首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increased production and commercial use of nanoparticles (NPs), combined with a lack of regulation regarding their disposal, may result in the unwanted introduction of NPs to soils. In this study, the toxicity on soil enzyme activity and growth of Cucumis sativus treated with Zn or ZnO NPs was evaluated in pot soils. Specifically, C. sativus was cultivated in soils treated with Zn NPs, ZnO NPs or Zn2+ for eight weeks, after which the treatment effects on biomass and bioaccumulation were evaluated. In addition, the treatment effects on soil dehydrogenase, β -glucosidase and acid phosphatase were investigated. Soil enzyme activities were influenced by all treatments, with an especially large decrease in dehydrogenase activity in response to Zn2+ treatment. Biomass and root length also decreased in response to Zn2+ treatment. Finally, the Zn contents of C. sativus were much lower in the Zn NP and ZnO NP treatment groups than in the Zn2+ treatment group. Therefore, toxicity on soil microbial activity may have a greater influence than phytotoxicity due to immobilisation and aggregation of NPs in the soil.  相似文献   

2.
通过比较纳米氧化铜(CuONPs)和微米氧化铜(CuOMPs)在两种土壤中Cu2+的溶出及其对脲酶活性影响,结合产生脲酶活性抑制效应的Cu2+浓度阈值,研究了CuONPs和CuOMPs对土壤脲酶活性的毒性效应机制.结果表明:CuONPs和CuOMPs的Cu2+溶出量随其浓度增加而增加,溶出比率随浓度增加而减少,两者在红壤中Cu2+的溶出均比在乌栅土中高;在1~1000mg·kg-1范围内,CuONPs对土壤脲酶活性产生了显著(p≤0.05)或极显著(p≤0.01)的抑制效应;同浓度下,CuONPs在土壤中的Cu2+溶出及其对脲酶活性的抑制效应均大于CuOMPs;在相对低浓度(1~10mg·kg-1,红壤;1~100mg·kg-1,乌栅土)下,CuO的纳米态对土壤脲酶活性具有抑制毒性,在相对高浓度(≥50mg·kg-1,红壤;≥500mg·kg-1,乌栅土)下,CuO的纳米态和溶出Cu2+共同作用引起了脲酶活性抑制;与CuONPs不同,CuOMPs只有通过溶出Cu2+抑制土壤脲酶活性,其颗粒态对脲酶活性无显著影响;值得注意的是,在低浓度(1mg·kg-1)下CuONPs对土壤脲酶活性具有微米态和离子态所没有的抑制毒性,说明其对土壤酶影响应存在特殊机理,值得进一步深入研究.  相似文献   

3.
The lethal effects of aluminum ion (Al3+) in tilapia (Oreochromis niloticus) raised in concrete tanks were investigated. Tilapias were fed daily with commercial feed enriched with known concentrations of Al3+ and analyzed by differential pulse anodic stripping voltammetry (DPASV). The concentrations of Al3+ in feces, water, muscle tissue, viscera, and heads were determined every 3 months for a period of 365 days. The Tilapia head was the most affected tissue by Al3+. In general, Al3+ bioaccumulation reached the lethal dose (LD50) after 335 days of experiment as follows: 34.9?mg?kg?1 (muscle tissue), 88.2?mg?kg?1 (viscera), and 126.9?mg?kg?1 (head without gills). After determining Cu2+, Zn2+, and Ca2+ by absorption spectrometry, a decrease in the Ca2+ concentration was noted in the head during the experimental period. These observations were associated with the occurrence of a decalcification in the bone tissue in the presence of Al3+. In contrast, it was found that Zn2+ ions may act as a protective agent against Al3+-induced contamination.  相似文献   

