankton taxa and that they undergo ontogenetic diet shifts. Received: 19 July 2000 / Accepted: 19 October 2000  相似文献   

2.
Energetic costs of swarming behavior for the copepod Dioithona oculata   总被引:1,自引:1,他引:0  
E. J. Buskey 《Marine Biology》1998,130(3):425-431
The cyclopoid copepod Dioithona oculata forms dense swarms within shafts of sunlight that penetrate the mangrove prop-root habitat of islands off the coast of Belize. Previous studies, based on in situ video recordings and laboratory studies, have shown that D. oculata is capable of maintaining fixed-position swarms in spite of currents of up to 2 cm s−1. The purpose of this study was to examine the energetic costs of maintaining these swarms, in terms of increased metabolic costs of maintaining position in currents and in terms of reduced feeding rates in densely packed swarms during the day. Using a sealed, variable-speed flow-through chamber, the respiration rates of D. oculata were measured while swarms maintained position in different current speeds. The results indicate that active metabolism (swimming at maximum speed to maintain the swarm in a current) is approximately three times greater than routine metabolism (normal swimming speeds in the absence of currents), indicating a significant metabolic cost of maintaining swarms in the presence of currents. In addition, gut-pigment analysis indicated that feeding rates of these copepods were often reduced in swarms during the day compared to when the copepods were dispersed at night. Given the high “cost” of swarming, the adaptive value of swarming in terms of reduced predation, increased opportunities for mating, and reduced dispersal, must be substantial. Received: 4 June 1997 / Accepted: 18 September 1997  相似文献   

3.
Ultrasonic, depth-sensitive transmitters were used to track the horizontal and vertical movements, for up to 48 h, of 11 adult (136 to 340 kg estimated body mass) North Atlantic bluefin tuna (Thunnus thynnus Linnaeus). Fish were tracked in October 1995, September and October 1996, and August and September 1997 in the Gulf of Maine, northwestern Atlantic. The objective was to document the behavior of these fish and their schools in order to provide the spatial, temporal, and environmental information required for direct (i.e. fishery-independent) assessment of adult bluefin tuna abundance using aerial surveys. Transmitters were attached to free-swimming fish using a harpoon attachment technique, and all fish remained within the Gulf of Maine while being followed. Most of the bluefin tuna tagged on Stellwagen Bank or in Cape Cod Bay (and followed for at least 30 h) held a predominately easterly course with net horizontal displacements of up to 76 km d−1. Mean (±SD) swimming depth for all fish was 14 ± 4.7 m and maximum depth for individuals ranged from 22 to 215 m. All but one fish made their deepest excursions, often single descents, at dawn and dusk. In general, adult bluefin tuna spent <8% of their time at the surface (0 to 1 m), <19% in the top 4 m, but >90% in the uppermost 30 m. Mean (±SD) speed over ground was 5.9 km h−1, but for brief periods surpassed 20 to 31 km h−1. Sea surface temperatures during tracking were 11.5 to 22.0 °C, and minimum temperatures encountered by the fish ranged from 6.0 to 9.0 °C. Tagged bluefin tuna and their schools frequented ocean fronts marked by mixed vertebrate feeding assemblages, which included sea birds, baleen whales, basking sharks, and other bluefin schools. Received: 19 July 1999 / Accepted: 25 March 2000  相似文献   

4.
Fluoride in Antarctic marine crustaceans   总被引:2,自引:0,他引:2  
M. Sands  S. Nicol  A. McMinn 《Marine Biology》1998,132(4):591-598
The concentration of fluoride in the body parts of a range of Antarctic crustaceans from a variety of habits was examined with the aim of determining whether fluoride concentration is related to lifestyle or phylogenetic grouping. Euphausiids had the highest overall fluoride concentrations of a range of Antarctic marine crustaceans examined; levels of up to 5477 μg g−1 were found in the exoskeleton of Euphausia crystallorophias. Copepods had the lowest fluoride levels (0.87 μg g−1 whole-body); some amphipods and mysids also exhibited relatively high fluoride levels. There was no apparent relationship between the lifestyle of the crustaceans and their fluoride level; benthic and pelagic species exhibited both high and low fluoride levels. Fluoride was concentrated in the exoskeleton, but not evenly distributed through it; the exoskeleton of the head, carapace and abdomen contained the highest concentrations of fluoride, followed by the feeding basket and pleopods, and the eyes. The mouthparts of E.␣superba contained almost 13 000 μg F g−1 dry wt. Antarctic krill tail muscle had low levels of fluoride. After long-term (1 to 5 yr) storage in formalin, fluoride was almost completely lost from whole euphausiids. Received: 1 April 1998 / Accepted: 29 July 1998  相似文献   

