首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study attempted to determine the effects of heavy metals on the photosynthetic blue-green algae for their potential to use as a biosensor. The bioaccumulation of metals and its effects on pigments of Nostoc muscorum and Synechococcus PCC 7942 were assessed. The culture was grown in BG 11 liquid medium supplied with different metals like mercury (Hg), lead (Pb), and cadmium (Cd) and incubated (µM 20 concentrations) for 10 days under optimal conditions. The accumulated amounts of metals were determined by atomic absorption spectroscopy (AAS). The stress effects on photosynthetic pigment chlorophyll a (Chl a) were monitored by laser-induced fluorescence (LIF). Bio-concentration factor (BCF) reached a peak in cells on the 2nd day of incubation followed by a gradual reduction. The highest reduction in the pigment concentrations (Chl a and β carotene) was observed at 20?µM?L?1 Hg treatment. The results indicate that, cyanobacteria may serve as both potential species to be used as a biosensor and used to clean up heavy metals from contaminated water. These changes were analyzed with the long-term goal of exploiting cyanobacterial cells as biosensors.  相似文献   

2.
3.
Landfills constitute potential sources of different pollutants that could generate human health and environmental problems. While some landfills currently work under the protection of a bottom liner with leachate collection, it was demonstrated that migration could take place even yet with these cautions. The purpose of this paper is to assess the pollution caused by a leachate plume from a municipal landfill that is affecting both groundwater and surface waters. The research was carried out at Pacará Pintado landfill in northwestern Argentina. Analysis of water samples indicates that leachate is affecting groundwater under the landfill area and an abandoned river channel hydraulically connected. In the center of the landfill area, the plume is anoxic and sulfate, nitrate, iron and manganese reduction zones were identified. Leachate plume presented high concentration of organic matter, Fe, Mn, NH4 +, Cl? and Cr reaching an extension of 900 m. The presence of a leachate plume in a landfill site with a single liner system implies that the use of this groundwater pollution control method alone is not enough especially if permeable sediments are present below.  相似文献   

4.
ABSTRACT

Due to the special geographic locations and multiple typhoons a year, the frequent strong winds bring great discomfort and danger to the daily lives of the urban residents in southeast coast of China. The strategic design of landsenses pattern on different scales can help reduce gale days in urban areas while delivering diverse additional benefits such as pollution control and biodiversity habitat protection. Although the greatest gale days are observed in cold and damp winters, there is comparatively little information available for land managers to determine an appropriate strategy for landsenses pattern design under these climatic conditions. We present a framework for prioritization and selection of landsenses pattern for gale day reductions. The framework is supported by examining the relationships between urban landsenses pattern evolution and gale day mitigation in the past, with which we used to develop implementation guidelines that maximize reductions of urban surface gale days. We focus particularly on quantifying the benefits of four types of landsenses: land-use patterns, urban road network, architectural patterns, and vertical greening systems (green walls and facades) and demonstrate how to apply the framework with a case study from Pingtan Island, China.  相似文献   

5.
Amongst a plethora of threats to seagrass ecosystems, contamination with heavy metals may well be one of the most significant. We therefore set out to track contamination levels with Cu, Zn, Pb and Cd in the principal autotrophic compartments and sediments of a meadow of Posidonia oceanica in the Gulf of Naples, Mediterranean Sea. With respect to metal levels, leaves and their associated epibiota are certainly not a homogenous compartment, as might perhaps be inferred from the common use of the term “leaf–epiphyte complex” in the literature. Save for Cu, all metal species analysed showed appreciable differences in concentration between seagrass leaves and epibiota. These results give strength to our argument that in ecotoxicological work leaves and epibiota should not be treated as a single unit. Although absolute differences in trace-metal levels among sampling periods varied somewhat with the specific component analysed (i.e. macrophyte organs, epibiota, sediment), an overall trend of markedly higher heavy-metal levels during the winter season is a striking one. Whilst annual cycles in growth dynamics of the seagrasses explain a significant fraction of the temporal variance, seasonality in productivity is a doubtful explanation for similar patterns in non-living sedimentary components; consideration of additional variables therefore seems sensible. As variables with consistent explanatory powers we suggest: (1) seasonal cycles in storm frequency and amplitude which remobilise metals bound in the sediments of the sea floor, and (2) increased precipitation during the cold season which may significantly increase marine metal levels through elevated weathering of rocks and elevated fluvial inputs of anthropogenic contaminant loads. Whereas Cd and Pb concentrations in seagrass leaves from the Gulf of Naples fall within the range for coastal areas subjected to low levels of heavy-metal pollution, Cu and Zn reach levels typical of highly contaminated regions, such as the waters bordering major coastal cities. Any direct comparisons of the pollution status of seagrass beds between different geographic areas are, however, likely to be confounded by the indiscriminate application of the “leaf–epiphyte complex”: the magnitude of the confounding effect depends on the ratio of epibiota/leave biomass, time of sampling, and metal species analysed. Received: 15 May 1997 / Accepted: 2 February 1998  相似文献   

