首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
● Application of the MOF-composite membranes in adsorption was discussed. ● Recent application of MOFs-membranes for separation was summarized. ● Separation and degradation for emerging organic contaminants were described. Presence of emerging organic contaminants (EOCs) in water is one of the major threats to water safety. In recent decades, an increasing number of studies have investigated new approaches for their effective removal. Among them, metal-organic frameworks (MOFs) have attracted increasing attention since their first development thanks to their tunable metal nodes and versatile, functional linkers. However, whether or not MOFs have a promising future for practical application in emerging contaminants-containing wastewater is debatable. This review summarizes recent studies about the removal of EOCs using MOFs-related material. The synthesis strategies of both MOF particles and composites, including thin-film nanocomposite and mixed matrix membranes, are critically reviewed, as well as various characterization technologies. The application of the MOF-based composite membranes in adsorption, separation (nanofiltration and ultrafiltration), and catalytic degradation are discussed. Overall, literature survey shows that MOFs-based composite could play a crucial role in eliminating EOCs in the future. In particular, modified membranes that realize separation and degradation might be the most promising materials for such application.  相似文献   

2.
Increasing studies on extraction, purification and modification processes of natural dyes and antimicrobials, and their subsequent application on textiles demonstrate the revival of natural dyeing and finishing. Natural dyes have been widely used in textile coloration since ancient times. But, with advent of man-made synthetic dyes in the mid-nineteenth century, the dye market has been captured due to a variety of competitive properties of synthetic dyes against natural ones such as lower cost, higher fastness, color variety, ability to dye synthetic fibers and availability in large industrial scale. However, most of the synthetic dyes raise some serious problems in human health and cause environmental risks. Due to these drawbacks along with the growing awareness about cleaner surroundings and healthy lifestyle, there has been recently a worldwide interest in the production and application of dyes from two natural sources, plants and microorganisms. Most of these natural dyes have also inherently antimicrobial properties and could consequently possess high medicinal activity. They are extracted from different types of microorganisms as well as various parts of the plants that contain coloring materials such as tannin, flavonoids and quinonoids. Here we review the latest scientific researches on extraction and application of natural dyes/antimicrobials on textiles as effective coloring and antibacterial agents. First, different methods of extraction of natural dyes/antimicrobials will be discussed, and then, current methods of textile treatments and examples of early applications of these dyes on textile processing, properties achieved and the results obtained will be presented.  相似文献   

3.
Several synthetic dyes employed in textile and food industries are discharged into aquatic environment. These visible pollutants in water damage environment, as they are carcinogenic and toxic to humans. The use of cost effective and ecofriendly plant cellulose based adsorbents have been studied in batch experiments as an alternative and effective substitution of activated carbon for the removal of toxic dyes from waste water. Adsorbents prepared from sugarcane baggase, were successfully used to remove certain textile dye such as crystal violet from an aqueous solution. The present investigation potentiate the use of sugarcane baggase, pretreated with formaldehyde (referred as Raw Baggase) and sulphuric acid (referred as Chemically Activated Baggase), for the removal of crystal violet dye from simulated waste water. Experiments were carried out at neutral pH with various parameters like dye concentration, temperature, contact time and adsorbent dosage. Efficiency of raw baggase was found better than chemically activated baggase for adsorption of crystal violet dye. The data obtained perfectly fits in the Freundlich adsorption isotherm.  相似文献   

4.
• PA layer properties tune the primary nanochannels in MIL-101(Cr) TFN NF membranes. • The dense PA layer induced transition of primary nanochannels of TFN NF membranes. • Nanochannels around MOF contributed to the improved flux with a loose PA structure. • Nanochannels in MOFs dominated the separation performance with a dense PA structure. Metal organic framework (MOF) incorporated thin-film nanocomposite (TFN) membranes have the potential to enhance the removal of endocrine disrupting compounds (EDCs). In MOF-TFN membranes, water transport nanochannels include (i) pores of polyamide layer, (ii) pores in MOFs and (iii) channels around MOFs (polyamide-MOF interface). However, information on how to tune the nanochannels to enhance EDCs rejection is scarce, impeding the refinement of TFN membranes toward efficient removal of EDCs. In this study, by changing the polyamide properties, the water transport nanochannels could be confined primarily in pores of MOFs when the polyamide layer became dense. Interestingly, the improved rejection of EDCs was dependent on the water transport channels of the TFN membrane. At low monomer concentration (i.e., loose polyamide structure), the hydrophilic nanochannels of MIL-101(Cr) in the polyamide layer could not dominate the membrane separation performance, and hence the extent of improvement in EDCs rejection was relatively low. In contrast, at high monomer concentration (i.e., dense polyamide structure), the hydrophilic nanochannels of MIL-101(Cr) were responsible for the selective removal of hydrophobic EDCs, demonstrating that the manipulation of water transport nanochannels in the TFN membrane could successfully overcome the permeability and EDCs rejection trade-off. Our results highlight the potential of tuning primary selective nanochannels of MOF-TFN membranes for the efficient removal of EDCs.  相似文献   

