首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In recent decades, the Sal-dominated tropical deciduous forests (TDFs) were experiencing loss of regeneration due to lack of seed germination of native species. To understand this ecological problem, the present study dealt with the spatial and temporal variations in biogeochemical parameters of Sal forest soils. Twenty soil samples were collected from four TDF sites in the Chota Nagpur Plateau, India. The inventories of tree species in three life-cycle stages (seedling, sapling and adult) were carried out in four sites. Site-I (290?stems?ha?1) showed occurrence of only one species (Shorea robusta) without seedling and sapling. The pH of forest soils was acidic to slightly acidic in nature. Seasonal variations in C/N ratio showed rapid mineralization of organic matter in the rainy season. ANOVA revealed that the degree of seasonal variation caused significant difference in pH, soil organic carbon, soil organic matter, total carbon, Al, Fe, Ca, Mg, Mn and P across four sites. The strong correlation of P with pH, Al, Fe, Mg and Mn indicated highly oxidised and exchangeable nature of dry forest soils. Factor analysis of soil parameters revealed that the different combinations of edaphic conditions in different seasons were important in the distribution of the dry tropical forests communities in Chota Nagpur Plateau.  相似文献   

2.
The effect of selected pesticides, monocrotophos, chlorpyrifos alone and in combination with mancozeb and carbendazim, respectively, was tested on nitrification and phosphatase activity in two groundnut (Arachis hypogeae L.) soils. The oxidation of ammonical nitrogen was significantly enhanced under the impact of selected pesticides alone and in combinations at 2.5 kg ha−1 in black soil, and furthermore, increase in concentration of pesticides decreased the rate of nitrification, whereas in the case of red soil, the nitrification was increased up to 5.0 kg ha−1 after 4 weeks, and then decline phase was started gradually from 6 to 8 weeks of incubation. The activity of phosphatase was increased in soils, which received the monocrotophos alone and in combination with mancozeb up to 2.5 and 5.0 kg ha−1, whereas the application of chlorpyrifos singly and in combination with carbendazim at 2.5 kg ha−1 profoundly increased the phosphatase activity after 20 days of incubation, in both soils. But higher concentrations of pesticides were either innocuous or inhibitory to the phosphatase activity.  相似文献   

3.
Polychlorinated benzenes (PCBzs) including penta- and hexachlorobenzene can be unintentionally formed from thermal processes in different industrial activities, and very little information is available on the contamination and emission characteristics of these new persistent organic pollutants from industries in Vietnam. In this study, contamination of PCBzs (including penta- and hexachlorobenzene, named PeCBz and HCB, respectively) and PCBs (including CB-28, 52, 101, 153, 138, 180) in fly ash, bottom ash and soil from combustion processes of waste incineration, metallurgy (steel making and zinc production) and cement production from several provinces in the Northern Vietnam, including Hai Duong, Hanoi, Bac Ninh, Hai Phong and Thai Nguyen, was preliminary investigated. The PCBzs concentrations in fly ash, bottom ash and soil ranged from 2.7 to 100 ng g?1, from 2.7 to 159 ng g?1 and from 0.28 to 33.9 ng g?1, respectively. Relatively high residues of PeCBz in fly ash and bottom ash from municipal waste incinerators in some provinces from the Northern Vietnam were encountered. Total PCBs concentrations ranged from 18.0 to 8260 ng g?1, from 1.0 to 10600 ng g?1 and from 14.5 to 130 ng g?1 for the fly ash, bottom ash and soil, respectively. Daily intakes of PeCBz, HCB and PCBs through soil ingestion and dermal exposure estimated for children ranged 0.33–9.93 (mean 3.14), 0.39–21.1 (mean 4.9) and 6.09–1530 ng/kg bw/day (mean 346), respectively; and these intakes were about 4.7–5.4 times higher than those estimated for adult. The intakes of PeCBz and HCB were relatively low, while those for PCBs exceeded WHO TDI for some samples.  相似文献   