5.
We describe the brood duration and marsupial development of three temperate coastal mysid species, Anisomysis mixta australis (Zimmer), Tenagomysis tasmaniae Fenton and Paramesopodopsis rufa Fenton, found commonly in Tasmanian waters. Larvae cultured in vitro had brood durations at 13 °C (17 °C) of 22 (15), 23 (15), and 28 (20) d, respectively. Development through seven larval stages, and brood durations for these three species are similar to those reported for coastal mysids from other temperate areas throughout the world. Received: 10 June 1997 / Accepted: 1 July 1997  相似文献   

6.
We analysed growth of the Antarctic bryozoan Melicerita obliqua (Thornely, 1924) by x-ray photography and stable isotope analysis. M. obliqua colonies form one segment per year, thus attaining maximum length of about 200 mm within 50 years. In the Weddell and Lazarev Seas, annual production/biomass ratio of M. obliqua is 0.1 yr−1, which is in the range of other Antarctic benthic invertebrate populations. Production amounts to 3.34 mg Corg m−2 yr−1 and 90.6 mg ash m−2 yr−1 on the shelf (100 to 600 m water depth), and to 0.13 mg Corg m−2 yr−1 and 36.8 mg ash m−2 yr−1 on the slope (600 to 1250 m water depth). Received: 27 February 1998 / Accepted: 8 May 1998  相似文献   

7.
The relative contribution of dissolved nitrogen (ammonium and dissolved free amino acids DFAAs) to the nitrogen budget of the reef-building coral Pocillopora damicornis was assessed for colonies growing on control and ammonium-enriched reefs at One Tree Island (southern Great Barrier Reef) during the ENCORE (Enrichment of Nutrient on Coral Reef; 1993 to 1996) project. P. damicornis acquired ammonium at rates of between 5.1 and 91.8 nmol N cm−2 h−1 which were not affected by nutrient treatment except in the case of one morph. In this case, uptake rates decreased from 80.5 to 42.8 nmol cm−2 h−1 (P < 0.05) on exposure to elevated ammonium over 12 mo. The presence or absence of light during measurement did not influence the uptake of ammonium ions. Nitrogen budgets revealed that the uptake of ammonium from concentrations of 0.11 to 0.13 μM could completely satisfy the demand of growing P. damicornis for new nitrogen. P. damicornis also took up DFAAs at rates ranging from 4.9 to 9.8 nmol N cm−2 h−1. These rates were higher in the dark than in the light (9.0 vs 5.1 nmol m−2 h−1, P < 0.001). Uptake rates were highest for the amino acids serine, arginine and alanine, and lowest for tyrosine. DFAA concentrations within the ENCORE microatolls that received ammonium were undetectable, whereas they ranged up to 100 nM within the control microatolls. The contribution of DFAAs to the nitrogen budget of P. damicornis constituted only a small fraction of the nitrogen potentially contributed by ammonium under field conditions. Even at the highest field concentrations measured during this study, DFAAs could contribute only ≃11.3% of the nitrogen demand of P.␣damicornis. This contribution, however, may be an important source of nitrogen when other sources such as ammonium are scarce or during periods when high concentrations of DFAAs become sporadically available (e.g. cell breakage during fish-grazing). Received: 22 April 1998 / Accepted: 3 November 1998  相似文献   

