首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
Physicochemical analyses and cyanobacterial diversity of Ramgarh Lake water were performed at five sampling sites during winter, summer, and monsoon seasons. Higher load of solids, carbon, and nutrients were persistent throughout the analysis that indicates the conversion of lake from oligotrophic to eutrophic nature. High nutrients load enhanced cyanobacterial biomass, while low nutrients load produced relatively less biomass. The physicochemical parameters of water samples revealed minimum 2.9 mg L?1 dissolved oxygen (DO) at site-1 during summer, while maximum (5.6 mg L?1) at site-4 in monsoon season. Maximum biochemical oxygen demand (BOD) (40 mg L?1) and chemical oxygen demand (COD) (126 mg L?1) were recorded at site-1 during summer, whereas minimum BOD (18 mg L?1) and COD (52 mg L?1) were evident at site-3 in monsoon season. Minimum concentration of nitrate (0.72 mg L?1) was recorded at site-3 in summer, whereas maximum 2.7 mg L?1 was present at site-5 in winter season. The phosphate concentration was maximum (0.52 mg L?1) at site-5 in summer, and minimum (0.18 mg L?1) was observed at site-4 in monsoon season. Cyanobacterial diversity was higher during all the seasons, and dominated by the species of Microcystis at all the five sampling sites.  相似文献   

2.
The seasonal variation in biogenic fluxes of NH4 +, PO4 3? and SiO2 calculated from the nutrient excretion rates of dominant bivalves (Ruditapes philippinarum and Arcuatula [=Musculista] senhousia), and pore-water nutrient (NH4 +, PO4 3?, SiO2 and NO3 ? + NO2 ?), sedimentary acid-volatile sulfide (AVS) and benthic chlorophyll-a (Chl-a) concentrations was assessed on an intertidal sandflat in the Seto Inland Sea (Japan) from summer 1994 to autumn 1995. In spite of the large variability between sampling dates and stations, significant correlations between biogenic nutrient fluxes and pore-water nutrient concentrations were found, suggesting a seasonal linkage between bivalve-mediated biological processes and chemical features of sediments. This linkage was stronger in surface (0–0.5 cm) than subsurface (0.5–2 cm) sediments, consistent with the autoecological characteristics of R. philippinarum and A. senhousia inhabiting the uppermost sediment layer. Significant temporal variation in pore-water NO3 ? + NO2 ?, sedimentary AVS and benthic Chl-a concentrations was also found, which was related to both occasional extreme events (e.g., dystrophy) and alternating periods of production and decomposition. This study may serve twofold in (1) contributing to unravel the ecological structure and functioning of natural tidal flats, and the scale of seasonal variability in biotic and sedimentary parameters and (2) providing useful information for assessing the effectiveness of the physico-chemical and biological structure of artificial tidal flats which are growing in number and extension worldwide.  相似文献   

3.
ABSTRACT

Two microalgal strains (Chlorella sorokiniana, A&B,) grown optimally at pH 9 (A) and 7 (B) were isolated from a municipal wastewater treatment plant. These strains were used to check their efficacy for nutrients and organic carbon removal capacities from the tertiary wastewater. The strains were characterised using 18S rDNA sequencing method and both the strains closely related to Chlorella sorokiniana. Different inoculum doses (IDs) of both the strains were tried to check their efficacy on wastewater treatment. Due to the increase in the IDs, hydraulic retention time decreased from 6 d to 1?d. On an average, 12–100% of total kjeldahl nitrogen, 53–96% NO3–N, and 59–92% PO4–P, were removed. Despite the same growth environment, strain A with the highest ID (700?mg/L) showed the best performance in terms of overall organic carbon removal, nutrient removal, and value-added products recovery. Strain A showed an increase in carbohydrate and protein content by 42% and 13%, respectively. Both the strains showed luxury phosphorus uptake and found suitable for advanced wastewater treatment.  相似文献   

