首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Carbon monoxide (CO) in the surface sea waters is produced predominantly by photochemical processes, oxidized by micro-organisms and outgassed to the atmosphere. to assess carbon monoxide flux from the oceans to the atmosphere, the photochemical production and microbial oxidation of carbon monoxide in the oceanic mixed-layer was investigated during several oeanographic cruises and in the laboratory. the photoproduction rate of carbon monoxide was found to be well correlated to the concentration of dissolved organic carbon (DOC) in coastal and open ocean surface waters. Taking a global average carbon monoxide production rate of 10 ± 2 nmole litre-1 (mg DOC hr)-1 in the surface open ocean water, and 25 ± 7 nmole litre-1 (mg DOC hr)-1 in coastal sea water, at cloud-free summer solar noon, the photochemical production of carbon monoxide in the global oceans is estimated to be at a rate of 1200 ± 200 Tg CO y-1. the microbial carbon monoxide turnover time in the mixed-layer was observed to range from hours in a coastal estuary to 16 days in the Pacific along 1057deg; W in dark incubations. Natural sunlight can largely inhibit the microbial consumption of carbon monoxide in surface water. On a global scale, microbial consumption is responsible for the loss of less than 10% of photochemical produced carbon monoxide in the surface ocean. Field measurements have shown that the net transport of carbon monoxide from the euphotic zone to the underlying deeper ocean water is limited and that the overall life time in surface sea waters is less than 3-4 hours. When combined, these field measurements with the photoproduction and microbial consumption rates obtained, we estimate the oceanic flux to the atmosphere is about 1000 ± 200 Tg CO y-1, which represents the largest single source of atmospheric carbon monoxide.  相似文献   

2.
This article reports the first application of coupled total organic carbon cavity ring-down spectroscopy (TOC-CRDS) for the analysis of the ??13C signature of dissolved organic carbon (DOC) in freshwater samples. DOC represents a major, dynamic component of the global carbon cycle. The export of DOC from soils into rivers and groundwaters may be highly climate sensitive, and much of this export may occur in ephemeral fluxes. Thus, a robust, simple and inexpensive method for the continuous determination of DOC concentration and quality is urgently needed. We detail recent advances made in the analysis of the ??13C signature of DOC using a TOC-CRDS system optimised for the analysis of DOC with natural abundances greater than 2.5?mg?L?1 with no sample pre-concentration required and sample volumes of 40?mL. Precision between replicated samples was comparable to conventional analysis by gas-source isotope ratio mass spectrometry, yielding ??13C values with standard deviations of?±?0.5??? for DOC concentrations higher than 1.5?mg?L?1. The utility of this technique for the analysis of DOC in samples with a broad range of compositions and concentrations (2.5?C25?mg?L?1 DOC) is demonstrated. Since DOC ??13C can be measured continuously, ca. 45?min per measurement, this method enables the online monitoring of DOC in river water, water intakes and treated waters, allowing changes in DOC fluxes to be monitored in real time.  相似文献   

3.
Dissolved nutrients, Chl-a and primary productivity were measured from seven transects along the coastal waters of the southeastern Arabian Sea during northeast monsoon. Ten major estuaries were chosen to study the influence of estuarine discharge on the nutrient dynamics in the coastal waters. The mean water discharge of the estuaries in the north (64.8?±?18?×?105?m3?d?1) was found to be higher than those in the south (30.6?±?21.4?×?105?m3?d?1), whereas the nutrient concentrations were found to be higher in the estuaries of the south. The results from the offshore waters were discussed in accordance with the depth contour classification, that is, shelf (depth?≤?30?m) and slope waters (depth?≥?30?m). Our results suggest that the estuarine discharge plays a major role in the nutrient distribution in near shore shelf waters, whereas in shelf and slope waters, it was mainly controlled by in situ biological processes. The inorganic form of N to P ratios were found to be higher than Redfield ratio in slope waters when compared with shelf waters, suggesting that PO43? (<0.15?µmol?L?1) is a limiting nutrient for primary production. The multivariate statistical analysis revealed that the nutrient dynamics in the coastal waters was controlled by both biological and physical processes.  相似文献   