8.
RNA:DNA ratios of larval and juvenile red drum (Sciaenops ocellatus) collected from nursery habitats in the Aransas Estuary, Texas, in 1994 were quantified using a highly sensitive ethidium-bromide fluorometric technique. RNA:DNA ratios of wild red drum were evaluated by comparing individual values to a linear regression model derived for starved laboratory-reared red drum. Wild red drum were in relatively good condition with <5% of the RNA:DNA ratios within or below the 95% prediction interval of 4 to 5 d starved red drum. A multiple-regression model explained 54% of the variability in the RNA:DNA ratio of wild red drum, and identified length and water temperature (midday) as significant factors. RNA:DNA ratios increased with fish length [≃1.1 mm−1, over the size range investigated (5␣to 20 mm)]. The effect of temperature on the RNA: DNA ratio was assessed on different sampling trips, and ratios increased with increasing temperature. Abundance of larval and juvenile red drum in the Aransas Estuary varied as a function of both habitat (shoal grass Halodule wrightii, turtle grass Thalassia testudinum) and site (Aransas Bay, Redfish Bay); however, no differences in RNA:DNA ratios were detected between habitats or between sites. It is postulated that the nutritional condition of newly settled red drum from the Aransas Estuary in 1994 was relatively high, and that starvation was of minor importance. Received: 19 August 1996 / Accepted: 23 August 1996  相似文献   

9.
The dietary habits of the pelagic mysid Mysismixta were studied during its growing season at an open sea location in the Gulf of Finland, the northern Baltic Sea. Stomach samples were taken twice a month from June to September 1997. The most abundant phytoplankton taxa in the stomachs were diatoms and dinoflagellates, and copepods and cladocerans were the most abundant zooplankton identified. A clear change was found in the diets during the study period. Small mysids (3 to 6 mm) fed on sedimented phytoplankton in the early summer (90% benthic particles in June) but shifted gradually to a more pelagic and carnivorous diet (>40% pelagic particles, consisting of ca. 60% zooplankton in September). Seasonal changes in mysid capture ability as well as food availability were suggested to affect the diet composition of mysids during their growth. The ratio of pelagic and benthic food particles could – irrespective of the season – be explained by mysid size, whereas the zooplankton:phytoplankton ratio was better explained by season. The stomach analysis suggests that the mysids needed to attain a threshold size of 8 to 11 mm to initiate feeding on the more evasive copepods. Mysids also started to grow faster at the same time as the proportion of copepods increased in the diet, which suggests that copepods are an important energy source for M. mixta in late summer. Finally, a comparison was made between the M. mixta diet and that of the less abundant M. relicta. The diets of the two pelagic mysid species overlapped by 75% (Schoener's index). The main difference was due to M. mixta eating more zooplankton and pelagic material than M. relicta. Received: 15 September 1999 / Accepted: 18 January 2000  相似文献   

10.
Restriction-site variation in mitochondrial (mt) DNA was assayed among 1675 red drum (Sciaenops ocellatus Linnaeus) sampled from 20 localities along the southeastern coast of the USA (western Atlantic) and the Gulf of Mexico (Gulf). Up to four consecutive year-classes (cohorts) were sampled at most localities. Nucleotide-sequence divergence among 170 mtDNA haplotypes identified ranged (in percentage) from 0.184 to 1.913, with a mean (±SD) of 0.887 ± 0.300. Comparisons of mtDNA haplotype frequencies across year-classes within localities were non-significant, indicating temporal stability of breeding components within localities. Significant heterogeneity in mtDNA haplotype frequencies was found across all localities, between (pooled) samples from the western Atlantic and the Gulf, and among geographically spaced, regional groupings in the Gulf. Genetic divergence between subpopulations of red drum in the western Atlantic and Gulf follows a pattern exhibited in other marine fishes, and probably stems from physical (historical environmental heterogeneity, absence of suitable habitat, and current patterns) and, perhaps, behavioral factors. Genetic differences among red drum in the Gulf appear to be due largely to an isolation-by-distance effect that is attributable to behavioral factors. The latter may include female philopatry to natal bays or estuaries, limited offshore (coastwise) movement of females relative to their natal bay or estuary, or both. Genetic divergence among red drum in the Gulf occurs despite high gene flow (estimated as the number of genetic effective migrants in an island mode). Conservation and management of red drum should be based on the premise that strategies for a given bay or estuary will impact geographically proximal bays or estuaries more than distal ones. Trajectories of correlograms in spatial autocorrelation analysis suggest a geographic neighborhood size, relative to genetic migration of red drum from a bay or estuary, of roughly 500 to 600 km. Received: 22 July 1998 / Accepted: 19 November 1998  相似文献   