4.
为了研究汞(Hg)对不同种类跳虫的毒性效应,将曲毛裸长()(Sinella curviseta)、四刺泡角()(Ceratophysella duplicispinosa)、小原等节()(Proisotoma minuta)、茉莉花长角()(Entomobrya sp.)4种中国优势跳虫物种分别暴露于Hg的6个浓度组中进行24 h,72 h-LC50急性毒性实验,利用Bliss法测得其4种跳虫的24h LC50分别为92.42、36.85、34.93、47.56 mg·L-1,其95%置信区间分别为68.57~168.6、29.61~43.53、25.57~44.94、34.33~65.11 mg·L-1;72 h的LC50为21.92、20.17、18.44、15.99 mg·L-1,其95%置信区间分别为16.18~29.82、6.64~29.81、13.87~26.45、10.03~21.37 mg·L-1。将小原等节()和茉莉花长角()分别暴露于Hg的6个相对较低浓度组中进行28 d生存繁殖实验,得到成虫存活数量和幼虫繁殖及生存数量。结果表明,4种跳虫中茉莉花长角()和曲毛裸长()对汞有较强的耐受性,小原等节()次之,四刺泡角()较弱。此外,小原等节()在Hg2+浓度为0.05 mg·L-1范围左右条件下有低剂量刺激效应。  相似文献   

5.
This study was designed to evaluate the adsorption‐desorption hysteresis of endosulfan (1,2,3,4, 7,7‐hexachlorobicyclo[2,2,1]‐2‐heptene‐5,6‐bisoxymethylene sulfite) in selected tropical soils. Two major tropical soils from Thailand were selected, Rangsit lowland soils (Rangsit series) and Phrabat upland soils (Pakchong series). The soil types were sub‐divided into plow soils, 0–20cm depth from the surface, and subsoils, 20–40cm depth. Adsorption was determined in 24h batch equilibrium, with five different concentrations of 14C endosulfan ranging from 1.04 to 16.64 ng/mg soils. Four successive desorption studies were performed continuously after three adsorption concentrations, 24h for each successive. Adsorption coefficient values (K ads) as determined by Freundlich model ranged from 0.02 to 0.14 and found to be higher in Rangsit soils as expected when compared with Phrabat soils. Desorption was hysteresis in every desorption study. Desorption coefficient values (K des) were higher than adsorption (K des).  相似文献   

6.
Soil microarthropods (Acari, Collembola) were analyzed along transects from shore to brown dune in two sandy coastal sites of the North Sea (Jutland, Denmark, and Spiekeroog, East Frisian island, Germany). Predatory mites (Acari: Gamasina) and Collembola were determined to species. The Jutland and the Spiekeroog sites each yielded 22 Gamasina species, 10 of which are common to both areas. Collembola were identified from the Spiekeroog samples only (also 22 species). Largest mite abundances were found in Jutland in primary dunes (419 tsd. ind./m2) and on Spiekeroog in old brown dunes (314 tsd.ind./m2). Compared to the mites, Collembola abundances are low, with maxima of 77 tsd.ind./m2 in Jutland (yellow dune) and only 18 tsd. ind./m2 on Spiekeroog (old vellow dune). The communities of predatory mites (Gamasina) and Collembola along transects from shore inland to brown dune are quite specific. High similarities are found for the predatory mites between the specific dune sites of the two North Sea areas, particularly for yellow dune. Additionally, preliminary data are presented for the southern Baltic Coast. The findigns are discussed in a broader context. Arguments focus on conservation and biogenic dune stabilization.  相似文献   

