首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Marín  J. D. Ros 《Marine Biology》1992,112(4):677-682
The ascoglossan mollusc Elysia timida Risso, 1818 retains functional chloroplasts from its algal food, the chlorophycean Acetabularia acetabulum (L.). Photosynthates from the plastids are an important source of organic nutrients for the mollusc. Chloroplast exploitation has an ecological function, allowing the ascoglossan to live entirely on an algal diet which is of limited, seasonal availability to other herbivores. Between October 1987 and July 1988, the annual evolution of the molluscan and algal populations was studied in a cove of Mazarrón Bay, southeast Spain. The population density of the mollusc is highly dependent on its food supply, being controlled by the seasonal life cycle of the algal population. During its life cycle, the degree of grazing by the mollusc decreases with increasing algal calcification, the cell walls of the alga progressively calcify, and the eventually highly calcificied stalks are completely resistant to ascoglossan grazing. In contrast, the exploitation of the algal chloroplasts retained by the molluscs increases during the seasonal cycle. The progressively increasing scarcity of food during the seasonal cycle may have led to the retention of symbiotic chloroplasts by E. timida. The developmental strategy of the ascoglossan also changes during the year: when food is abundant (in November, December, January, February and March) it is direct, with no planktonic larval phase, when food is scarce (in October, April, May and June) it is lecithotrophic, with a short planktonic larval phase. Chloroplast retention acts as a buffer, alleviating the effects of annual changes in density, structure and abundance of the alga on the nutritional state of the molluse.  相似文献   

2.
The ceramiaceaen Polysiphonia urceolata rapidly degrades 14C(U)-L-leucine, added to sea water at a final concentration of 2.5x10-5 M/l, to isoamylamine. Under experimental conditions, 22% of the total radioactivity is found in the amine within 160 min. The amino acid decarboxylase responsible for this reaction has been characterized by Hartmann (1972a). No other mechanisms of leucine degradation could be detected, and the rate of 14C-incorporation into algal proteins is considerably lower than that of decarboxylation. The rate of decarboxylation is optimal at a leucine concentration of about 5x10-5 M/l. The amine formed is found in almost equal amounts in algal extract and environment. No further degradation of isoamylamine could be detected. The amine is a metabolic end product in P. urceolata. When 14C-isoamylamine is used as a tracer, relatively high amounts of amine are found in the algal extracts. It is supposed that the amine does not accumulate within the algal cells, but rather is bound to the acid polysaccharides of the cell walls by means of ionic exchange. The results strongly suggest that decarboxylation is the main route by which P. ureolata metabolizes amino acids from the environment which are substrates of the decarboxylase. The endogenous amino acid pool does not seem to be available to the enzyme as a substrate source. A possible ecological significance of amino acid decarboxylations is discussed.  相似文献   

3.
To elucidate the effects of temperature and algal cell concentration on pumping of water in the ascidian Ciona intestinalis a number of different experiments were performed. Beat frequency of the lateral cilia in the openings of the branchial sac was measured in intact specimens using a microprojection objective and a monochrome CCD video camera. At constant low algal cell concentration, beat frequencies increased linearly with temperature from 4.0 Hz (±0.5) at 7.4 °C to 13.6 Hz (±1.6) at 20.1 °C. At a constant temperature of 15 °C, beat frequency decreased with increasing algal cell concentration from approximately 3000 to >10 000 Rhodomonas sp. cells ml−1. The decrease was observed both in experiments where the ascidians had been acclimated to a fixed algal cell concentration and in experiments with changing concentrations. Effect of algal cell concentration on squirting/siphon closure and flow velocity in the exhalent siphon was measured using a thermistor. At low algal cell concentrations, flow velocity in the exhalent siphon was stable, apart from a few short squirts. At very high algal cell concentrations, the flow velocity was reduced and much less stable, with prolonged squirting. The effect of gut content on filtration was studied in experiments with specimens acclimated to high algal cell concentrations. Results showed a close relation between gut clearance and filtration rate. From the experimental results and a qualitative analysis of the Ciona-pump it was concluded that the ciliary beat frequency is proportional to the water flow through the sea squirt and that changes in pumping caused by temperature or algal cell concentration are under nervous control or governed by enzyme kinetics, rather than being a result of physico-mechanical properties, i.e. pump efficiency versus flow resistance, of the ascidian pump. Received: 6 October 1997 / Accepted: 8 October 1998  相似文献   