11.
We measured the horizontal and vertical movements of five adult yellowfin tuna (Thunnus albacares, estimated body mass 64 to 93 kg) near the main Hawaiian Islands, while simultaneously gathering data on oceanographic conditions and currents. Fish movements were recorded by means of ultrasonic depth-sensitive transmitters. Depth–temperature and depth–oxygen profiles were measured with vertical conductivity–temperature–depth (CTD) casts, and the current-velocity field was surveyed using an acoustic Doppler current profiler (ADCP). Large adult yellowfin tuna spent ≃60 to 80% of their time in or immediately below the relatively uniform-temperature surface-layer (i.e. above 100 m), a behavior pattern similar to that previously reported for juvenile yellowfin tuna, blue marlin (Makaira nigricans), and striped marlin (Tetrapturus audax) tracked in the same area. In all three species, maximum swimming depths appear to be limited by water temperatures 8 C° colder than the surface-layer water temperature. Therefore, neither large body mass, nor the ability to maintain elevated swimming-muscle temperatures due to the presence of vascular counter-current heat exchangers in tunas, appears to permit greater vertical mobility or the ability to remain for extended periods below the thermocline. In those areas where the decrease in oxygen with depth is not limiting, the vertical movements of yellowfin tuna, blue marlin and striped marlin all appear to be restricted by the effects of water temperature on cardiac muscle function. Like juvenile yellowfin tuna, but unlike blue marlin and striped marlin, adult yellowfin tuna remained within 18.5 km of the coast and became associated with floating objects, including anchored fish-aggregating devices (FADs) and the tracking vessel. Like juvenile yellowfin tuna, large adult yellowfin repeatedly re-visit the same FAD, and appear able to navigate precisely between FADs that are up to 18 km apart. The median speed over ground ranged from 72 to 154 cm s−1. Neither speed nor direction was strongly influenced by currents. Received: 27 March 1998 / Accepted: 13 November 1998  相似文献   

12.
We used acoustic telemetry to examine the small-scale movement patterns of yellowfin tuna (Thunnus albacares) in the California Bight at the northern extent of their range. Oceanographic profiles of temperature, oxygen, currents and fluorometry were used to determine the relationship between movements and environmental features. Three yellowfin tuna (8 to 16 kg) were tracked for 2 to 3 d. All three fish spent the majority of their time above the thermocline (18 to 45 m in depth) in water temperatures >17.5 °C. In the California Bight, yellowfin tuna have a limited vertical distribution due to the restriction imposed by temperature. The three fish made periodic short dives below the thermocline (60 to 80 m), encountering cooler temperatures (>11 °C). When swimming in northern latitudes, the depth of the mixed layer largely defines the spatial distribution of yellowfin tuna within the water column. Yellowfin prefer to spend most of their time just above the top of the thermocline. Oxygen profiles indicated that the tunas encountered oceanic water masses that ranged most often from 6.8 to 8.6 mg O2 l−1, indicating no limitation due to oxygen concentrations. The yellowfin tuna traveled at speeds ranging from 0.46 to 0.90 m s−1 (0.9 to 1.8 knots h−1) and frequently exhibited an oscillatory diving pattern previously suggested to be a possible strategy for conserving energy during swimming. Received: 14 February 1997 / Accepted: 14 April 1997  相似文献   