4.
The carbonate radical (CO 3 ) is a photoinduced transient species occurring in surface waters. The carbonate radical can transform both natural compounds and xenobiotics. For instance, it can react with electron-rich substrates such as anilines, phenols and organic sulfur compounds. Here we used the APEX software to assess photochemical reactions, including the formation rates of transient species, based on water chemistry and depth, under summertime irradiation conditions. We found that the reaction between peroxynitrite and carbon dioxide is a potentially significant source of CO 3 in sunlit surface waters, and could account for up to 10–15 % of the total CO 3 formation. The peroxynitrite pathway to CO 3 would be most significant at pH 7–8 and would be enhanced in waters with elevated nitrate and low alkalinity. Therefore, the proposed process could add to the known photochemical sources of CO 3 in surface-water environments.  相似文献   

5.
The use of stable isotope of carbon, 13C, for the determination of the photosynthetic rate of a marine phytoplankton population was examined. Particular concern was paid to the effects of non-phytoplanktonic organic carbon and the enrichment of inorganic carbon on the estimation of the photosynthetic rate. Photosynthetic rates determined by the 13C method showed a remarkable agreement with those determined by the 14C method. Insitu determinations of photosynthetic rate were made in three different water types: open ocean, coastal and neritic waters, which included oligo- and mesotrophic waters, by using the 13C method established.  相似文献   

6.
A survey was made in an area of 28 km2 around the outlest of Ipanema's submarine outfall in order to evaluate the impact of the raw domestic sewage effluent on coastal waters. Nutrient concentrations, dissolved oxygen, particulate matter and other physico-chemical parameters were measured monthly for 15 months. Copper and lead concentrations were also determined for two of the samplings.

The outfall has been in operation for 18 years, and the parameters measured within the observation area appear to be in steady state. From the observed radial concentration gradients within the survey area, a real extension of the steady state distribution of particulate matter and of sewage-derived nitrogen was estimated. the stationary cloud of particulate organic matter was about 150 km2. From its total inventory and the discharge rate, a mean residence time of the particles in the sea of 56 days is estimated, prior to their being decomposed by bacterial action or settling to the bottom. for sewage derived N (as ammonia or nitrate), the steady state amount (above background) covers an area of about 60 km2 and leads to a mean residence time of 5 ± 1 days in the ocean. Phosphorus is readily absorbed by the phytoplankton.

The presence of temperature gradients established by cold upwelling waters controls the dispersion of the sewage material and the rising of the sewage plume to the surface waters.  相似文献   

7.
A comprehensive ecological monitoring of hazardous substances is indispensable to preserve our health and environment. Therefore, fast and inexpensive techniques for routine analysis of pollutants are essential. However, in the measuring procedure itself often toxic reagents are used producing hazardous waste. Omitting environmentally hazardous substances in the analysis procedure is an important contribution to a more sustainable and green analytical chemistry. A reagent-free method for ultra-trace (pg to ng?L-1) mercury determination in water samples was developed and validated. An active nanogold collector integrated in a fully automated flow injection system is the core of this new method. All mercury species dissolved in the water sample are adsorbed and preconcentrated on the nano-structured gold surface of the collector. After rinsing and drying of the collector, the enriched mercury is thermally desorbed and finally measured by atomic fluorescence spectrometry. This method was optimized and validated for the determination of mercury in natural waters. The influence of various water constituents was investigated and only high contents of dissolved organic carbon (DOC) showed interferences of mercury preconcentration due to the strong complexation of mercury by DOC. This restriction can be solved by UV-irradiation, i.?e. reagent-free digestion of DOC rich samples prior to the preconcentration procedure. Mercury concentration of several natural river and sea waters and water from the discharge of a waste water treatment plant were determined with this new analytical method. Accuracy and precision of the method were demonstrated by several recovery experiments in natural water samples (recoveries: 96–102?%) and by analysis of the certified reference material BCR-579 (Mercury in Coastal Sea Water; recovery: 101?±?1?%). With a detection limit of only 80?pg?Hg?L–1 the proposed method is highly sensitive. Furthermore the method avoids potential contamination of the sample by reagent addition and is due to the reagent-free procedure environment-friendly. Hence this work is an important contribution to sustainable environmental analysis and at the same time improves accurate routine mercury trace analysis.  相似文献   