5.
To evaluate the complex interactions of various types of water systems, a water resource management agency is invariably involved in the preliminary step of reviewing the available quantitative methods for formulating interdisciplinary aspects of the water systems. With a view to supplement their efforts, an attempt is made in this paper to review briefly the major useful concepts and models which are intended to broaden the technical horizon of the professionals associated with the regional water resource management programs. Initially, various pathways of model building procedure are outlined. Then associated ecological, economic, social, political, technological and environmental models are discussed in light of some reported quantitative examples. With the understanding of the basic mechanics of these interdisciplinary models, the adequacy of these models and their applications can be examined by the concerned professionals to aid the decision making process for the specific water system in question.  相似文献   

6.
杨晓月  程和发 《环境化学》2021,40(2):436-449
金属(氧化物)纳米材料在生产和使用过程中,可以通过各种途径进入到水环境中,对水生生物、生态环境和人体健康产生威胁.理解纳米颗粒在水体中的环境行为,对于评估纳米材料的归趋及其对环境和人体的健康风险至关重要.本文概述了金属(氧化物)纳米颗粒的性质、来源和毒性危害,汇总了表征纳米颗粒浓度、粒径及形貌的分析方法与技术,分析了它们在水环境中的环境行为以及影响其稳定性的主要环境因素,并总结了水体中金属(氧化物)纳米颗粒的去除方法和效果的最新研究进展.随着金属(氧化物)纳米材料的广泛应用,未来有必要加强对自然水体中纳米颗粒环境行为的研究,并系统开展纳米颗粒健康风险评估工作,为预测纳米材料进入水环境后的归趋和风险提供科学依据.  相似文献   

7.
The effect of white African mineral dye Yombofita (YF) on the activities of alkaline phosphatase (ALP), acid phosphatase (ACP) and malondialdehyde (MDA) levels in the skin, liver, kidney and serum of albino rats was investigated. The chemical analysis of the dye was first carried out using solubility test, pH determination and X-ray fluorescence (XRF) elemental analysis. Six different concentrations (0.05, 0.15, 0.25, 0.5, 0.75 and 1.00%) of the dye were prepared using hydrogen peroxide (30 volume) as solvent. A total of 80 albino rats (Rattus norvegicus) were used for the study. The rats were divided into 8 groups of 10 each and were maintained on commercial feed for the period of the experiment i.e. 30 days. In group 1, the control group, the animals were applied distilled water on their heads, whereas in group 2 the vehicle i.e. hydrogen peroxide was applied. In groups 3 to 8 various concentrations of YF (white) dye ranging from 0.05, 0.15, 0.25, 0.5, 0.75 to 1.00% was applied respectively. At the end of the experiment, blood samples were collected and portions of the selected tissues were excised for the determination of ALP and ACP activities. The MDA level was also determined in the skin of experimental animals. The results revealed a significant decrease (p?p?相似文献   

8.
The adverse impact of groundwater contaminated with arsenic (As) on humans has been reported worldwide, particularly in Asian countries. In this study, we present an overview of the As crisis in the Southeast Asian region where groundwater is contaminated with naturally occurring As and where contamination has become more widespread in recent years. In this region more than 100 million people are estimated to be at risk from groundwater As contamination, and some 700,000 people are known so far to have been affected by As-related diseases. Despite investments exceeding many millions of dollars, there are still substantial knowledge gaps about the prevalence and impact of As, notably in its epidemiology, temporal variations, social factors, patient identification, treatment, etc. Arsenic-affected people in the affected regions also face serious social problems. Of major concern is the fact that many researchers from different countries have been conducting research in SE Asia region but with a lack of coordination, thus duplicating their work. There is an urgent need to coordinate these various studies to ensure better delivery of research outcomes. Further research is needed to improve field testing and monitoring of drinking water sources, and to develop new treatments for chronic As toxicity and new sources of safe drinking water.  相似文献   

9.
Adsorption potential of a commercial activated carbon (FS300) has been evaluated for the uptake of cationic dyes namely methylene blue (MB) and rhodamine B (RB). Though, there are numerous studies in literature which report the sorption of MB (more than 40 studies) and RB (more than 10), however none of these use a common parameter to report the capacity of the sorbent. A protocol, based on the equilibrium dye concentration has been proposed to measure the sorption potential of a sorbent. The Langmuir model can very well describe the experimental equilibrium data for both dyes (coefficient of correlation > 0.999). MB (Qm = 312.5 mg g(-1)) is more adsorbable than the RB (Qm = 144.9 mg g(-1)). Molecular weight and chemical structure of dye molecules seem to affect the dye uptake. The effect of pH on dye uptake has also been evaluated by varyingpH from 3 to 11. Uptake of MB increases with pH, wherein RB removal decreases with pH. Dyes could not be desorbed either by distilled water (0.06 and 0.11% for MB and RB respectively), or by 0.1 NHCl (0.136 and 3.0% for MB and RB respectively) indicating, chemical adsorption type of adsorbent-adsorbate interactions.  相似文献   