4.
《Ecological modelling》2003,159(2-3):179-201
An artificial neural network (ANN), a data driven modelling approach, is proposed to predict the algal bloom dynamics of the coastal waters of Hong Kong. The commonly used back-propagation learning algorithm is employed for training the ANN. The modeling is based on (a) comprehensive biweekly water quality data at Tolo Harbour (1982–2000); and (b) 4-year set of weekly phytoplankton abundance data at Lamma Island (1996–2000). Algal biomass is represented as chlorophyll-a and cell concentration of Skeletonema at the two locations, respectively. Analysis of a large number of scenarios shows that the best agreement with observations is obtained by using merely the time-lagged algal dynamics as the network input. In contrast to previous findings with more complicated neural networks of algal blooms in freshwater systems, the present work suggests the algal concentration in the eutrophic sub-tropical coastal water is mainly dependent on the antecedent algal concentrations in the previous 1–2 weeks. This finding is also supported by an interpretation of the neural networks’ weights. Through a systematic analysis of network performance, it is shown that previous reports of predictability of algal dynamics by ANN are erroneous in that ‘future data’ have been used to drive the network prediction. In addition, a novel real time forecast of coastal algal blooms based on weekly data at Lamma is presented. Our study shows that an ANN model with a small number of input variables is able to capture trends of algal dynamics, but data with a minimum sampling interval of 1 week is necessary. However, the sufficiency of the weekly sampling for real time predictions using ANN models needs to be further evaluated against longer weekly data sets as they become available.  相似文献   

5.
Coalescence is a well documented event in many red algal orders. However, it is as yet unknown if genetic compatibility and phylogenetic relationships could be factors limiting coalescence. Using controlled laboratory experiments complemented with cytological and ultrastructural analysis, in this study we test whether or not coalescence may occur between different seaweed species and between karyological phases of the same species. We also evaluate the effects of one species or karyological phase on the germination rates, germling survival and differentiation of erect axes of sporelings of a second species or phase and whether the uni- or polycystocarpic origin of the coalesced germling may affect the germination and growth or the morphology of the resulting sporeling. Results indicated that the process of coalescence is restricted to intraspecific partners only. A thick interphase with crushed cells and remains of cell walls developed in all the interspecific contacts studied. Results also indicated that coalescence may be expected between individuals of different karyological phases, as in the two cases tested (Mazzaella laminarioides and Sarcothalia crispata) the filaments of both phases grow intertwined in the new tissue of the coalesced crust. Germination rates, sporeling survival and differentiation of erect axes were all affected by the different types of experimental cultures tested. However, results suggest that allorecognition among seaweeds seems to play a minor role in coalescence. The process appears as less sensitive to genetic recognition than the cell fusion processes described for other red algal species or than the colonial fusion described for colonial invertebrates and fungi.  相似文献   

6.
农药对禽鸟的毒性与评价   总被引:1,自引:0,他引:1  
测定了甲基异柳磷等四种农药对鹌鹑的急性和蓄积毒性,并作出了安全性评价。结果表明,甲基异柳磷和嘧啶氧磷属高毒级农药,克草胺中毒级,单甲脒低毒级。蓄积试验表明,除嘧啶氧磷为中等蓄积外,其余农药均属轻度蓄积。  相似文献   

7.
Physico-chemical parameters and the algae of Dahikhuta reservoir, near Malegaon, Dist. Nasik (Maharashtra) have been investigated during July to December 1998. The results have revealed that reservoir water is classified as oligotrophic on the basis of water quality criteria. This paper also reports algal diversity. Total 19 algal taxa are reported from three classes.  相似文献   

8.
产朊假丝酵母CANDIDA UTILIS细胞壁对铜离子吸附位点的研究   总被引:2,自引:0,他引:2  
目前认为所有生物大分子都对重金属离子有较强吸附性 ,但某些分子可特异地吸附重金属 ,并介导酵母细胞对重金属的抗性[1] .其中细胞表面的高分子聚合物倍受关注 ,酵母细胞壁约含 4 0种蛋白分子 ,但有关这些蛋白质在对重金属离子吸附中的作用目前还未见报道 .产朊假丝酵母Candidautilis是重要单细胞蛋白生产菌株之一 ,因其营养条件要求不高 ,对工业废水有较强耐受和转化能力而广泛用于生产和研究 .我们观察了产朊假丝酵母细胞与分离纯化的细胞壁对铜离子的吸附能力差异 ,并对细胞壁上重金属离子吸附位点进行了研究 .1 材料与方…  相似文献   