8.
The aim of this study is to investigate the differences in the chemical conditions of lotic waterbodies in the two major ecosystems in Nigeria, the forest and savanna zones. The forest waters were slightly acidic (mean±SD pH = 6.72±0.58) while the savanna waters were slightly alkaline (pH = 7.11±0.33). The cationic order of dominance in the forest waters was Na+ > Ca2+ > Mg2+ > K+ in contrast to Ca2+ > Mg2+ > Na+ > K+ in savanna waters. The forest waters were chlorided (typical of coastal and/or marine waters) whereas the savanna waters were carbonated in nature, typical of the worldwide freshwater. Organic carbon was significantly higher in forest waters than in the savanna waters (p < 0.05) while nutrient compounds were significantly higher in savanna waters than in forest waters. The seasonal variation of the chemical parameters was generally more evident in savanna than in forest waters. The differences in water quality between the two major vegetation zones reflect the differences in the biogeochemical processes and nutrient cycling that characterise forest and savanna ecosystems.  相似文献   

9.
137Cs in the marine environment mainly originates from fallout of atmospheric nuclear weapon tests, accidental releases from nuclear facilities, and from the Chernobyl accident. After the latter accident, many studies have been carried out in Turkey. The objective of this study is to assess the spatial distribution of 137Cs in the coastal marine environment of the Aegean Sea.

The concentrations of 137Cs in sediment, sea water, mussel (Mytilus galloprovincialis), and fish samples collected from the coast of the Aegean Sea at Izmir Bay and near Didim (Akbük) have been monitored for seasonal variability by the means of gamma spectroscopy: they vary between 0.10 ± 0.01 and 1.5 ± 0.3 Bq kg?1, 1.3 ± 0.1 and 4.3 ± 0.4 Bq m?3, <0.2 and 1.3 ± 0.3 Bq kg?1, and 0.20 ± 0.03 and 1.8 ± 0.3 Bq kg?1, respectively.  相似文献   

10.
Microheterotrophic dissolved free amino acid (DFAA) utilization, and microbial community and bacterial community carbon production and growth were studied using 3H-labeled organics as tracers in marine surface-film and subsurface (10 cm) waters off Baja California in November 1983. DFAA utilization was generally more rapid during the day (0.14 to 0.38 nM h-1) than at night (0.04 to 0.14 nM h-1) in surface-film and subsurface waters, but the percent of utilized amino acid which was respired was always greater during the night (22 to 57%) compared to the day (14 to 18%). Utilization of DFAA-carbon was estimated to range from 0.3 to 5.3 g C l-1 d-1 for all stations studied. In six of the 8 samples examined, the percentage of microbial carbon accounted for by the bacterial component of the population (1.4 to 5.9%) was strikingly similar to the percentage of microbial carbon production accounted for by bacterial carbon production (1.9 to 5.1%). In all of these six samples, total microbial specific-growth rates and bacterial specific-growth rates were approximately equivalent (0.9 to 2.2 d-1 for the microbial community; 0.7 to 1.9 d-1 for bacteria). The two exceptions were samples apparently influenced by transient flagellate populations migrating into the surface or subsurface waters at night. These observations support the conclusion that surface films contain unique and highly active microbial populations.  相似文献   

11.
The release of dissolved organic carbon (DOC) from phytolankton during photosynthesis, and the utilization of this carbon by planktonic bacteria, was studied using 14CO2 and selective filtration. Natural sea water samples from a coastal area of the Northern Baltic Sea were incubated in the laboratory for detailed studies, and in situ for estimation of annual dynamics. In a laboratory incubation (at +1°C) the concentration of 14C-labelled dissolved organic carbon increased for about 2 h and then reached a steady state, representing about 0. 1% of the total DOC. Labelled organic carbon in the phytoplankton and bacterial fractions continued to increase almost linearly. The continuous increase in the bacterial fraction is thought to represent almost instantaneous utilization of the DOC released from the phytoplankton during photosynthesis. As an annual average, in 4 h in situ incubations, about 65% of the labelled organic carbon was found in the phytoplankton fraction (>3 m), about 27% in the bacterial fraction (0.2 to 3 m) and the remaining 8% as DOC (<0.2 m). Large variations in these percentages were recorded. The measured annual primary production was 93 g C m-2 (March to December), and the estimated bacterial production due to phytoplankton exudates 29 g C m-2. This represents a release of DOC of about 45% of the corrected annual primary production of 110 g C m-2 (assuming a bacterial growth efficiency of 0.6).  相似文献   