7.
No consensus currently exists about how climate change should affect the status of soil organic matter (SOM) in the tropics. In this study, we analyse the impact of climate change on the underlying mechanisms controlling SOM dynamics in a ferralsol under two contrasting tropical crops: maize (C4 plant) and banana (C3 plant). We model the effect of microbial thermal adaptation on carbon (C) mineralisation at the crop system scale and introduce it in the model STICS, which was previously calibrated for the soil-crop systems tested in this study. Microbial thermal adaptation modelling is based on a reported theory for thermal acclimation of plant and soil respiration. The climate is simulated from 1950 to 2099 for the tropical humid conditions of Guadeloupe (French Antilles), using the ARPEGE model and the IPCC emission scenario A1B. The model predicts increases of 3.4 °C for air temperature and 1100 mm yr−1 for rainfall as a response to an increase of 375 ppm for atmospheric carbon dioxide concentration in the 2090-2099 decade compared with the 1950-1959 decade. The results of the STICS model indicate that the crop affects the response of SOM to climate change by controlling the change in several variables involved in C dynamics: C input, soil temperature and soil moisture. SOM content varies little until 2020, and then it decreases faster for maize than for banana. The decrease is weakened under the hypothesis of thermal adaptation, and this effect is greater for maize (−180 kg C ha−1 yr−1 without adaptation and −140 kg C ha−1 yr−1 with adaptation) than for banana (−60 kg C ha−1 yr−1 and −40 kg C ha−1 yr−1, respectively). The greater SOM loss in maize is mainly due to the negative effect of warming on maize growth decreasing C input from residues. Climate change has a small effect on banana growth, and SOM loss is linked to its effect on C mineralisation. For both crops, annual C mineralisation increases until 2040, and then it decreases continuously. Thermal adaptation reduces the initial increase in mineralisation, but its effect is lower on the final decrease, which is mainly controlled by substrate limitation. No stabilisation in SOM status is attained at the end of the analysed period because C mineralisation is always greater than C input. Model predictions indicate that microbial thermal adaptation modifies, but does not fundamentally change the temporal pattern of SOM dynamics. The vegetation type (C3 or C4) plays a major role in SOM dynamics in this tropical soil because of the different impact of climate change on crop growth and then on C inputs.  相似文献   

8.
The influence of explosive wastes in soil on the reproduction of the springtailFolsomia candida (Willem 1902) (insects of the Order Collembola) was investigated in a standard test according to ISO-Draft-Guideline 11268-2. In the test, we used soils with 3 different contamination levels from an area used for different military purposes (in Hallschlag, Germany), especially for explosive operations, since the beginning of the century. We found different and heterogenous mixtures of contaminants in the soils (primarily TNT and DNT) which resulted in a high mortality rate among the adult insects and in a dramatic reduction in the reproductive potential of the Collembola. In the mixture of contaminants with the highest contamination levels, the total extinction of exposed Collembola was observed as a result of the death of adult insects.  相似文献   

9.
Fly ash is the major coal combustion byproduct from thermal power plants. Considering its plant–nourishing constituents, its soil amendment in farmland is one of its promoted disposal methods. A substantial amount of heavy metals present in fly ash, which may leach out due to rainwater or irrigation water, may cause serious problem with long term use, especially to soil organisms. These metals may cause DNA damage through Reactive Oxygen Species (ROS) generation. In the present study, single cell gel electrophoresis [(SCGE) i.e., comet assay] was used to detect DNA damage in earthworm (Dichogaster curgensis) coelomocytes, following an in vitro exposure. Significant DNA damage was observed at the lowest concentration of fly ash leachate (6.25%) examined. DNA damage by all the tested concentrations (6.25%, 12.5%, 25%, 50%) differed significantly (p?<?0.001) from that of the negative control. Hence, long-term application of fly ash might prove harmful for earthworm populations.  相似文献   

10.
The potentials of tropical weeds namely, Nephrolepis biserrata, Panicum maximum, Eleusine indica, and Chromolaena odorata to accumulate lead (Pb) and cadmium (Cd) from soil within the premises of an automobile battery manufacturing company in Ota, south-western Nigeria, were explored. The weed samples were collected in both wet and dry seasons. Standard analytical methods were employed to collect, digest, and analyze the weeds. Lead levels in the weeds for both seasons ranged from 1990–4870, 1090–1730, 4800–7890, and 400–1210 µg g?1 dry weight (DW) for Nephrolepis biserata, Panicum maximum, Eleusine indica, and Chromolaena odorata, respectively, while the cadmium level in the weeds for both seasons ranged from 3.92–6.78 µg g?1 DW for N. biserata, 1.99–6.85 µg g?1 DW for P. maximum, 2.90–7.40 µg g?1 DW for E. indica, and 2.90–5.09 µg g?1 DW for C. odorata. There was no significant difference in the accumulation of both Pb and Cd for the two seasons. All the weeds showed Pb levels higher than the phytotoxic range. On the contrary, 99% of the weeds showed Cd concentration within the phytotoxic range. The weeds demonstrate good phytoremediation potentials of contaminated soil.  相似文献   