9.
植物根系细胞壁在提高植物抵抗金属离子毒性中的作用   总被引:4,自引:0,他引:4  
植物根系细胞壁在抵抗金属离子毒害过程中发挥着重要作用,论文对金属胁迫下植物细胞壁对金属离子的固定作用及其机制进行了探讨.主要从两个方面阐述了金属离子胁迫下,细胞壁提高植物抗性的机制:其一是细胞壁对金属离子的"区隔机制";其二是细胞壁对金属离子的"适应机制".两种机制对于提高植物对金属离子的抗性均具有重要作用.在探讨细胞壁提高植物对金属离子的抗性机制的同时,还对通过外加手段在细胞壁水平来调节植物对金属离子的抗性的可能性进行了探讨,指出通过利用丛枝菌根真菌与大多数植物可以形成菌根共生体的特性,可以从细胞壁角度入手更好地阐述丛枝菌根真菌提高植物对金属离子的抗性机制.  相似文献   

10.
Feeding four species of pelagic copepods under experimental conditions   总被引:6,自引:0,他引:6  
R. Gaudy 《Marine Biology》1974,25(2):125-141
Different qualitative and quantitative aspects of feeding with varied compositions of diets have been studied in 4 species of pelagic copepods: Calanus helgolandicus, Centropages typicus, Temora stylifera and Acartia clausi. By feeding copepods different algal concentrations, it was shown that when food concentration increases grazing rate decreases; the ingestion rate remains fairly constant in the lower range of concentrations, but then increases, reaching a plateau at higher algal concentrations. There is a significant correlation between daily food intake and fecal pellet production. On a pluri-algal diet, selective grazing is observed: larger phytoplankton cells are more efficiently removed than smaller ones. Using Artemia nauplii, it is shown that the copepods studied are also able to eatch and ingest animal prey. Increased daily food intake affects respiration and oviposition. Metabolic requirements, gross growth-efficiency, and food assimilation have been ealculated in Calanus helgolandicus, Centropages typicus and T. stylifera for a large range of algal concentrations.  相似文献   

11.
李杰  丁奕  项荣  宋立荣 《生态环境》2010,19(11):2743-2748
浮游植物是水生生态系统的基础,在生物地化循环中起着非常重要的作用,浮游植物的死亡势必引起水生生态系统的改变。近年来的研究表明,浮游植物的死亡是浮游植物水华衰退的一个重要原因。浮游植物中是否存在与后生动物类似的程序性细胞死亡(Programmed cell death,PCD)途径,也因此成了一个热点问题。文章对近年来浮游植物死亡表型、PCD生化证据、诱发条件、分子基础方面研究进行了总结。大量证据表明,浮游植物中存在类似细胞凋亡、类凋亡、自噬等途径的PCD,但Caspase基因除具有死亡执行者功能外,还可能具有看家功能。活性氧(ROS)和一氧化氮(NO)在浮游植物PCD过程中可能起到死亡信号分子的作用。部分浮游植物的PCD可以改善种群生存,但其生态学意义总体而言仍存在许多争论。  相似文献   

12.
近年来太湖流域局部水质状况有所改善,但太湖藻型生境条件还未根本改变,水污染防治任务依然艰巨。确保太湖湖体水质稳定达标,尤其是加强对太湖重点湖区和水源地重点污染物的调查研究十分重要。在此背景下,本文调研了太湖重点湖区和水源地水质概况、藻毒素污染时空分布特征、环境影响因子和迁移转化规律,并总结了藻毒素的环境和健康风险研究的最新进展,指出了太湖西部湖区和饮用水源地的主要环境风险,以及未来太湖藻毒素污染相关研究需解决的关键技术问题,以期为促进太湖流域重点污染物的控制和治理,确保太湖饮用水源地安全提供有益借鉴。  相似文献   