12.
Soils from two typical tidal salt marshes with varied salinity in the Yellow River Delta wetland were analysed to determine possible effects of salinity on soil carbon sequestration through changes in soil microbiology. The mean soil respiration (SR) of the salt water–fresh water mixing zone (MZ) was 2.89 times higher than that of the coastal zone (CZ) (4.73 and 1.63?μmol?m?2?s?1, respectively, p?Pseudomonas sp. and Limnobacter sp. that might have led to its higher dehydrogenase activity and respiratory rates. Additionally, the CZ possessed more Halobacteria and Thaumarchaeota with the ability to fix CO2 than the MZ. Significantly lower soil salinity in MZ (4.25?g?kg?1) was suitable for β-Proteobacteria, but detrimental for Halobacteria compared with CZ (7.09?g?kg?1, p?相似文献   

13.
There are two approaches in the application of satellite sensors to marine pollution studies. Satellite sensors are used to observe and characterize ocean pollutants such as industrial wastes and oil. in addition, satellite observations provide information useful in illuminating processes such as eutrophi-cation or air-sea exchange of CO2, that are important in determining the distribution and fate of pollutants.

Satellite technology is an important tool in monitoring and studying ocean pollution. Visible sensors have been used to observe and characterize sewage sludge and industrial wastes dumped at sea. Oil slicks have been observed with Landsat, AVHRR and SAR imagery. Besides directly detecting pollutants, satellite sensors are useful for analyzing ocean processes that are influential in the fate of pollutants. These processes include eutrophication of coastal waters and the distribution of suspended matter. the fate of excess CO2 can be addressed using scatterometer-derived estimates of wind speeds to determine the CO2 exchange coefficient at the sea surface on a global scale.  相似文献   

14.
With large influx of freshwater that decreases sea-surface salinities, weak wind forcing of <10 m s−1 and almost always warm (>28°C) sea-surface temperature that stratifies and shallows the mixed layer leading to low or no nutrient injections into the surface, primary production in Bay of Bengal is reportedly low. As a consequence, the Bay of Bengal is considered as a region of low biological productivity. Along with many biological parameters, bacterioplankton abundance and production were measured in the Bay of Bengal during post monsoon (September–October 2002) along an open ocean transect, in the central Bay (CB, 88°E) and the other transect in the western Bay (WB). The latter representing the coastal influenced shelf/slope waters. Bacterioplankton abundances (<2 × 109cells l−1) were similar to those reported from the HNLC equatorial Pacific and the highly productive northern Arabian Sea. Yet, the thymidine uptake rates along CB (average of 1.46 pM h−1) and WB (average of 1.40 pM h−1) were less than those from the northwestern Indian Ocean. These abundances and uptake rates were higher than those in the oligotrophic northwestern Sargasso Sea (<7 × 108 cells l−1; av 1.0 pM h−1). Concentrations of chlorophyll a (chl a), primary production rates and total organic carbon (TOC) were also measured for a comparison of heterotrophic and autotrophic production. In the WB, bacterioplankton carbon biomass equaled ∼ 95% of chl a carbon than just 31% in the CB. Average bacterial:primary production (BP:PP) ratios accounted for 29% in the CB and 31% in the WB. This is mainly due to lower primary productivity (PP) in the WB (281 mg C m−2 d−1) than in the CB (306 mg C m−2 day−1). This study indicates that bacteria–phytoplankton relationship differs in the open (CB) and coastal waters (WB). Higher abundance and contrastingly low bacterial production (BP) in WB may be because of the riverine bacteria, brought in through discharges, becoming dormant and unable to reproduce in salinities of 28 or more psu. Heterotrophic bacteria appear to utilize in situ DOC rather rapidly and their carbon demand is ∼50% of daily primary production. It is also apparent that allochthonous organic matter, in particular in the western Bay, is important for meeting their carbon demand.  相似文献   