11.
Five medicinal plants viz. Abelmoschatus moschatus Linn., Clitoria tematea L., Plumbagozeylanica L., Psorolea corylifolia L. and Withania sominifera L. were grown in a polypot experiment in five soils representing coal mine soil, coppermine soil, fly ash, skeletal soil and forest soil with and without mycorrhizal inoculations in a completely randomized block design. Dry matter yield and mycorrhizal root colonization of plants varied both in uninoculated and inoculated conditions. The forest soil rendered highest dry matter due to higher yield of A. moschatus, P. zeylanica and P corylifolia while fly ash showed lowest dry matter without any inoculants. P. cematea were best in coalmine soil and W. sominifera in copper mine soil without mycorrhizal inoculation. The mycorrhiza was found to enhance the dry matter yield. This contributed minimum 0.19% to maximum up to 422.0% in different soils as compared to uninoculated plants. The mycorrhizal dependency was noticed maximum in plants grown in fly ash followed by coal mine soil, copper mine soil, skeletal soil and forest soil. The mycorrhizal response was increased maximum in W. sominifera due to survival in fly ash after inoculation followed by P corylifolia and P cematea. Percent root colonization in inoculated plant was increased minimum of 1.10 fold to maximum of 12.0 folds in comparison to un-inoculated plants . The native mycorrhiza fungi were also observed to colonize 4.0 to 32.0% roots in plants understudy. This study suggests that mycorrhizal inoculation increased the dry matter yield of medicinal plants in all soils under study. It also helps in survival of W. sominifera in fly ash.  相似文献   

12.
The increased production and commercial use of nanoparticles (NPs), combined with a lack of regulation regarding their disposal, may result in the unwanted introduction of NPs to soils. In this study, the toxicity on soil enzyme activity and growth of Cucumis sativus treated with Zn or ZnO NPs was evaluated in pot soils. Specifically, C. sativus was cultivated in soils treated with Zn NPs, ZnO NPs or Zn2+ for eight weeks, after which the treatment effects on biomass and bioaccumulation were evaluated. In addition, the treatment effects on soil dehydrogenase, β -glucosidase and acid phosphatase were investigated. Soil enzyme activities were influenced by all treatments, with an especially large decrease in dehydrogenase activity in response to Zn2+ treatment. Biomass and root length also decreased in response to Zn2+ treatment. Finally, the Zn contents of C. sativus were much lower in the Zn NP and ZnO NP treatment groups than in the Zn2+ treatment group. Therefore, toxicity on soil microbial activity may have a greater influence than phytotoxicity due to immobilisation and aggregation of NPs in the soil.  相似文献   

13.
Oxyfluorfen is a post-emergence herbicide used for control of annual and perennial broad-leaf weeds and sedges in rice. There is increasing concern about persistence of pesticide residues in soils, agricultural products and sub-sequent contamination of ground water through runoff, leaching and drift. Thus, persistence of oxyfluorfen was evaluated under field conditions in a rice cropping system. Oxyfluorfen was sprayed at 240 and 500 g ai ha?1 application rates to the rice crop as post-emergence herbicide. Paddy grains, straw and soil samples were collected at harvest and analyzed for oxyfluorfen residues by HPLC. Straw samples contained 0.01 and 0.03 µg g?1 oxyfluorfen residues at 240 and 500 g ha?1 concentrations, respectively. In the soil, 0.028 and 0.03 µg g?1 of oxyfluorfen residues were detected when applied at 240 and 500 g ai ha?1, respectively. However, in rice grains, 0.018 and 0.106 µg g?1 of oxyfluorfen residues were found in 240 and 500 g ai ha?1 treated plots. In light of the potential adverse effects of oxyfluorfen, it is important to determine herbicide levels in these crops.  相似文献   