10.
Cyclodextrins are among the most remarkable macrocyclic molecules with significant theoretical and practical impacts in chemistry and biology. Cyclodextrins belong to the family of cage molecules due to their structure, which is composed of a hydrophobic cavity that can encapsulate other molecules. Indeed, the most characteristic feature of these compounds is their ability to form inclusion complexes with various molecules through host–guest interactions. This is at the origin of many applications. It is well known and widely reported in the literature that cyclodextrins and their derivatives have a wide variety of practical applications including pharmacy, medicine, foods, cosmetics, toiletries, catalysis, chromatography, biotechnology, nanotechnology, and textile industry. Cyclodextrins are also the object of numerous fundamental studies. In this review, we chose to highlight selected works on cyclodextrins published over the last 5 years by different research groups. The main objective is to summarize some of the recent developments related to the applications of cyclodextrins.  相似文献   

11.
Effluent from dyeing and finishing processes is an important source of water pollution. The effectiveness of bentonite, kaolinite and sediment from a local deposit in removing methylene blue as a cationic dye from aqueous solutions has been investigated. The adsorption equilibrium (isotherm) has been determined according to Freundlich and Langmuir equations. The optimum amount is 0.5 g for all adsorbents, and the optimum pH ranges are 2-8 for bentonite and 2-6 for kaolinite and sediment. With respect to kinetic modelling, the adsorption of methylene blue on various adsorbents was fitted to a second-order equation. Also, the thermodynamic parameters were determined. The negative free energy values indicate the feasibility of the process and spontaneous nature of adsorption. The positive ΔH° values indicate the endothermic nature of the process. Thus, Egyptian clay minerals and sediments have a great tendency to remove the dye from solutions.  相似文献   

12.
Effluent from dyeing and finishing processes is an important source of water pollution. The effectiveness of bentonite, kaolinite and sediment from a local deposit in removing methylene blue as a cationic dye from aqueous solutions has been investigated. The adsorption equilibrium (isotherm) has been determined according to Freundlich and Langmuir equations. The optimum amount is 0.5 g for all adsorbents, and the optimum pH ranges are 2–8 for bentonite and 2–6 for kaolinite and sediment. With respect to kinetic modelling, the adsorption of methylene blue on various adsorbents was fitted to a second-order equation. Also, the thermodynamic parameters were determined. The negative free energy values indicate the feasibility of the process and spontaneous nature of adsorption. The positive ΔH° values indicate the endothermic nature of the process. Thus, Egyptian clay minerals and sediments have a great tendency to remove the dye from solutions.  相似文献   

13.
Rapid surge of interest for carbon nanotube (CNT) in the last decade has made it an imperative member of nanomaterial family. Because of the distinctive physicochemical properties, CNTs are widely used in a number of scientific applications including plant sciences. This review mainly describes the role of CNT in plant sciences. Contradictory effects of CNT on plants physiology are reported. CNT can act as plant growth inducer causing enhanced plant dry biomass and root/shoot lengths. At the same time, CNT can cause negative effects on plants by forming reactive oxygen species in plant tissues, consequently leading to cell death. Enhanced seed germination with CNT is related to the water uptake process. CNT can be positioned as micro-tubes inside the plant body to enhance the water uptake efficiency. Due to its ability to act as a slow-release fertilizer and plant growth promoter, CNT is transpiring as a novel nano-carbon fertilizer in the field of agricultural sciences. On the other hand, accumulation of CNT in soil can cause deleterious effects on soil microbial diversity, composition and population. It can further modify the balance between plant-toxic metals in soil, thereby enhancing the translocation of heavy metal(loids) into the plant system. The research gaps that need careful attention have been identified in this review.  相似文献   

14.
邻苯二甲酸酯降解细菌的多样性、降解机理及环境应用   总被引:1,自引:0,他引:1  
邻苯二甲酸酯(phthalic acid esters,PAEs)是一类对人体内分泌系统有干扰作用的持续性有机污染物(persistent organic pol utants,POPs)。PAEs在环境介质如水体、底泥和土壤中长期赋存会对生物体产生毒害效应,其分布广、浓度高和难降解等特点是限制有效环境治理的主要因素。作为环境的重要组成部分,微生物对污染物有很强的适应能力和高效的降解能力,这为PAEs的生物修复提供了可能。与物理化学修复法相比,微生物修复技术具有可控性强、修复面广和灵活性高等优势。本文综述了已报道的大部分PAEs降解细菌的种类及其代谢机制,并分析了其在PAEs污染水体和土壤修复中的应用现状与前景,以期为PAEs环境行为与生物修复研究提供参考。  相似文献   