4.
Effects of heavy metals on lysosomes were studied in living cells from the mussel (Mytilus galloprovincialis Lam.). Haemolymph cells were obtained from the mussel adductor muscle, stained with neutral red (NR), and analysed by digital imaging to evaluate NR retention times within lysosomes. Exposure to Hg2+, Cd2+ and Cu2+ induced a reduction of NR retention time, indicating lysosomal membrane destabilisation. The intensity of these effects was correlated with the metal affinity for sulfhydryls. In contrast, Zn2+ showed no effect on lysosomes. Moreover, 200 μM Zn2+ protected lysosomes against the effects of Cd2+ and Cu2+, but not against Hg2+. Cell loading with the fluorescent pH probe Lyso Sensor followed by digital imaging showed a rise of lysosomal pH induced by Cd2+ and Hg2+, while Zn2+ prevented the effect of Cd2+ and also partially that of Hg2+. The different protective effect of Zn2+ against Hg2+ suggests a dual action of Hg2+ on lysosomes, possibly involving both membrane destabilisation and proton pump inhibition. Cell exposure to 17 β-estradiol also caused a reduction of NR retention time, which was synergistic to that of Hg2+. This suggests a common pathway between metals and hormone, possibly involving Ca2+ signaling. Received: 17 November 1999 / Accepted: 29 June 2000  相似文献   

5.
为研究纳米氧化锌(ZnO NP)的毒性效应及其在细胞内外分布,以羊角月牙藻(Selenastrum capricornutum)为模型藻类,研究了不同浓度ZnO NP对羊角月牙藻生长、叶绿素含量、可溶性蛋白含量、超氧化物岐化酶(SOD)及过氧化物酶(POD)活性、丙二醛(MDA)含量及细胞内外ZnO NP含量变化。结果表明,ZnO NP对羊角月牙藻的生长抑制与处理浓度呈现正相关。在45 mg·L~(-1)ZnO NP暴露24 h后,其生长抑制率已达到95%。当ZnO NP处理藻细胞72 h后,羊角月牙藻细胞的叶绿素含量与处理浓度之间存在剂量-效应关系。低浓度(0.5 mg·L~(-1))ZnO NP处理后藻细胞可溶性蛋白质含量、SOD和POD活性明显下降,MDA含量升高,其产生的毒性效应高于高浓度组(5 mg·L~(-1)、45 mg·L~(-1))。细胞培养液溶出Zn2+量及藻细胞外吸附的ZnO NP量与ZnO NP处理浓度成正比,但是藻细胞内ZnO NP量与ZnO NP浓度没有相关性,胞内积累量基本维持不变。研究表明,各浓度组对藻细胞毒性的差异,不仅与细胞内Zn2+量有关,还与细胞外粘附的ZnO NP有关。  相似文献   

6.
Several aquatic environments have been contaminated with heavy metals dumped via industrial effluents. Numerous studies have been published regarding the removal of single metals from aqueous solutions by microalgal biomass. However, such studies do not reflect the actual problem associated with industrial effluents because usually more than one metal species is present. Here we studied the biosorption capacity of Zn2+ and Cd2+ as single- and binary-metal systems by two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, isolated from a polluted site in Northern Portugal. For each metal independently, D. pleiomorphus showed a higher metal sorption capacity than S. obliquus, at concentrations ranging from 60 to 300 mg/l (except 150 mgCd/l). Maximum amounts of Zn2+ and Cd2+ removed were 22.3 and 60.8 mg/g by S. obliquus, and 83.1 and 58.6 mg/g by D. pleiomorphus. In binary-metal solutions, S. obliquus was in general able to remove Zn2+ to higher extents than Cd2+, whereas the opposite was observed with D. pleiomorphus. The simultaneous uptake of Zn2+ and Cd2+ by both microalgae was considerably lower than that of their single-metal counterparts, at equivalent concentrations. Although microalgal uptake from binary-metal solutions was lower than from single-metal ones, the wild microalgae selected were able to efficiently take up mixtures of Zn2+ and Cd2+ up to 300 mg/l of both metals—thus materializing a promising bioremediation vector for polluted waters.  相似文献   