14.
The aim of this study was to assess the toxicity reduction of wastewaster after treatment with fly ash. Fly ash is a waste material which is formed as a result of coal burning in power plants, but has the potential to adsorb heavy metal ions. The present study examined the adsorption capacity of fly ash to adsorb Pb2+, Cu2+, and Zn2+ from waste water under different conditions of contact time, pH, and temperature. Uptake of metal ions by fly ash generally rose with increasing pH. At lower temperatures the uptake of heavy metal adsorption were enhanced. Significant reduction in Pb2+ (79%), Cu2+ (53%), and Zn2+ (80%) content was found after treatment with fly ash of waste water treatment. Using the microtox test toxicity of the effluent was reduced by 75% due to removal of Pb2+ ion by the fly ash. Data indicated that fly ash generated by power plants may be used beneficially to remove metals from waste water.  相似文献   

15.
Two halophytes, Salicornia europaea and Atriplex verucifera, and the non-halophyte Chenopodium album were grown in pots on sodic and non-sodic Iranian soils spiked with up to 100 mg Cd kg?1. The halophytes grew best on the sodic soil in the absence of Cd spiking, while C. album performed better on non-sodic soil. Cadmium spiking reduced the growth of all plants, with Cd tolerance decreasing in the order S. europaea>A. verucifera>C. album. The observed order of Cd tolerance corresponds to the abilities of the plants to tolerate sodic soil properties. The variation of Cd concentration in shoots in response to sodicity was related to different mechanism, including dilution (C. album) Cd solubilisation by Ca2+ (S. europea) and Ca2+ competition for uptake and translocation of Cd (A. verucifera). Improved understanding of these complex interactions will help to design phytoextraction technology for Cd-polluted soils in arid regions.  相似文献   

16.
The phytoavailability and potential transfer of Pb to Atriplex verucifera, Salicornia europaea and Chenopodium album in two calcareous soils with different salinity/sodicity were compared. The soils were spiked with 0, 250, 500 and 1000 mg Pb kg?1 soil. Plant shoots were harvested and analysed for total Pb after they had been grown in the contaminated soils. Visual MINTEQ 3.0 was used to calculate the speciation of soluble Pb in the experimental soils. Results showed that although the concentrations of 1 M NH4NO3-extractable Pb were relatively similar, speciation of Pb in the soils were not the same. Salicornia europea was found to be the most salinity/sodicity-tolerant plant. When the plants were grown in non-saline soil, the Pb tolerance of the three plants was as follows: A. verucifera > C. album >S. europea, whereas in saline (sodic) soil, Pb tolerance was in the order S. europea > C. album > A. verucifera. Lead phytotoxicity to A. verucifera and C. album was higher in the saline soil, whereas for S. europea, Pb toxicity was higher in the non-saline soil. It could be concluded that the phytoavailability of Pb and its interactions with plants are widely dependent on soil salinity level and type of plant.  相似文献   

17.
The levels of extractable aluminum (Al) in soils of tea plantations, Al concentrations in tea leaves and the impact of nitrogen fertilization on these two parameters were investigated. In addition, the properties of soils from tea plantations were compared to those from soils of adjacent non-tea fields to evaluate the effect of land use conversion (from non-tea soils to tea soils). Exchangeable Al (extracted in 1 mol l−1 KCl) ranged from 0.03 to 7.32 cmolc kg−1 in 94 tea fields and decreased rapidly with increasing soil pH. In comparison with non-tea soils, tea soils had a significantly lower pH and exchangeable Mg2+ concentration but higher organic matter contents and exchangeable K+ concentration. Contents of extractable Al were not different (P > 0.05) between these two soils. The concentrations of Al in mature tea leaves correlated significantly with exchangeable Al in soil samples taken at a depth of 20–40 cm and with exchangeable Al saturations in soil sampled at␣depths of 0–20 and 20–40 cm. In the pot experiment, nitrogen fertilization significantly increased extractable Al levels but decreased soil pH and the levels of exchangeable base cations. Nevertheless, the levels of Al in mature leaves and young shoots were significantly reduced by the application of large amounts of N fertilizer.  相似文献   