4.
Spatial and temporal distributions of water quality using multivariate statistical techniques for the evaluation of nutrients (NO2-N, NO3-N, NH4-N, PO4-P, SiO4-Si, total N, total P) in relation to some physico-chemical features (DO, BOD, TSS, TDS, SO42−, Cl) were studied for 31 different stations of the Mahanadi river–estuarine system in the eastern part of India. The seasonal nutrient variations (except SiO4-Si) exhibit higher values during monsoon season in unpolluted stations and the reverse trends for polluted stations, which are related to agricultural run-off and regional anthropogenic activities respectively. Silicate shows a well defined pattern of distribution with a higher concentration during the monsoon, which is slightly removed from the estuarine water of Mahanadi during the pre-monsoon season. The results of R-mode factor analyses revealed that anthropogenic contributions are responsible for the increase in nutrients and the decrease in DO and pH levels of the water. The magnitude of BOD with respect to total N and P demonstrates the intensity of organic pollution in the system. The removal of silicate in the saline system is clearly visible through factor analysis and the different mode of association of TSS is reflected seasonally. The relationships among the stations are highlighted by cluster analysis, represented in dendograms to categorize different levels of contamination.  相似文献   

5.
Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg?1 predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m2 g?1) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.  相似文献   

6.
Discharges of nutrients, urea, dissolved organic matter and heavy metals by a sewage underwater pipeline are analysed in comparison to environmental conditions in a shallow coastal zone. Variable thermo-haline stratifications of the water column and currents in upper (2.62–34.97 cm s?1) and deeper (0.83–10.91 cm s?1) layers drive vertical diffusion and lateral transport of wastewaters. Loads of reactive phosphorus (0.13 tons d?1) and ammonium (1.62 tons d?1) by the pipeline are not negligible compared to the major river loads in the gulf. High concentrations of urea (≤11.51 μmol N dm?3) were found in the area of wastewater release. Ammonium uptake (6.14–534 nmol N dm?3 h?1) strongly exceeded nitrate uptake (0.19–138 nmol N dm?3 h?1), indicating that discharges of ammonium by the pipeline are actively assimilated by plankton community even at low levels of light. Distribution of Zn (≤27.7 ppb), Cu (≤25.6 ppb), Cd (≤0.80 ppb) and Pb (≤13.5 ppb) in the water column and the measurement of their complex-forming capacity in seawater did not indicate a persistent perturbation of the pelagic environment due to heavy metals.  相似文献   

7.
In the present study, a photoelectrochemical process containing seawater as a natural low-cost supporting electrolyte was used to remove ammonium from wastewater in a continuous flow mode. Based on central composite design (CCD), response surface methodology (RSM) was employed to evaluate the performance of the process in ammonia removal. The effect of four main independent parameters, including initial ammonium concentration, hydraulic retention time (HRT), current intensity and initial pH on the removal of ammonia was evaluated by the model. The optimal initial ammonium concentration, HRT, current intensity and initial pH were 917 mg NH 4? N;·L ?1, 108 min, 1.8 A and 8.4, respectively. The high coefficients (R 2=0.97 and adjusted R 2=0.94) obtained by the analysis of variance (ANOVA) demonstrated close correlation between predicted and experimental values. Also, treating the reject water from the sludge dewatering unit as an ammonium-rich wastewater showed the effectiveness of the process for treating real wastewaters (86% ammonium removal). The results revealed that the present process can be an efficient method for ammonium removal from polluted effluents in coastal areas based on the availability of seawater as a cost-efficient supporting electrolyte.  相似文献   