15.
Abstract

The origin and distribution of suspended organic matter, the trophic features and the stable carbon isotopic composition of particulate organic carbon (POC) were studied monthly in a Western Mediterranean semi-enclosed basin. Sampling stations were selected as a function of wind-exposure and the degree of vegetation cover and then compared with an adjacent unvegetated site. the predominant vegetation was seagrass (Posidonia oceanica and Cymodocea nodosa) and Caulerpa prolifera. Water samples were analyzed for total suspended matter (inorganic and organic fractions), photosynthetic pigments (chlorophyll-a and phaeopigments), dissolved organic carbon, particulate organic carbon and their isotopic composition. Temperature and salinity were also measured at the same sampling sites within range of Mediterranean limits. the suspended organic matter concentration was 1.77 ± 1.55 mg l?1; the chlorophyll-a concentration was low (0.35 ± 0.24 μg l?1); the disolved organic carbon concentration was 2,140 ± 2,010 μg l?1; the particulate organic carbon concentration was 212 ± 106 μg l?1 and the isotopic composition was 18.77 ± 2.51%°. There were significant temporal differences except for phaeopigments, POC and its POC isotopic composition, and there were no spatial differences other than for δ13C. This picture highlighted a general seasonal trend and trophical features similar to adjacent sea.

Spatial differences in δ13C showed that the source of suspended organic matter was different between stations as that between sources and wind-hydrodynamic constraints. In  相似文献   

16.
Future ocean acidification will be amplified by hypoxia in coastal habitats   总被引:1,自引:0,他引:1  
Ocean acidification is elicited by anthropogenic carbon dioxide emissions and resulting oceanic uptake of excess CO2 and might constitute an abiotic stressor powerful enough to alter marine ecosystem structures. For surface waters in gas-exchange equilibrium with the atmosphere, models suggest increases in CO2 partial pressure (pCO2) from current values of ca. 390 μatm to ca. 700–1,000 μatm by the end of the century. However, in typically unequilibrated coastal hypoxic regions, much higher pCO2 values can be expected, as heterotrophic degradation of organic material is necessarily related to the production of CO2 (i.e., dissolved inorganic carbon). Here, we provide data and estimates that, even under current conditions, maximum pCO2 values of 1,700–3,200 μatm can easily be reached when all oxygen is consumed at salinities between 35 and 20, respectively. Due to the nonlinear nature of the carbonate system, the approximate doubling of seawater pCO2 in surface waters due to ocean acidification will most strongly affect coastal hypoxic zones as pCO2 during hypoxia will increase proportionally: we calculate maximum pCO2 values of ca. 4,500 μatm at a salinity of 20 (T = 10 °C) and ca. 3,400 μatm at a salinity of 35 (T = 10 °C) when all oxygen is consumed. Upwelling processes can bring these CO2-enriched waters in contact with shallow water ecosystems and may then affect species performance there as well. We conclude that (1) combined stressor experiments (pCO2 and pO2) are largely missing at the moment and that (2) coastal ocean acidification experimental designs need to be closely adjusted to carbonate system variability within the specific habitat. In general, the worldwide spread of coastal hypoxic zones also simultaneously is a spread of CO2-enriched zones. The magnitude of expected changes in pCO2 in these regions indicates that coastal systems may be more endangered by future global climate change than previously thought.  相似文献   

17.
Contamination profiles of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) were determined in six fish species from three selected regions along coastal waters off Savannah, GA, USA. Concentrations of PCBs were predominant (12–493 ng g?1 lw) followed by PBDEs (10–337 ng g?1 lw), OCPs such as DDTs (2.7–153 ng g?1 lw), chlordanes (3.8–34 ng g?1 lw), cyclodienes (<0.1–35 ng g?1 lw), mirex (<0.1–8.6 ng g?1 lw), γ-hexachlorocyclohexane (<0.1–1.4 ng g?1 lw), and hexachlorobenzene (<0.1–0.68 ng g?1 lw). The results indicated no region-specific difference in the contaminants however inter-species as well as intra-species differences were evident. Comparison of DDTs, PCBs, and PBDEs profiles in fish with those from other countries revealed that fish from coastal waters off Savannah contained relatively less concentrations of PCBs and chlorinated pesticides, while PBDE concentrations were comparable or even higher than fish samples from other regions. Polychlorinated biphenyl congeners and chlorinated pesticide tempoal trend data exhibited no increase of contamination levels. The levels of PCBs and chlorinated pesticides in fish from Savannah coastal waters were below the Food and Drug Administrations (FDA) established limits for human consumption.  相似文献   