6.
Terrestrial laserscanning (TLS), also called ground-based LiDAR (Light Detection And Ranging) is a relatively new method which revolutionised geomorphological research in many domains. However, detailed studies of tidal flats by TLS have not been described in the literature yet. This study aims to fill this methodological gap by the application of TLS at two different locations on the coast of Jiangsu Province, Eastern China, and an assessment of the usability of this method for geomorphological research in such environments. The acquired point clouds are first processed to remove erroneous and noisy points. Subsequently, point clouds are computed to produce polygonal meshes and grid-based digital terrain model (DTM) more commonly used by the scientific community. The accuracy of the measurements is assessed by an analysis of elevation deviations for flat and horizontal concrete blocks. High quality point clouds with point densities of up to 4,000 points/m2 were acquired for a distance of up to 200 m. The data allowed for the detection of small landforms such as tidal channels, creeks and ripples in centimetre and decimetre scale. The point clouds had an average error of approximately 3 mm, however for some few points errors of up to 1.8 cm were detected. Based on the results it can be concluded that TLS can be a useful additional method for geomorphological research on tidal flats due to its ability to describe the landforms from high density point clouds. Repeated scanning could therefore provide data to quantitatively and qualitatively describe geomorphological changes over wider areas and thereby improve the understanding of sedimentation and erosion on tidal flats.  相似文献   

7.
In this study, autopsy tissue samples from human liver and kidneys were analysed for Cd, Cu, Pb, Zn, Hg and Mn in 25 subjects (16 males and 9 females) ranging in age from 2 to 70 years. Tissue samples that were pathologically normal were obtained at postmortem and concentrations of metals were determined. In both kidneys and liver, the concentrations of metals followed the order Cd > Hg > Pb > Zn > Mn > Cu irrespective of gender and age group, except in female kidneys where the order was Cd > Pb > Hg > Zn > Mn > Cu. Generally, males had higher concentrations of metals in both the kidneys and liver. Significant correlations of the metals were found in kidney and liver tissues.  相似文献   

8.
Wang  Yuanyuan  Xu  Weiwei  Li  Jizhou  Song  Yinxian  Hua  Ming  Li  Wenbo  Wen  Yubo  Li  Tianyuan  He  Xinxing 《Environmental geochemistry and health》2022,44(2):301-318
Environmental Geochemistry and Health - This study developed a method to build relationships between chemical fractionations of heavy metals in soils and their accumulations in rice and estimate...  相似文献   

9.
Simulated composite sampling was carried out using data from a contaminated site. The values obtained by composite sampling were compared with the results obtained using discrete (individual) samples. It is appropriate to use a modified investigation level (MIL) when using composite samples. The MIL is lower than the standard investigation level, (IL). Various MILs were considered in this study. Too low an MIL will indicate that some composite samples require further investigation, when none of the discrete samples comprising the composite would have exceeded the IL. Too high an MIL will result in some discrete samples that exceed the IL being missed. A suggested MIL is IL/ where n is the number of discrete samples in the composite sample. This MIL was found to give few false negatives but many fewer false positives than the IL/n rule. Although this MIL was effective on the test data it could be site specific. Some local areas of high concentration may be missed with composite samples if a lower investigation level is used. These however do not make a large contribution to the health risk because they will have a contaminant level only slightly higher than the IL, and the neighboring samples must have a low concentration of the contaminant. The increased risk due this cause may be more than offset by the higher sampling density made possible through the economies of composite sampling When composite sampling is used as the first phase of an adaptive cluster-sampling scheme, it must be augmented by additional samples to delineate the contaminated area to be cleaned up. Composite sampling can also be effectively used in a clean up unit technique, where a clean up unit is represented by one or more composite samples. Suggestions are given for when composite sampling can be used effectively.  相似文献   