8.
Stabilization of metals with amendments and red fescue (Festuca rubra, cv. Keszthelyi 2) growth was studied on an acidic and phytotoxic mine spoil (pHKCl 3.20–3.26; Cd 7.1 mg kg?1, Cu 120 mg kg?1, Pb 2154 mg kg?1 and Zn 605 mg kg?1) from Gyöngyösoroszi, Hungary in a pot experiment. Raising the pH above 5.0 by lime (CaCO3), and supplementing with 40 mg kg?1nitrogen (NH4NO3) made this material suitable for plant growth. All cultures were limed with 0.5% (m/m) CaCO3 (treatment 1), which was combined with 5% (m/m) municipal sewage sludge compost (treatment 2), 5% (m/m) peat (treatment 3), 7.5% (m/m) natural zeolite (clinoptilolite) (treatment 4), and 0.5 (m/m) KH2PO4 (treatment 5). Treatments 1–5 were combined with each other (treatment 6). After 60 days of red fescue growth, pH of the limed mine spoil decreased in all cultures units. Application of peat caused the highest pH decrease (1.15), while decrease of pH was less than 0.23 in treatments 2, 5 or 6. Application of lime significantly reduced concentrations of metals in the ‘plant available’ fraction of mine spoil compared to non-limed mine spoil. Amendments added to limed mine spoil changed variously the ratio of Cd, Cu, Pb and Zn in exchangeable or ‘plant available’ fractions, differently influencing the phytoavailability of these metals. Most of the metals were captured in the roots of test plants. Treatment 2 caused the appearance of less Cd in shoots (<0.1 μg g?1) or roots (3.11 μg g?1), while treatment 5 resulted in the highest Cd concentration (2.13 μg g?1) in shoots. Treatments did not influence significantly the Cu accumulation in shoots. The Pb accumulation of roots (44.7 μg g?1) was most effectively inhibited by combined treatment, while the highest value (136 μg g?1) was found in the culture treated with potassium phosphate. Pb concentration in shoots was below the detection limit, except for treatments 5 and 6. Peat application resulted in higher Zn concentration (448 μg g?1) in shoots than other amendments, where these values were around 100 μg g?1. All amendments influenced positively the dry matter yield of red fescue grown in limed mine spoil, however the application of 0.5 phosphate was less favourable. Liming, application of amendments and growth of red fescue can stabilize metals in acidic and phytotoxic mine spoil, and by phytostabilization they can reduce the risk of metal contamination of the food chain.  相似文献   

9.
This study investigates the capability of Ulva lactuca to grow in an integrated system, aiming to optimise the needing of resources and to decrease the ecological impact of wastewater. The nutrients uptake and the growth of U. lactuca in Mugil cephalus wastewater (WW) were evaluated and compared with U. lactuca cultivated in estuarine water (EW). Fresh thalli of U. lactuca were cultivated for 10 days in 5?L cylindrical tanks, 3 replicates per treatment. The uptake of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorous (DIP), as well as the biomass yield and specific growth rate of U. lactuca, were assessed every two days. At the end of the experiment, U. lactuca resulted in a higher assimilation of DIN in EW (95.7?±?0.3%, mean?±?SE) than in wastewater (68.7?±?1.0%) (p?80%), as well as in the biomass yield and specific growth rate. This study demonstrates the efficiency of U. lactuca in the assimilation of DIN and DIP from M. cephalus WW, contributing to reduce the release of dissolved inorganic nutrients in the natural environment.  相似文献   

10.
This article reports the first use of coupled electrocoagulation and electro-Fenton (EF-EC) to clean domestic wastewater. Domestic wastewater contains high amounts of organic, inorganic and microbial pollutants that cannot be usually treated in a single step. Here, to produce an effluent suitable for discharge in a single process step, a hybrid process combining electrocoagulation and electro-Fenton was simultaneously used to decrease chemical oxygen demand (COD), turbidity and total suspended solids (TSS) from domestic wastewater. The electrocoagulation–electro-Fenton process was firstly tested for the production of H2O2 using Ti–IrO2 and vitreous carbon- or graphite electrodes arranged at the anode and the cathode, respectively. The concentration of H2O2 recorded at 1.5 A of current intensity during 60 min of electrolysis using vitreous carbon- and graphite electrodes at the cathode was 4.18 and 1.62 mg L?1, respectively. By comparison, when the iron electrode was used at the anode, 2.05 and 1.06 mg L?1 of H2O2 were recorded using vitreous carbon and graphite, respectively. The H2O2 concentration decrease was attributed to hydroxyl radical formation generated by the Fenton reaction. Electro-Fenton using iron electrode at the anode and vitreous carbon at the cathode with a current density imposed of 0.34 A dm?2 ensures the removal efficiency of 50.1 % CODT, 70.8 % TSS and 90.4 % turbidity. The electrocoagulation–electro-Fenton technique is therefore a promising secondary treatment to simultaneously remove organic, inorganic and microbial pollutants from domestic, municipal and industrial wastewaters.  相似文献   