13.
A mathematical model has been constructed for the algal community on the rocky shores of a Norwegian fjord. We report here on the studies of competition and colonization along a vertical transect from the upper intertidal to the sublittoral habiats. Results on species abundance and distribution (patterns of zonation) and time to reach maturity have been compared to observations both in the fjord area and in other rocky shore areas.Competition coefficients for the algae were inferred from plant morphology and shown to be in agreement with observations of algal abundance and their zone-forming ability. Competition restricts the distribution of the species, especially at the lower elevations, but does not alter their relative position. However, increasing uniform competition prolongs the time in which zone-forming can occur, and it also decreases the overall biomass which an area can sustain. Colonization by a single species may create transient stages in community development of the same order of magnitude as algae longevity, and probably also alters the zonation pattern to some degree.The simulation results indicate that the large-scale algal distribution pattern in the Hardangerfjord area results from global stability of the rocky shore community.  相似文献   

14.
一株溶藻细菌对铜绿微囊藻的溶藻机理初探   总被引:1,自引:0,他引:1  
罗固源  刘静  王金霞  叶姜瑜 《生态环境》2010,19(11):2647-2651
为确定溶藻细菌S7(Chryseobaterium)对铜绿微囊藻的溶藻方式,分别采用高温灭菌(121~123℃)、离心(10 000 r.min-1)、0.22μm滤膜过滤等方式对S7菌液进行处理,检测其对铜绿微囊藻的去除效果。并通过对溶藻过程中叶绿素a和丙二醛(MDA)含量的测定,藻细胞显微结构的观察和细胞成分的红外光谱分析,初步探讨菌株S7对铜绿微囊藻的作用机理。结果表明,S7是通过释放胞外活性物质间接溶藻,该物质具有很强的热稳定性,不属于蛋白质类物质。该活性物质对铜绿微囊藻的叶绿素a有明显的去除效果,并可导致藻细胞膜脂过氧化产物MDA积累量的显著提高和藻细胞解体。藻细胞红外光谱分析表明,经过溶藻物质作用的藻细胞,其蛋白质结构遭到破坏。通过试验结果,推测出菌株S7的溶藻机理:溶藻物质先损伤铜绿微囊藻的细胞壁和粘质胶被,然后通过改变膜的选择透过性进入藻细胞内部,分解叶绿素a,破坏蛋白质,造成藻体正常生理功能的丧失,最终导致藻细胞破裂。  相似文献   

15.
王红强  吴振斌 《生态环境》2012,(7):1375-1379
水体富营养化日益严重,水华频繁爆发,如何有效控制水华,治理富营养化水体是目前水环境领域的研究热点和前沿。目前湖泊藻类控制技术主要有:物理方法、化学法、生物法,但是这些方法都有其固有的缺点。利用植物化感作用抑制有害藻类生长具有廉价、生态安全等优点近年来备受关注。化感作用就是生物体产生的生物活性物质即化感物质在生物体之间传递信息并导致生物体相互作用。归纳了国内外不同生活型水生植物化感作用研究的主要成果(包括已报道的抑藻水生植物种类、已从水生植物体内和种植水中分离鉴定得到的化感物质),以及化感物质的联合作用研究,讨论了化感物质的生态安全性。通过化感作用能有效控制引起水体富营养化的各种藻类生长,优化水生生物的组成结构。例如,水体中投放大麦秆可以增加无脊椎动物以及鱼类的数量,从而达到改善水生生态系统的目的。展望了植物化感作用用于水环境治理的发展前景。以期为利用植物化感作用控制水华的发生提供理论基础。  相似文献   

16.
R. Gradinger 《Marine Biology》1999,133(4):745-754
The biomass and composition of algal communities in sea ice were studied during two summer expeditions to the central Arctic Ocean and the Greenland Sea. Based on algal pigment determination and cell counts, high biomass accumulations were found at the surface, in the interior and in the bottom layer of the ice floes. Pennate diatoms dominated in the bottom layer, while phototrophic flagellates and cysts of unknown origin were the most abundant taxa in the upper parts. The lowermost 20 to 40 cm contained between 4 and 62% of the entire algal biomass. Consequently, ice biological studies, which deal only with the bottom few centimetres of the ice floes, will underestimate algal biomass and production by factors of up to 25. Differences between the results of this study and published data from coastal locations point towards different biological regimes in Arctic sea ice. The algal biomass in coastal ice is about two orders of magnitude higher and composed mainly of diatoms, probably supported by nutrient influx from the water column. In the pack ice of the central Arctic, nutrient supply is probably reduced, and flagellates contribute substantially to total algal biomass. However, methodological problems might partially be responsible for the observed differences. Received: 12 June 1998 / Accepted: 11 December 1998  相似文献   