10.
A two-factor randomized complete block experiment was used to explore the remediation by a plant-microorganism combination on soils contaminated by lead (Pb) and cadmium (Cd). Factor A was the amount of fungi, for which four values were considered, namely, 0, 1, 3, and 5 g. Factor B was the level of contamination by lead and cadmium, for which six values were considered, namely, Cd0Pb0, Cd10Pb400, Cd20Pb600, Cd30Pb800, Cd50Pb1200, and Cd80Pb1800 (data in units of mg/ kg). The results showed that the resistant fungi promoted the growth of vetiver (Vetiveria zizanioides). At weights of 1, 3, and 5 g, the resistant fungi increased the biomass of vetiver by 41.9%, 74.9%, and 71.7% respectively. The resistant fungi stimulated the absorption of lead and cadmium by both the aerial and underground parts of vetiver. In the presence of 80 mg/kg of Cd2+ and 1 800 mg/kg of Pb2+, the contents of lead in the aerial parts of vetiver were increased by 120.6%, 265.4%, and 242.9%, while the lead content in the underground parts were increased by 110.3%, 278.2%, and 266.2%, after the addition of 1 g, 3 g, and 5 g of fungi, respectively. The content of cadmium in the aerial parts increased by 113.2%, 238.3%, and 217.3%, while the content of cadmium in the underground parts increased by 103.1%, 298.8%, and 274.4%, after the addition of 1 g, 3 g, and 5 g of fungi, respectively. The addition of fungi strengthened the effect of V. zizanioides to remediate soils contaminated by lead and cadmium, and the remediation after the addition of 3 g of fungi was better than that after treatment with 1 g and 5 g of fungi. The combination of resistant fungi and the heavy metal enrichment plant, vetiver, under different concentrations of lead and cadmium showed that the fungi had a significant effect on the remediation of soils contaminated by lead and cadmium. © 2018 Science Press. All rights reserved.  相似文献   

11.
Pesticides are widely used in China for crop protection. However, the use of some highly toxic and accumulative pesticides has led to serious pollution to the environment. The knowledge that end-users of pesticides have about hazards is important for the prevention of acute poisoning. Moreover, farmers, especially those who purchase and use pesticides, often make important and long-standing impacts on the local ecosystem and environment. In this study, a specially designed questionnaire was used to collect information on their knowledge, attitude, and behavior related to pesticides in the Guanting Reservoir area, north of China. Most pesticide end-users reported that they took incomplete preventive measures for lack of extensive pesticide knowledge and information. Pesticide information, instruction, and training among farmers should be promoted, and governmental intervention is needed to ensure proper management regarding public health risks and environmental hazards.  相似文献   

12.
A systematic effort was made to assess the emission of methane from paddy fields using closed chamber technique. Methane emission measurements were performed over a year during the Kharif (wet season), Rabi (dry season), and fallow periods. Various soil parameters like redox potential, organic carbon and ferrous ion were determined to evaluate their control on methane emissions. Diurnal measurement of the flux showed a minimum (0.44?mg?m?2?h?1) in the morning (8?a.m.), which increased gradually to a value of 1.16?mg?m?2?h?1 till the evening due to the rise in soil temperature. The seasonally integrated flux (E SIF) for CH4 was calculated. The E SIF for methane during Kharif and Rabi crops were found to be 5.97?g?m?2 and 2.59?g?m?2, respectively. It was observed that the methane flux was maximum during flowering and fertilizer application stages for both paddy cropping seasons. The redox potential was low and the ferrous ion was higher during flowering and tiller stages. The methane emission was higher at E AIF) was calculated for methane to make a budget estimate of methane emission from rice cultivated under rain fed drought prone water regime.  相似文献   

13.
Small amounts of bivalent cations, usually provided by Mg2+, are in the living cell necessary for the biological activity of t‐RNA as these bivalent cations influence the tertiary and secondary structure of this globular polynucleotide.

In context with the discussed possibility of carcinogenic actions of ingested Cd it is of particular interest to check whether there exist specific strong interactions of this toxic heavy metal with nucleic acids.

Therefore, the binding of the toxic heavy metal ion Cd2+ and the essential heavy metal ion Mn2+ to t‐RNA and for comparison to DNA and the polynucleotides poly‐U, poly‐A and poly‐A‐poly‐U has been studied. Free metal ion concentrations have been determined by differential pulse polararography. Association constants and the number of binding sites have been evaluated by the Scatchard method and alternatively according to a simple electrostatic model of the polyelectrolytes. With the Scatchard method for t‐RNA and all polynucleotides with helical structure two different binding sites of different strength are observed. Those with higher association constants are assigned to the helical parts of t‐RNA. Interaction sites with low association constants correspond to the parts with no ordered tertiary structure, as their exclusive occurrence for poly‐U, having a completely stochastic coil structure, reflects. The values of the association constants for the stronger and weaker association sites are in the respective polynucleotides for both investigated bivalent metal ions of comparable magnitude. This emphasizes that the interaction is essentially of electrostatic nature and depends primarily on the charge of the interacting species.

Thus the specific strong interaction of Cd by the intercalation into the tertiary structure of nucleic acids or by chelation of their base units can be ruled out as one possibility for carcinogenity of Cd.