11.
Quality of groundwater in the Yarmouk basin, Jordan has been assessed through the study of hydrogeochemical characteristics and the water chemistry as it is considered the main source for drinking and agriculture activities in the region. The results of the relationship between Ca2+ + Mg2+ versus HCO3? + CO32?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO42? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3? + CO32?, Na+ versus Ca2+, and Na+: Cl? versus EC describe the mineral dissolution mechanism through the strong relationship between water with rocks in alkaline conditions with the release of Ca2+, Mg2+, Na+, K+, HCO3?, CO32?, SO42?, and F? ions in the groundwater for enrichment. Furthermore, evaporation processes, groundwater depletion, and ion exchange contribute to the increased concentration of Na+ and Cl? ions in groundwater. Anthropogenic sources are one of the main reasons for contamination of groundwater in the study area and for increasing the concentration of Mg2+, Na+, Cl?, SO42?, and NO3? ions. Results show the quality of groundwater in the study area is categorized as follows: HCO3? + CO32? > Cl? > SO42? > NO3? > F? and Na+ > Ca2+ > Mg2+ > K+. In conclusion, the results of TDS, TH, and chemical composition showed that 26% of the groundwater samples were unsuitable for drinking. About 28% of groundwater samples in the study area have a high concentration of Mg2+, Na+, and NO3? above the acceptable limit. Also, based on high SAR, 10% of the groundwater samples were not suitable for irrigation purposes.  相似文献   

12.
The performance of sequencing batch reactors (SBRs) augmented with immobilised Burkholderia cepacia PCL3 on corncob for biodegradation of carbofuran in basal salt medium (BSM) was studied. A 2.0-L SBR with a working volume of 1.5 L was operated for a total cycle of 48 h, consisting of 1.0 h fill phase, 46 h react phase and 1.0 h decant phase. The initial pH of the feed medium was 7.0. Air was fed into the reactor at a controlled flow rate of 600 mL·min ?1. The effect of hydraulic retention time (HRT) (14 to 6 days) on carbofuran-degradation efficiency was investigated at a carbofuran concentration in the feed medium of 20 mg·L ?1. The shortest HRT resulting in complete degradation of carbofuran was 8 days. At 75% of the optimum HRT (6 days), the effects of biostimulation using organic amendments, i.e. molasses, cassava pulp, rice bran and spent yeast, and the effect of carbofuran concentration in the feed medium (20–80 mg·L ?1) were investigated. The optimum conditions for SBRs were an initial carbofuran concentration of 40 mg·L ?1 and 0.1 g·L ?1 of rice bran as a biostimulated amendment. Complete degradation of carbofuran with a first-order kinetic constant (k 1) of 0.044 h?1 was achieved under these optimum conditions.  相似文献   

13.
Adoption of agroforestry is paramount as a climate change mitigation and adaptation strategy. The assessment of plant biomass is crucial for understanding the vulnerability of biological systems to climate change. In the present study, agroforestry systems viz., agrisilviculture (AS), agrihorticulture (AH), agrihortisilviculture (AHS) and agrisilvihorticulture (ASH) were investigated for biomass production and carbon stock in vegetation as well as in soil in the Indian central Himalaya along the elevation i.e. E1 (<1100 m), E2 (1100–1400 m), E3 (1400–1700 m), E4 (1700–2000 m) and E5 (>2000 m). Mean aboveground and belowground biomass were 73.9% and 26.1%, respectively, of total biomass (64.4 t ha?1) in agroforestry systems. Fodder and/or timber trees accounted for 31% (in AHS) to 74% (in AS) of total biomass, while fruit trees accounted for 18% (in ASH) to 73% (in AH) of total biomass. The contribution of agriculture crops to total biomass fluctuated between 19% (in ASH) and 26% (in AH). Total vegetation biomass, soil carbon and total carbon density in agroforestry systems increased significantly along the elevation, with maximum biomass at elevation E5 (32.0 t ha?1, 64.7 t C ha?1 and 96.7 t C ha?1). Total biomass of vegetation among agroforestry systems differed significantly. Soil carbon stock was highest in AHS (59.5 t C ha?1) and total carbon density (vegetation + soil) was highest in ASH (93.0 t C ha?1). Thus, in Indian Himalayas, vegetation biomass, carbon stock, soil and total carbon (vegetation + soil) stock increased along the elevation.