13.
The post-release behaviour of eight black marlin (Makaira indica), caught by standard sportfishing techniques off the Great Barrier Reef, Australia, was investigated using ultrasonic telemetry. Five marlin between 100 and 420 kg were successfully tracked for periods of 8 to 27 h. Of the three others tagged, one was killed by a shark and two shed their tags, probably as the result of poor attachment. The black marlin spent most of their time within 10 m of the surface, both day and night. During the day, however, they also spent some time between 40 and 140 m depth. They rarely penetrated the thermocline, and then only briefly, remaining at temperatures no more than 8 C° below that of surface waters. The deepest dives were to 178 m. Four of the five marlin tracked, initially moved offshore before heading parallel to the shore, whereas the other marlin stayed close to the reef edge. The average mean swimming speeds over the ground for entire tracks ranged from 0.7 to 1.02 m s−1. Received: 17 January 1997 / Accepted: 16 June 1999  相似文献   

14.
The biology of symbiotic scleractinians is profoundly influenced by their intracellular zooxanthellae, and many studies have focused on the mechanistic basis of this influence. This has usually been accomplished by examining the metabolism of zooxanthellae under physical conditions measured in the open reef and assumed to be similar to conditions in hospite. Recent advances in the measurement of conditions near and within coral tissue suggests that this assumption may result in substantial errors. To address this possibility, the role of water flow in determining oxygen saturation adjacent to the tissue of Dichocoenia stokesii was investigated, and the effect of these measured oxygen saturations on the respiration and photosynthesis of zooxanthellae isolated from the same species was quantified. Using a microelectrode (700 μm diam), we measured oxygen saturations above (≤4 mm) the tissue in two flow speeds over 24 h periods in a flume receiving sunlight at in situ levels. The results were used as a proxy for ecologically relevant intracellular oxygen saturations, which were applied to zooxanthellae in vitro to assess their effect on symbiont metabolism. Microenvironment oxygen saturations (% air saturation) ranged from 74–159% in slow flow (2.7 cm s−1) to 88–110% in faster flow (7.5 cm s−1) over day–night cycles. Therefore, the metabolic rates of zooxanthellae were measured at 50 to 54% (hypoxia), 98 to 102% (normoxia) and 146 to 150% (hyperoxia) oxygen saturation. Oxygen saturation significantly affected the metabolism of zooxanthellae, with gross photosynthesis increasing 1.2-fold and dark respiration increasing 2-fold under hyperoxia compared to hypoxia. These results suggest that the metabolism of zooxanthellae in hospite is affected markedly by their microenvironment which, in turn, is influenced by flow-mediated mass transfer. Received: 13 July 1998 / Accepted: 30 April 1999  相似文献   

15.
Benthic mucilage, whether native or artificially fragmented to microscopic dimensions by ultrasonic treatment, was mixed with cytochrome c, which was used as a 12 000 Da polycationic model compound. Cytochrome c binding profiles proved to depend on the aggregation state of the mucilage. The native mucus matrix binds cytochrome c quasi hyperbolically with an apparent affinity constant K = 1 × 106M −1. As shown by chemical modification of both the mucilage and cytochrome c, the binding expression is dependent on the availability of both the positive charges on the cytochrome c surface and the negative charges within the mucus matrix. The extent of binding is sensitive to the ionic strength of the medium. The ultrasonic-stabilized mucus fragments display a peculiar binding profile, with an apparent low affinity, abruptly entering into a high affinity binding region. The results suggest that, depending on the mucus to polycation ratio, a polymeric reticulus builds up. This reticulus can accommodate molecules of at least 12 000 Da molecular weight. The results are also discussed with respect to biological implications. Received: 23 April 1997 / Accepted: 24 November 1997  相似文献   