15.
Curative properties of geothermal waters are highly valued in several countries around the world, including China, Iceland, and middle and Eastern European states. Natural hotsprings and fumaroles found in various parts of Kenya have been utilised by the local residents for worship and offering of sacrifices, particularly when afflicted with ailments that were difficult to cure. At the Lake Bogoria Hotel, natural hot water is directed towards a swimming pool, in which hotel guests like to bathe. The major element chemistry of some of the geothermal waters in Kenya is similar to that of waters used at established balneological sites in other parts of the world. Trace element concentrations are less well known. More research is required to understand the factors that impart curative qualities to geothermal waters. Kenya has been developing its geothermal systems for electricity generation, but should also evaluate the different sites for balneological applications.  相似文献   

16.
Textile dye effluents are believed to be toxic as they might exert various harmful effects on living organisms including genotoxicity. These effluents are the main source of direct and continuous input of pollutants into the aquatic ecosystems. In this study, dye effluents from a local silk dyeing industry were analysed for their genotoxic potential by the Allium cepa genotoxicity test. The A. cepa test is characterised as a genotoxicity test where the roots of A. cepa are grown in different concentrations of the test material. The macroscopic results clearly showed that the toxicity of the dye effluents prompted A. cepa root growth inhibition, and this effect increased with higher concentrations of the effluents. At the cellular level, no dividing cells were found at higher concentrations such as 60%, 80% and 100% of the effluents. However, at a lower concentration of 20%, dividing cells were identified, although the mitotic index was much lower than that of the control. Microscopic analysis showed that the dye effluents induced chromosomal aberrations at significant levels. Taken together, these results revealed that the textile dyeing industry effluents are toxic to eukaryotic cells and these dyes have genotoxic properties that can potentially lead to cancer development and adverse health conditions.  相似文献   

17.
The classical use of synthetic dyes is causing issues of environmental pollution and heath risk. As a consequence natural dyes are gaining interest, but the use of natural dyes still includes toxic reagents such as metals as mordants and acids to enhance color and yield. Therefore, we designed a new chitosan-polypropylene imine dendrimer hybrid at 0–2000 mg/L to treat wool before dyeing with cochineal. We compared dye exhaustion, color depth, color characteristics, and color fastness of the new process with dyed pristine and metal mordanted wool. Results show that wool pretreatment improved dye exhaustion from 48 to 88 %, shifted saturation point toward lower dye concentration from 3000 to 1000 mg/L, and improved color depth from 13.68 for pristine wool and 15.17 for metal mordanted wool to 23.89 for the new process.  相似文献   

18.
《Ecological modelling》2007,207(1):22-33
Model calibration is fundamental in applications of deterministic process-based models. Uncertainty in model predictions depends much on the input data and observations available for model calibration. Here we explored how model predictions (forecasts) and their uncertainties vary with the length of time series data used in calibration. As an example we used the hydrogeochemical model MAGIC and data from Birkenes, a small catchment in southern Norway, to simulate future water chemistry under a scenario of reduced acid deposition. A Bayesian approach with a Markov Chain Monte Carlo (MCMC) technique was used to calibrate the model to different lengths of observed data (4–29 years) and to estimate the prediction uncertainty each calibration. The results show that the difference between modelled and observed water chemistry (calibration goodness of fit) in general decreases with increasing length of the time series used in calibration. However, there are considerable differences for different time series of the same length. The results also show that the uncertainties in predicted future acid neutralizing capacity were lowest (i.e. the distribution peak narrowest) when using the longest time series for calibration. As for calibration success, there were considerable differences between the future distributions (prediction uncertainty) for the different calibrations.  相似文献   

19.
20.
Mixing in rivers is an important issue with many applications in water quality and water resource management. Mixing of effluents with ambient river water is especially important, particularly in river bends, where secondary circulation complicates the mixing process. By comparing measured trajectories from dye tests to velocimetry data measured with an acoustic Doppler velocimeter, this paper models the trajectory of a jet in an open channel bend using a modified formula for a jet trajectory in a straight crossflow. The original formula is shown to be insufficient for modeling the trajectory in the bend. Modifications are proposed using the position of the centre of the main secondary circulation cell to account for the bend effects. In the absence of secondary circulation, the modified formula reduces to the original formula. Once the secondary circulation has developed, the proposed formula is shown to have better residuals, lower root mean squared error, and higher \(R^2\) than the original formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号