7.
Seeds of two rice cultivars (Oryza sativa) cv. PR-116 and Pant Dhan-12 subjected to heavy metal lead (Pb2+) and mercury (Hg2+) exposure showed an inhibition in germination percentage, shoot and root length, and lower fresh and dry weight after 7 days. Both Pb2+ and Hg2+ inhibited the solubilization process of starch due to reduction in α-amylase activity, which is also evident from greater starch content and reduced soluble carbohydrate content of endosperms of treated seeds of the two cultivars. Mercury was more tolerated by Pant Dhan-12 when grown under in vitro culture medium containing 2% sucrose. The inhibitory effect of Pb2+ on embryo growth was not only abolished but also accelerated by 2% sucrose. The inhibitory effect, however, was not significantly blocked in Hg2+-treated embryos grown in vitro in sucrose containing medium. Embryos did not grow normally in a medium devoid of sucrose in either case. Data indicated that Pb2+ inhibited germination and seedling growth by impairing the solubilization of endosperm starch without markedly affecting the embryo, while Hg2+ inhibited germination and seedling growth by damaging the embryo itself.  相似文献   

8.
Biosorption of Zn2+ from aqueous solutions by biomass of Agaricus bisporus was investigated. The removal rates of Zn2+ by A. bisporus under different parameters (e.g., solution pH, bio-sorbent dosage and initial Zn2+ concentration) were studied. The inhibition of A. bisporus’s biosorption by anionic ligands EDTA (Ethylene Diamine Tetraacetic Acid), acetate and citrate) implied that EDTA and citrate might be used as eluting reagents. Regular and simultaneous solution pH change and light metal ions release after biosorption indicated that an ion exchange mechanism was involved. From FT-IR (Fourier Transform Infrared) spectroscopy, the main functional groups participated in biosorption were found. Biosorption of Zn2+ by A. bisporus could be well described by the Freundlich and Langmuir models. In conclusion, the biomass of A. bisporus showed high potential for the treatment of wastewater containing Zn2+.  相似文献   

9.
以禾谷镰刀菌为研究对象,研究了常见重金属(Cu、Pb、Zn、Cd)对禾谷镰刀菌菌株生长及其毒素合成的影响。研究结果表明,重金属对菌株的生长和其产毒能力均产生影响。Cu~(2+)和Cd~(2+)对菌株生长影响较大,随着浓度的增加对生长的抑制作用增强,当离子浓度分别为20 mg·L~(-1)和40 mg·L~(-1)时,能够完全抑制菌株生长。Zn~(2+)在0~160 mg·L~(-1)浓度范围内促进菌株生长,在10 mg·L~(-1)浓度下促进毒素合成。Pb~(2+)在察氏培养基中对菌株生长的影响没有明显规律可循,但是,随着Pb~(2+)浓度增加,抑制毒素合成作用增强。  相似文献   

10.
In this research, we evaluated the toxic effect of metal ions on mycelial growth and phosphate-solubilising activity of soil-borne micromycetes isolated from the Phragmites australis rhizosphere using Pikovskaya-agar plates supplemented with four metal concentrations. The diameter growth rate (DGR) decreased as the metal concentration rise for all tested fungi. Trichoderma atroviride had the fastest growth rate (1.48?cm2?day?1) and was the least susceptible to Al3+, Cd2+, Cr3+, Cu2+ and Pb2+ with a median effective concentration (MEC50) of 12.19, 0.48, 4.51, 11.44 and 50.05?mM, respectively. Aspergillus japonicus was the most tolerant to Co2+, Ni2+ and Zn2+, with MEC50 values of 3.36, 1.095 and 2.34?mM, respectively. Penicillium italicum was the most tolerant to Cr6+ (MEC50?=?0.677?mM). The ability to solubilise phosphate remained, despite the decrease in the DGR, and P. italicum and Penicillium dipodomyicola had the highest Phosphate Solubilisation Indexes (PSIs) at 1.97 and 2.12, respectively. In particular, P. italicum recorded the highest PSI of all the studied isolates at 0.62?mM Cr3+ (PSI?=?4.74). A. japonicus and T. atroviride were the most tolerant isolates to all tested metals, which suggests that these isolates are promising candidates for further study with regard to mycoremediation and biofertilisation of metal-polluted soils.  相似文献   