Abbrviations: AG: aboveground; BG: belowground; WD: wood density; VOB: volume over bark; BEF: biomass expansion factor; AS: agrisilviculture; AH: agrihorticulture; ASH: agrisilvihorticulture; AHS: agrihortisilviculture; E: elevation; C: carbon; CO2: carbon-di-oxide; IPCC: Intergovernmental Panel on Climate Change; DBH: diameter at breast height; AGBD: aboveground biomass density; BGBD: belowground biomass density; GSVD: growing stock volume density  相似文献   


14.
A novel cellulose-based adsorbent, iron(III)-coordinated amino-functionalised poly(glycidylmethacrylate)-grafted cellulose [Fe(III)–AM-PGMACell] was developed for the removal of phosphate from water and wastewater. The scanning electron micrograph showed that AM-PGMACell has a rougher surface than cellulose and the adsorption of Fe(III) on AM-PGMACell made the surface even rougher. Infrared spectroscopy revealed that amino groups on the surface of AM-PGMACell complexed with Fe(III) played an important role in the removal of phosphate from solutions. X-Ray diffraction patterns showed a decrease in crystallinity after graft copolymerisation onto cellulose. The effects of contact time, initial sorbate concentration, pH, agitation speed, dose of adsorbent and temperature on the removal process were investigated. Maximum removal of 99.1% was observed for an initial concentration of 25 mg·L ?1 at pH 6.0 and an adsorbent dose of 2.0 g·L ?1. A two-step pseudo-first-order kinetic model and Sips isotherm model represented the measured data very well. Complete removal of 11.6 mg·L ?1 phosphate from fertiliser industry wastewater was achieved by 1.6 g·L ?1 Fe(III)–AM-PGMACell. The adsorbent exhibited very high reusability for several cycles. Overall, the study demonstrated that Fe(III)–AM-PGMACell can be used as an efficient adsorbent for the removal and recovery of phosphate from water and wastewater.  相似文献   

15.
Air pollution has a deleterious impact on public health and the environment. There is few knowledge on the effect of air pollution on terrestrial microbial communities, despite the major role of microbes in ecosystems. Here, we designed an in situ trial ecosystem to assess the impact of moderate atmospheric pollution, below World Health Organization (WHO) thresholds, on an indigenous microbial communities, including bacteria, fungi, ciliates, algae, cyanobacteria, testate amoebae, rotifers and nematodes, extracted from terrestrial bryophytes. These micro-ecosystems were placed at a rural, an urban and an industrial site in France and were thus exposed to various levels of nitrogen dioxide (NO2), from 6.6–67.9 μg·m?3, and particulate matter, from 0.7–7.9 μg·m?3. Microbial analysis was performed by microscopy. We determined atmospheric temperature, relative humidity and particulate matter with diameter lower than 10 µm (PM10), Cu, Cr, Fe, Ni, Pb, Zn in PM10, and (NO2). Results show a significant impact of chronic moderate exposure to NO2 and copper Cu-associated particulate matter on the global microbial network complexity. This is evidenced by a loss of about 40 % of microbial co-occurrence links during incubation. Most lost microbial links are ecologically positive links. Moreover, most changes in community co-occurrence networks are related to testate amoebae, a major top predator of microbes. Overall, our findings demonstrate that air pollution can have strong deleterious effects on microbial interactions, even at levels below WHO thresholds.  相似文献   

16.
Tetracycline (TC), one of the most common antibiotics, is often poorly bio-degraded in conventional wastewater treatment plants. In this study, the sonocatalytic degradation of TC was investigated using TiO2 nano-particles as catalyst. The effect of pH, initial TC concentrations, reaction times, and H2O2 concentrations were evaluated. The efficacy of ultrasonic irradiation alone in the removal of this pollutant was negligible but removal efficiency increased upon addition of TiO2 up to 250 mg L?1; increase of pH and initial TC concentration attenuated TC degradation. Addition of H2O2 raised the removal efficiency so that complete removal of TC was achieved within 75 min.  相似文献   