18.
Results from controlled in situ experimentation conducted on the leeward reef tract of Curaçao, Netherlands Antilles, indicate that the coral Montastraea annularis exhibits a complex, yet consistent, cellular response to increasing sea surface temperature (SST) and decreasing irradiance. This was determined by simultaneously quantifying and tracking the tissue density of zooxanthellae and mucocytes using a novel technique that integrates the lectin histochemical stain wheat germ agglutinin (WGA) with high-resolution (200 nm) optical epifluorescence microscopy. Coral colonies growing at 6-m water depth (WD) and an irradiance of 100.2 ± 6.5 μmol m?2 s?1 were treated with a shading experiment for 11 days that reduced irradiance to 34.9 ± 6.6, 72.0 ± 7.0 and 90.1 ± 4.2 μmol m?2 s?1, respectively. While a significant decrease in the density of both zooxanthellae and mucocytes were observed at all shade levels, the largest reduction occurred between the natural non-shaded control (44,298 ± 3,242 zooxanthellae cm?2; 4,853 ± 346 mucocytes cm?2) and the highest shading level (13,982 ± 1,961 zooxanthallae cm?2; 2,544 ± 372.9 mucocytes cm?2). Colonies were also sampled during a seasonal increase in SST of 1.5°C, where the density of zooxanthellae was significantly lower (from 54,710 ± 1,755 to 34,322 ± 2,894 cells cm?2) and the density of mucocytes was significantly higher (from 6,100 ± 304 to 29,658 ± 3,937 cells cm?2). These observations of coral cellular response to environmental change provide evidence to support new hypotheses for coral survival and the complex role played by mucus in feeding, microbial associations and resilience to increasing SST.  相似文献   

19.
Many pteropod species in the eastern tropical North Pacific Ocean migrate vertically each day, transporting organic matter and respiratory carbon below the thermocline. These migrations take species into cold (15–10°?C) hypoxic water (<20?μmol O2 kg?1) at depth. We measured the vertical distribution, oxygen consumption and ammonia excretion for seven species of pteropod, some of which migrate and some which remain in oxygenated surface waters throughout the day. Within the upper 200?m of the water column, changes in water temperature result in a?~60–75?% reduction in respiration for most species. All three species tested under hypoxic conditions responded to low O2 with an additional?~35–50?% reduction in respiratory rate. Combined, low temperature and hypoxia suppress the metabolic rate of pteropods by?~80–90?%. These results shed light on the ways in which expanding regions of hypoxia and surface ocean warming may impact pelagic ecology.  相似文献   

20.
Surface and bottom water samples were collected on a monthly basis from six locations in the Alexandria Western Harbour between April 2002 and March 2003. Total nitrogen, ammonia, nitrite, nitrate, total phosphorus, reactive phosphate and silicate were analysed. The average content of total nitrogen ranged from 81.1 to 65.7?µmol?l?1 in the surface and bottom waters, respectively, while ammonia ranged from 13.77 to 15.79?µmol?l?1 in surface and bottom waters, respectively. Also, the average concentration of nitrite was relatively higher in surface waters than in bottom waters (0.89 and 0.61?µmol?l?1, respectively). The results of this study also indicated a considerable temporal variation in nitrate concentrations which ranged from 1.12 to 13.83?µmol?l?1. Total phosphorus displayed an irregular pattern throughout the year, ranging from 1.9 to 11.8?µmol?l?1 in surface waters and from 1.7 to 9.1?µmol?l?1 in bottom waters. The results of PO4-P analysis showed higher values in surface waters (0.28–2.75?µmol?l?1) than in bottom waters (0.10–1.70?µmol?l?1). The average concentration of silicates was relatively lower in the surface than in the bottom waters (8.97 and 10.1?µmol?l?1, respectively). The analysis of variance (ANOVA) among seasons and sites revealed significant differences for ammonia, total nitrogen and phosphate, while nitrate showed no significant differences among stations. Finally, silicate did not show any significant variance among sites and seasons (ANOVA, P?>?0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号