11.
Complex formation of Cd2+ and Zn2+ with thiol derivatives has been investigated by differential pulse polarography. The binding of Cd2+ and Zn2+ with cysteine (CySH), glutathione (GSH) and the model peptide N‐acetyl‐cysteine‐methylamide (ASH) reveals different stoichiometry. Thus, Cd2+ forms 1:1 and 1:2 complexes with CySH while 1:2 and 1:4 complexes have been observed with GSH and ASH, respectively. Overall formation constants of Cd2+ with CySH (Iogβ 2 15.3) and with GSH (Iogβ52 14.4) have been estimated using competitive complexation with nitrilotriacetic acid (NTA). Investigation of competition between Zn2+ and Cd2+ for the thiol complexation has underlined the role played by the amino group in CySH for the stabilization of Zn complexes in contrary to Cd complexes.  相似文献   

12.

The bioavailability and toxicity of zinc to aquatic life depend on dissolved organic matter (DOM), such as Suwannee River Fulvic Acid (SRFA), which plays an important role in the speciation of zinc. This study examined reactions of SRFA with zinc at different concentrations from pH 3.0 to 9.0, and competitive binding of calcium/magnesium and zinc to SRFA at pH 6.0, using in situ absorbance. Interactions of Zn2+ with SRFA chromophores were evidenced by the emergence of features in Zn-differential spectra. Among all Zn2+–SRFA systems, dominant peaks, located at 235, 275 and 385 nm, and the highest intensity at 235 nm indicated the replacement of protons by the bound Zn2+. The Zn2+ binding with SRFA could be quantified by calculating the changes of the slopes of Zn-differential log-transformed absorbance in the wavelength range of 350–400 nm (denoted as DS350–400) and by comparing the experimental data with predictions using the Non-Ideal Competitive Adsorption (NICA–Donnan) model. DS350–400 was correlated well with the bound Zn2+ concentrations predicted by NICA–Donnan model with or without Ca2+ or Mg2+. Ca2+ and Mg2+ only affect intensity of the Zn-differential and Zn-differential log-transformed absorbance, not shape. In situ absorbance can be used to gain further information about Men+–DOM interactions in the presence of various metals.

  相似文献   

13.
氧化锌纳米颗粒(ZnO NPs)是目前应用最为广泛的纳米材料之一,已有研究表明其对生物体具有显著的毒性效应。为了研究ZnO NPs的毒性与种子发育阶段的关系,选择小麦(Triticum aestivum L)作为受试植物,将处于不同发育阶段的小麦种子置入ZnO NPs悬浮液中进行培养,研究了ZnO NPs对水培小麦种子不同发育阶段的影响。结果表明,虽然ZnO NPs对处于吸胀阶段、萌动阶段和发芽阶段的小麦都可以产生毒性,但是毒性的大小随小麦发育阶段的不同而表现出明显的差异(P0.05)。在60 mg·L-1暴露浓度下,用ZnO NPs对处于吸胀阶段、萌动阶段和发芽阶段的小麦种子进行处理,小麦根长的抑制率分别为37.8%、80.2%和95.7%;就萌动阶段和发芽阶段而言,ZnO NPs的毒性与其浓度有关,浓度越大毒性越大,即具有显著的浓度效应。上述研究结果对于全面准确地评价ZnO NPs毒性具有重要的意义。  相似文献   