16.
In order to estimate the in situ grazing rates of Salpa thompsoni and their implications for the development of phytoplankton blooms and for the sequestration of biogenic carbon in the high Antarctic, a repeat-grid survey and drogue study were carried out in the Lazarev Sea during austral summer of 1994/1995 (December/January). Exceptionally high grazing rates were measured for S. thompsoni at the onset of a phytoplankton bloom (0.2 to 0.8 μg chlorophyll a l−1) in December 1994, with up to ≃160 μg of plant pigments consumed by an individual salp of 7 to 10 cm length per day. Dense salp swarms extended throughout the marginal ice zone, consuming up to 108% of daily phytoplankton production and 21% of the total chlorophyll a stock. Due to the much faster sinking rates and higher carbon content of salp faecal pellets, the efficiency of downward carbon flux through salps is much higher than through the other major grazers, krill and copepods. S. thompsoni can thus export large amounts of biogenic carbon from the euphotic zone to the deep ocean. With the observed ingestion rates during December 1994, this flux could have attained levels of up to 88 mg C m−2 d−1, accounting for the bulk of the vertical transport of carbon in the Lazarev Sea. However, in January 1995, when phytoplankton concentrations exceeded a threshold level of 1.0 to 1.5 μg chlorophyll a l−1, salps experienced a drastic reduction in their feeding efficiency, possibly as a result of clogging of their filtering apparatus. This triggered a dramatic reversal in the relationship, during which a dense phytoplankton bloom developed in conjunction with the collapse of the salp population. Increases in the biomass and geographic range of the tunicate S. thompsoni have occurred in several areas of the southern ocean, often in parallel with a rise in sea-surface temperature during sub-decadal periods of warming anomalies. Received: 10 August 1997 / Accepted: 21 October 1997  相似文献   

17.
Growth and development rates were determined for nauplii of Calanus finmarchicus (Gunnerus) in the near-shore waters of a western Norwegian fjord from in situ mesocosm incubations. The major food source for the nauplii was diatoms, but Phaeocystis sp., dinoflagellates and ciliates were also part of the diet. At local temperatures ranging from 4.8 to 5.2 °C the cumulative median development time from hatching to Nauplius VI was 19 d. The time taken to molt to the next naupliar stage was approximately constant (3 d) from Stages IV to VI, but Stage III needed the longest development time (5 d). The instantaneous growth rate in terms of body carbon was negative from hatching to Nauplius Stage II, but as high as 0.25 to 0.30 d−1 from Stage III to V. Enhancement of food resources by nutrient addition led to no significant change in specific growth rates. Additionally, the cohorts from different nutrient regimes showed almost equal development time, size and body carbon within stages. Length–weight relationships of nauplii from the two different food resources were: W low resources = 4.17 × 10−6 × L 2.03 (r 2 = 0.84) and W high resources = 4.29 × 10−6 × L 2.05 (r 2 = 0.92), where weight (W) is in micrograms of C and body length (L) in micrometers. The natural body morphology of naupliar stages I to VI is illustrated with digital images, including the final molt from Nauplius VI to Copepodid Stage I. In general, development of the nauplii was faster than that of the copepodids of C. finmarchicus, and structural growth was exponential from naupliar stages III to VI. This study validates our earlier results that nauplii of C. finmarchicus can obtain high growth and nearly maximal developmental rates at relatively low food levels (∼50 μg C l−1), suggesting that nauplii exhibit far less dependence on food supply than copepodids. Received: 30 July 1999 / Accepted: 7 March 2000  相似文献   

18.
 A survey of the distribution and maximum depth of a continuous Fucus vesiculosus belt was carried out in the Gulf of Finland in 1991. F. vesiculosus is widely distributed throughout the Gulf of Finland, including the vicinity of Vyborg Bay, Russia in the east. The maximum growth depth of F. vesiculosus in the Gulf of Finland reflects two different patterns according to the exposure to wave action. The most robust and continuous F. vesiculosus belt is observed on exposed shores, where the maximum growth depth is 5 to 6 m, with the optimum at 2 to 3 m. On moderately exposed shores the maximum growth depth is 3 m, with an optimum growth depth of <2 m. The maximum growth depth also varies geographically, with a decreasing trend towards the east. Maximum growth depth of F. vesiculosus correlates with light intensity. The compensation point for F. vesiculosus photosynthesis is about 25 μmol m−2 s−1, and photosynthesis is saturated at a light intensity of 300 μmol m−2 s−1. Vertical irradiance attenuation measurements in situ in summer revealed that for F. vesiculosus photosynthesis the quantity of light is optimal (200 to 300 μmol m−2 s−1) at <3 m depth. At depths >5 m the quantity of light is near or below the photosynthesis compensation point and insufficient for growth. These depth limits of light penetration coincide with measured growth depths of F. vesiculosus in the Gulf of Finland. Received: 7 May 1999 / Accepted: 18 November 1999  相似文献   