17.
A simple and totally organic-free (green) method, viz. headspace water-based liquid-phase microextraction combined with high-performance liquid chromatography-ultraviolet detection has been successfully developed for analysis of formic acid and acetic acid in environmental water samples. A microdrop of an aqueous solution of sodium hydroxide was suspended from the tip of a microsyringe needle over the headspace of the stirred sample solution containing the analytes at pH 1.0 for a given time. The microdrop was then retracted into the microsyringe, diluted with HPLC mobile phase, and injected to HPLC. Optimum efficiency has been achieved for: 3.0 µL NaOH microdrop (0.1 mol L?1) exposed for 15 min over the headspace of an aqueous sample of 6.5 mL at 55 °C, containing 15% w/v of Na2SO4, adjusted to pH = 1.0 and stirred at 750 rpm. Under these conditions, enrichment factors of 162 and 187, limits of detection of 0.3 and 0.1 µg L?1 (S/N = 3) with dynamic linear ranges of 1–500 and 0.5–500 µg L?1 were obtained for formic acid and acetic acid, respectively. A reasonable repeatability (5.8% ≤ RSD ≤ 8.8%, n = 6) and satisfactory linearity (r2 ≥ 0.997) illustrated the performance of the method.  相似文献   

18.
This article aims to determine the significant differences of the seasonal changes of pH, chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS) parameters in a wastewater stabilization pond. The variation of these parameters followed the seasonal pattern of temperature. The mean seasonal pH of the influent wastewater ranged between 7.8 (in spring) and 7.9 (in summer), while in the final effluents it was between 7.9 (in winter) and 8.3 (in summer). The mean seasonal COD of the influent wastewater ranged between 650?mg?L?1 in spring and 600?mg?L?1 in autumn, whereas in the effluents it was between 150?mg?L?1 in autumn and 270?mg?L?1 in spring. The mean seasonal BOD5 of the influent wastewater ranged between 360?mg?L?1 in autumn and 390?mg?L?1 in winter, whereas in the effluents it was between 66?mg?L?1 in summer and 130?mg?L?1 in winter. The results showed that the percent removals of COD, BOD5 and TSS from final effluents were maximum in summer for COD and BOD5 (76%), summer (83%) and for TSS in winter (78%), respectively. Data analysis showed that there were significant differences between parameters of pH, COD, BOD5 and TSS at four different seasons (p?相似文献   

19.
Cytostatic drugs are a troublesome class of emerging pollutants in water owing to their potential effects on DNA. Here we studied the removal of 5-fluorouracil from water using the electro-Fenton process. Galvanostatic electrolyses were performed with an undivided laboratory-scale cell equipped with a boron-doped diamond anode and a carbon felt cathode. Results show that the fastest degradation and almost complete mineralization was obtained at a Fe2+ catalyst concentration of 0.2 mM. The absolute rate constant for oxidation of 5-fluorouracil by hydroxyl radicals was 1.52 × 109 M?1 s?1. Oxalic and acetic acids were initially formed as main short-chain aliphatic by-products, then were completely degraded. After 6 h the final solution mainly contained inorganic ions (NH4 +, NO3 ? and F?) and less than 10% of residual organic carbon. Hence, electro-Fenton constitutes an interesting alternative to degrade biorefractory drugs.  相似文献   

20.
A Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model was utilized to assess immunotoxic effects of arsenic trioxide (As2O3). After 2 h of As2O3 exposure, 500 µmol L?1 and 1 mmol L?1 As2O3 treatment significantly decreased median survivals of C. elegans (10 h after L4/adult molt). However, 2 h of As2O3 exposure caused no significant changes in the survivals rates of C. elegans (2 h after L4/adult molt). Notably, a significant dose-related immunoenhancement was observed in C. elegans (2 h after L4/adult molt) after 12 h of arsenite exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号