14.
Nickel pollution is a serious environmental problem, and its effects may provoke alterations in the ecosystem and in organism of animals and humans. Dermatitis, eczema, and asthma are some illnesses caused by Ni2+ poisoning. In this work, fish fed either Ni2+-enriched pellets or commercial pellets were studied. The amount of Ni2+ in fish were measurements by adsorptive stripping voltammetry (AdSV) with dimethylglyoxime as a complexing agent. The analysis of Ni2+ in fish by AdSV established that its accumulation occurs principally in viscera (670.86 ± 5.82 µg g?1), in the head (697.12 ± 2.77 µg g?1) and in the muscle (405.82 ± 3.26 µg g?1), both after 12 months of experiments. Ni2+ adsorbs preferentially in organs such as the stomach, the intestine, and the kidneys and acts in the central nervous system as well. Tilapia growth and mass were significantly affected by Ni2+ poisoning. From statistical analysis, observed that the results for lengths, weights and metal concentration were different for each sampling at significance level of p < 0.05. The Ni2+ concentration in tilapia was enough to cause the death of tilapias; however, it did not occur because the presence of Zn2+ might act as protective agent of heavy metals.  相似文献   

15.
Removal of Cu2+, Cd2+, Pb2+, and Zn2+ from aqueous solutions by activated carbon prepared from stems and seed hulls of Cicer arietinum, an agricultural solid waste, has been studied. The influence of various parameters, such as pH, contact time, adsorbent dose, and initial concentration of metal ions on removal was evaluated. The activated carbon was characterized by FT-IR spectroscopy, X-ray diffraction, and elemental analysis. Sorption isotherms were studied using Langmuir and Freundlich isotherm models. All experimental sorption data were fitted to the sorption models using nonlinear least-squares regression. The maximum adsorption capacity values for activated carbon prepared from Cicer arietinum waste for metal ions were 18 mg g?1 (Cu2+), 18 mg g?1 (Cd2+), 20 mg g?1 (Pb2+), and 20 mg g?1 (Zn2+), respectively. The Freundlich isotherm model fit was best, followed by the pseudo-second-order kinetic model. Desorption studies were carried out with dilute hydrochloric acid for quantitative recovery of the metal ions and for regeneration of the adsorbent.  相似文献   

16.
为明确NH_4~+、 NO_3~-、SO_4~(2-)及金属等组分在水溶性提取液对发光细菌的光抑制过程中所起的作用,参照PM_(2.5)样品提取液浓度,模拟配制与3级以上PM_(2.5)样品提取液中主要组分:硫酸盐、硝酸盐、氨盐相同浓度的溶液,同时选取与PM_(2.5)可溶性提取液发光抑制率相关性较强的铅、锌,配制不同浓度级别模拟溶液,测试各单一组分对发光细菌的发光抑制率及其混合溶液对发光细菌的联合影响效应。基于毒性单位法(TU)、相加指数法(AI)和混合毒性指数法(MTI)评价了混合体系联合影响的作用类型。结果表明,与3~6级PM_(2.5)可溶性提取液中硫酸氨、硫酸氢氨、硝酸氨、硫酸锌和硝酸铅浓度相同的模拟溶液对发光细菌的发光没有抑制作用。不同的评价方法对PM_(2.5)主要组分混合体系联合效应评价结果具有较好的一致性,硫酸氨、硝酸氨、硫酸氢氨混合溶液中,对发光细菌的光抑制均为硫酸氢氨的独立作用,硫酸锌与硝酸铅的混合体系,锌和铅对发光细菌的联合影响效应表现为协同,硫酸氨、硝酸氨、硫酸氢氨与硫酸锌、硝酸铅的多元混合体系呈现协同作用。  相似文献   

17.
A heteropolyacid Zr(IV) tungstate-based cation exchanger has been synthesized. An amorphous sample, prepared at pH 1.2 and having a Na+ ion exchange capacity of 0.92?meq?g?1, was selected for further studies. Its physicochemical properties were determined using Fourier transform infrared spectrometer, X-ray diffraction, thermogravimetric, and scanning electron studies. To understand the cation exchange behavior of the material, distribution coefficients (K d) for metal ions in various solvent systems were determined. Some important binary separations of metal ions, namely Mg2+–Bi3+, Cd2+–Bi3+, Fe3+–Bi3+, Th4+–Bi3+, and Fe3+–Zn2+, were achieved on such columns. The practical utility of these separations was demonstrated by separating Fe3+ and Zn2+ ions quantitatively in commercial pharmaceutical formulation. The cation exchanger has been successfully applied also for the treatment of industrial wastewater and a synthetic mixture. All the results suggests that Zr(IV) tungstate has excellent potential for the removal of metals from aqueous systems using packed columns of this material.  相似文献   