19.
Despite facing similar constraints imposed by the environment, significant variation in life history traits frequently exists among species generally considered to comprise a single ecological guild. For juvenile flatfishes, constraints on foraging activity include variation in light and prey availability, as well as predation risk. This paper describes the visual constraints on, and divergent foraging strategies of three co-occurring north Pacific flatfish species, northern rock sole (Lepidopsetta polyxystra), Pacific halibut (Hippoglossus stenolepis), and English sole (Pleuronectes vetulus). Visual foraging abilities measured in the laboratory decreased rapidly below 10−4 μmol photons·m−2 s−1, and were similar among species. Despite similar sensory constraints, field sampling in August 2004 at a Kodiak Island nursery site (Holiday Beach, 57o41.2′ N, 152o27.7′ W) identified species differences in diets, diel foraging patterns, and within-nursery depth distributions. Northern rock sole and English sole fed primarily on bivalve siphons and polychaetes, whereas mysids dominated the diets of Pacific halibut. Northern rock sole were geographically the most widespread but feeding activity was temporally restricted to the dusk period. Pacific halibut were rare in shallow depths (<5 m) and fed most intensively prior to dusk. English sole fed throughout the daylight hours and were abundant only in the shallowest (<5 m) habitats. These differences in diets, foraging times, and habitat use appear related to previously documented species-specific behavioral characteristics as well as general spatial (increasing with depth) and temporal (increasing during foraging activity) variations in predation risk. At one extreme, the conservative behavioral strategy of northern rock sole may permit use of a broader range of foraging habitats, whereas English sole may be restricted to shallow water by limited behavioral responses to predation threat. These observations demonstrate that the appearance of habitat partitioning is not due to differences in sensory ability, but reflects multi-faceted, species-specific responses to the ecological tradeoffs between foraging and predation risks.  相似文献   

20.
The talitrid amphipod Uhlorchestia spartinophila lives in close association with standing-dead leaves of the smooth cordgrass Spartina alterniflora Loisel in salt marshes along the Atlantic coast of North America. This study probed the strength of the trophic link between the amphipod population and the decomposition process in this detrital-based ecosystem. We measured survival, growth and reproductive output in groups of amphipods reared for 6 wk on five diets derived from sheath and blade portions of S. alterniflora leaves just prior to (senescent) and during (dead) decomposition. In unfed treatments, the daily specific mortality rate was 0.391 and starved amphipods survived no longer than 11 d. Among the fed treatments, a diet of senescent sheaths resulted in the lowest survival (20%) and yielded no offspring. Groups fed senescent blades, dead sheaths, dead blades and unwashed dead sheaths had survival rates of 56 to 84% and produced 5.0 to 12.5 offspring replicate−1. Sex ratio usually favored females, but approached unity in treatments with high overall survival, suggesting that quality of available food resources may influence sex ratio in this species. Mean specific growth rates (mm mm−1 d−1) ranged from 0.013 to 0.016, and matched previous estimates of growth from field populations. Overall ecological performance (survival + growth + reproduction) was similar for all food treatments, except senescent sheaths, which yielded a final mean (±SD) dry biomass (0.4 ± 0.42 mg replicate−1) of amphipods significantly lower than that of other diets (1.7 ± 0.81 to 2.6 ± 0.69 mg replicate−1). Natural diets derived from decomposing cordgrass leaves can fulfill the nutritional requirements of U. spartinophila populations, but variation in initial amounts of living fungal biomass among the five experimental diets only partially explained the responses of amphipods in our experiment. Structural characteristics and variation in rates of fungal occupation within different portions of cordgrass leaves may affect the amphipod's ability to access plant production made available by decomposers. Received: 12 December 1996 / Accepted: 18 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号