18.
Increased care about the environment is currently evidenced by governmental, industrial, and consumer concern for ozone depletion, solid and liquid waste disposal, and pollutants. This concern has led to an increase in marketing of the “environmentally friendly” aspects of products. In the past, fly ash was generally released into the atmosphere, but pollution control equipment mandated in recent decades now requires that it is captured prior to release. In order to upgrade expansive soils as construction materials, fly ash, which is a waste material, has been selected and successfully used for stabilizing expansive clays in the Thrace region. The strength characteristics of the stabilized soils were measured. Depending upon the soil type, the effective fly ash content for improving the engineering properties of the soil varied between 8% and 12%. Using fly ash in roadwork projects will help the environment reducing the deposited amounts.  相似文献   

19.
Considering high-moisture municipal solid waste (MSW) of China, a steam dried MSW gasification and melting process was proposed, the feasibility was tested, and the mass and energy balance was analyzed. Preliminary experiments were conducted using a fixed-bed drying apparatus, a 200 kg per day fluidized-bed gasifier, and a swirl melting furnace. Moisture percentage was reduced from 50% to 20% roughly when MSW was dried by slightly superheated steam of 150°C?C350°C within 40 min. When the temperature was less than 250°C, no incondensable gas was produced during the drying process. The gasifier ran at 550°C?C700°Cwith an air equivalence ratio (ER) of 0.2?C0.4. The temperature of the swirl melting furnace reached about 1240°C when the gasification ER was 0.3 and the total ER was 1.1. At these conditions, the fly ash concentration in the flue gas was 1.7 g·(Nm3)?1, which meant over 95% fly ash was trapped in the furnace and discharged as slag. 85% of Ni and Cr were bound in the slag, as well as 60% of Cu. The mass and energy balance analysis indicates that the boiler heat efficiency of an industrial MSW incineration plant reaches 86.97% when MSW is dried by steam of 200°C. The boiler heat efficiency is sensitive to three important parameters, including the temperature of preheated MSW, the moisture percentage of dried MS Wand the fly ash percentage in the total ash.  相似文献   

20.
Adoption of agroforestry is paramount as a climate change mitigation and adaptation strategy. The assessment of plant biomass is crucial for understanding the vulnerability of biological systems to climate change. In the present study, agroforestry systems viz., agrisilviculture (AS), agrihorticulture (AH), agrihortisilviculture (AHS) and agrisilvihorticulture (ASH) were investigated for biomass production and carbon stock in vegetation as well as in soil in the Indian central Himalaya along the elevation i.e. E1 (<1100 m), E2 (1100–1400 m), E3 (1400–1700 m), E4 (1700–2000 m) and E5 (>2000 m). Mean aboveground and belowground biomass were 73.9% and 26.1%, respectively, of total biomass (64.4 t ha?1) in agroforestry systems. Fodder and/or timber trees accounted for 31% (in AHS) to 74% (in AS) of total biomass, while fruit trees accounted for 18% (in ASH) to 73% (in AH) of total biomass. The contribution of agriculture crops to total biomass fluctuated between 19% (in ASH) and 26% (in AH). Total vegetation biomass, soil carbon and total carbon density in agroforestry systems increased significantly along the elevation, with maximum biomass at elevation E5 (32.0 t ha?1, 64.7 t C ha?1 and 96.7 t C ha?1). Total biomass of vegetation among agroforestry systems differed significantly. Soil carbon stock was highest in AHS (59.5 t C ha?1) and total carbon density (vegetation + soil) was highest in ASH (93.0 t C ha?1). Thus, in Indian Himalayas, vegetation biomass, carbon stock, soil and total carbon (vegetation + soil) stock increased along the elevation.

Abbrviations: AG: aboveground; BG: belowground; WD: wood density; VOB: volume over bark; BEF: biomass expansion factor; AS: agrisilviculture; AH: agrihorticulture; ASH: agrisilvihorticulture; AHS: agrihortisilviculture; E: elevation; C: carbon; CO2: carbon-di-oxide; IPCC: Intergovernmental Panel on Climate Change; DBH: diameter at breast height; AGBD: aboveground biomass density; BGBD: belowground biomass density; GSVD: growing stock volume density  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号