18.
The study deals with the toxicological impact of cadmium nanoparticles (Cd NPs) on Bacillus subtilis as a model Gram-positive bacterium. Cadmium oxide (CdO) NPs (~22 nm) and cadmium sulfide (CdS) NPs (~3 nm) were used in this study. Both the NPs were found to inhibit the cell viability of B. subtilis when added to the culture at mid-log phase, the viable cell number declined with increasing concentration of Cd NPs. At mid-log phase, 15 mg L?1 CdO NPs inhibited growth by ~50%, whereas at 30 mg L?1 growth completely ceased. Under the same conditions, CdS NPs inhibited growth by ~50% at a concentration of 8 mg L?1, and at 20 mg L?1 growth was completely retarded. The cells changed their morphological features to a filamentous form with increasing Cd NPs exposure time, leading to associated with clumping. NPs treated cells when stained with 4′, 6-diamino-2-phenylindole, showed filamentous multinucleated bead structure, suggesting irregularities in cell division. Increasing intracellular oxidative stress due to Cd NPs exposure might be one of the reasons for the cell morphological changes and toxicity in B. subtilis.  相似文献   

19.
Nanoparticles (NPs) contained in commercial products are released and enter into the aquatic ecosystem, posing serious possible risks to the environment and affecting the food chain. Therefore, investigating the potential toxicity of NPs on aquatic organisms has become an important issue. This study assessed the toxicity and trophic transfer of metal oxide NPs from marine microalgae (Cricosphaera elongata) to the larvae of the sea urchin Paracentrotus lividus. Larvae (24 h old) were fed on 2000 cell mL?1 48 h of microalgae contaminated with 5 mg L?1 of several metal oxide NPs (SiO2, SnO2, CeO2, Fe3O4) for 15 days. Larval viability and development were monitored from the 4-arm stage to the 8-arm pluteus stage. A significant decrease in survival was observed in larvae fed with microalgae exposed to SiO2 and CeO2 NPs. Abnormal development, characterised by skeletal degeneration and altered rudiment growth, was observed in all larvae fed with contaminated NP algae. Our findings revealed that SiO2 and CeO2 NPs exerted a toxic effect in the trophic interaction analysed, by reducing sea urchin larval viability, and all metal oxide NPs induced toxicological effects. In conclusion, metal oxide NPs may enter the food chain and become bioavailable for marine organisms, affecting their development.  相似文献   

20.
In current research, the combined effects of copper oxide nanoparticles (CuO NPs) and titanium dioxide nanoparticles (TiO2 NPs) on the histopathological anomalies of gill and intestine tissues in common carp (Cyprinus carpio) were studied. Common carp were exposed to TiO2 NPs (10.0?mg L?1), CuO NPs (2.5 and 5.0?mg L?1), and mixture of TiO2 NPs (10.0?mg L?1)?+?CuO NPs (2.5 and 5.0 mg?L?1) for two periods of exposure (10 and 20 days) and recovery (30 and 40 days). The most common histopathological anomalies in the gill of common carp such as hyperplasia, oedema, curvature, fusion, aneurism, and necrosis were observed. The synergistic effect of co-existing TiO2 NPs and CuO NPs reduced the length of secondary lamella and increased the diameters of the gill filaments and secondary lamellae. Moreover, the presence of TiO2 NPs increased the CuO NPs effects on the histopathological anomalies of intestine tissue and the synergistic effect of TiO2 NPs and CuO mixture leads to an increase in the severity of histopathological lesions such as degeneration, swelling of goblet cells, and necrosis - erosion in the intestine tissue. In conclusion, the presence of TiO2 NPs increased the toxicity of CuO NPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号