17.
水动力条件对藻类影响的研究进展   总被引:8,自引:0,他引:8  
吴晓辉  李其军 《生态环境》2010,19(7):1732-1738
水动力过程是影响水体富营养化状态和水华爆发的重要因素,水动力因素对藻类影响的研究对于富营养化水体藻类控制具有重要意义。归纳分析近年来关于流速、流态对藻类生长和种类变化的研究报道;就水动力条件对藻类的影响及其作用机理等详细地进行了文献综述。水动力条件对藻类生长的影响分为流速和流态两个方面,不论是单一藻种还是混合藻类,低流速、小扰动有利于藻类的生长和聚集,流速增大则导致Chla浓度先递增后递减,不同藻类的临界流速并不相同;藻类生长随着湍流程度的增加而逐渐受到抑制,抑制作用与水流流态(层流、过渡流、湍流)无明显相关关系,水体流态的变化造成水流剪应力的变化,藻类种类的差异导致其对水流剪应力的响应变化。水动力条件变化引起的藻类种群结构变化,主要表现为水体混合加剧导致优势种群的转换。水动力条件对藻类影响的作用原理主要是引起了光强的改变、细胞长度的变化、营养盐运送及捕食行为变化等。综观当前的研究成果,水动力能否真正阻止藻类细胞的生长或聚集,影响藻类生长或种类变化的扰动的最低水平以及水动力对藻类影响的作用机理是这一领域未来研究的重点所在。  相似文献   

18.
离子液体具有极低挥发性等良好理化性质而被公认为是传统有机溶剂的替代品,然而其较强的水溶性对水环境造成的潜在威胁受到关注。本文归纳总结了国内外有关不同类型离子液体对不同营养级水生生物个体、组织器官、细胞、酶等的毒性影响,并对碳链长度、阴阳离子以及环境因子等毒性影响因素的最新研究进展进行了综述,为设计绿色离子液体及合理控制管理水环境提供参考。  相似文献   

19.
Bacterial utilization of orthophosphate in an estuarine environment has been differentiated from algal utilization by using flow-filters of 5.0, 1.2 and 0.45 m poresize. Examination by light microscopy showed that most of the bacterial population passed through a 5.0-m filter, whereas most algae were retained. In all experiments, bacterial and algal cell numbers and biomass were estimated. P-uptake by algae and bacteria was closely correlated with cell biomass. P-uptake by algae was high only in the summer months, whereas P-uptake by bacteria was high throughout the year. Neither algal nor bacterial P-uptake, however, was correlated with temperature or dissolved orthophosphate, total organic phosphate or total phosphate concentrations. Cell biomass of algae at a given time had a high correlation with dissolved organic phosphate levels in 2 weeks prior to sampling (r=0.830) and a low correlation in the 2 weeks following sampling (r=0.0005). Algal cell numbers had a high correlation with bacterial cell numbers (r=0.950). The biomass of algae and bacteria also had a high correlation (r=0.902). The rate of P-uptake from the water by algae and bacteria varied with season and with the species composition of the natural population.  相似文献   

20.
Food selection by copepods: discrimination on the basis of food quality   总被引:19,自引:0,他引:19  
The copepod Acartia tonsa displayed nearly two-fold higher ingestion rates on faster-growing cells of the diatom Thalassiosira weissflogii compared to ingestion rates on slower-growing cells of that species at the same cell concentration. Ingestion rates on slow-growing cells were also enhanced by the addition of cell-free aliquots of algal exudate to the experimental feeding chambers. In addition, the faster-growing algal cells were selectively ingested by the copepod when the two cell types were mixed together in different proportions, indicating that physiological differences between growing cells are a critical factor in the food detection/selection process of zooplankton. Consideration of cell carbon, nitrogen, and protein composition suggests that the copepods are maximizing nitrogenous ingestion (total protein and/or nitrogen). Selectivity for cells with higher protein content results in a higher daily protein ration, even if the selection process results in a decreased rate of ingestion in mixtures of cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号