Moreover, under physiological conditions the high excess of competitive Mg2+ will suppress the interaction of Cd based on electrostatic forces.  相似文献   

14.
Both natural and human factors contributing to desertification were examined to understand the driving mechanisms of the desertification process in Zhalute Banner, Inner Mongolia of China. The coefficient of variation (CV) and climate departure index (Z) were calculated to examine the fluctuations and trends of interannual variations of temperature and precipitation; TM remote sensing data was extracted to obtain the sandy land area; linear regression analysis was used to analyze climate changes and the socio-economic evolution over the years, and it was also used to standardize the variables, which included annual temperature, annual precipitation, human population, and livestock number, in order to measure the difference in the rate of change between climate and anthropogenic factors. The results showed that there was a rise of about 1.6°C in temperature but no significant change in precipitation from 1961 to 2000, which indicated a short-term climatic trend toward aridity in this area, a condition necessary for desertification. The fraction of precipitation in spring tended to increase whilst the fraction in autumn and winter decreased. Both the human population and livestock population had tripled and the cultivated area had doubled from 1961 to 2000, suggesting that socio-economic factors might have contributed more significantly to the desertification. Between 1988 and 1997, the sandy land area increased by 12.5%, nearly 2.4 times in the farming section. It could be concluded that the driving mechanisms of the desertification processes in Zhalute banner are mainly the policy of cropland expansion and the rising populations of humans and their livestock, which has affected the land use pattern in the past decades.  相似文献   

15.
The assessment of the ecosystem health of urban rivers and lakes is the scientific basis for their management and ecological restoration. This study developed a three-level indicator system for its assessment. The results indicated that: Zhonghai and Nanhai are in the state of transition from unhealthy to critical state and all the other lakes are in unhealthy states. Water environmental quality, structure and function of the aquatic ecosystem, and the structure of waterfront areas were the constraints. Nanhai was ranked as poor and the others were all ranked as very poor. However, the ecological environment of Zhonghai and Nanhai were better than the others, the sums of the degree of membership to the healthy state and critical state were all close to 0.6. and the restorations of these lakes were moderate. The sums of the degree of membership to the healthy state and critical state of the other lakes were under 0.3, as it was difficult to restore these lakes. Some suggestions on scientific management and ecological restoration of the six lakes were proposed: ①To control non-point pollution and to improve the water quality of six lakes and the water entering into these lakes; ②To improve the hydrological conditions of six lakes; ③To rehabilitate the aquatic ecosystem and waterfront areas.  相似文献   

16.
There is consensus concerning the heavy metal pollution from traffic emission on roadside agricultural land. However, few efforts have been paid on examining the contamination characteristics of heavy metals in roadside paddy-upland rotation field, and especially in combination with detailed quantitative analysis. In this study, we investigated the concentrations of heavy metals (Pb, Cd, Cr and Zn) in soil and crop grains of the rice-wheat cropping system along a major highway in East China in 2008 and analyzed the spatial distribution characteristics of heavy metals and their influencing factors with GIS and Classification and Regression Trees (CART). Significantly elevated levels of heavy metals in soil, rice and wheat grains indicated the heavy metals contamination of traffic emission in roadside rice-wheat rotation field. The contamination levels of Cd, Cr and Zn in wheat grain were higher than rice grain, while that of Pb showed an opposite trend. Obvious dissimilarities in the spatial distributions of heavy metals contents were found between in the soil, rice and wheat grains, indicating that the heavy metals contents in the roadside crop grains were not only determined by the concentrations of heavy metals in the paddy soil. Results of CART analysis showed that the spatial variation of the heavy metals contents in crop grains was mainly affected by the soil organic matter or soil pH, followed by the distance from highway and wind direction. Our findings have important implications for the environmental assessment and crop planning for food security along the highway.  相似文献   

17.
This study evaluated the temporal and spatial variations of water quality data sets for the Xin'anjiang River through the use of multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), correlation analysis, and principal component analysis (PCA). The water samples, measured by ten parameters, were collected every month for three years (2008-2010) from eight sampling stations located along the river. The hierarchical CA classified the 12 months into three periods (First, Second and Third Period) and the eight sampling sites into three groups (Groups 1, 2 and 3) based on seasonal differences and various pollution levels caused by physicochemical properties and anthropogenic activ- ities. DA identified three significant parameters (tempera- ture, pH and E.coli) to distinguish temporal groups with close to 76% correct assignment. The DA also discovered five parameters (temperature, electricity conductivity, total nitrogen, chemical oxygen demand and total phosphorus) for spatial variation analysis, with 80.56% correct assignment. The non-parametric correlation coefficient (Spear- man R) explained the relationship between the water quality parameters and the basin characteristics, and the GIS made the results visual and direct. The PCA identified four PCs for Groups 1 and 2, and three PCs for Group 3. These PCs captured 68.94%, 67.48% and 70.35% of the total variance of Groups 1, 2 and 3, respectively. Although natural pollution affects the Xin'anjiang River, the main sources of pollution included agricultural activities, industrial waste, and domestic wastewater.  相似文献   

18.
Spatial and temporal distributions of water quality using multivariate statistical techniques for the evaluation of nutrients (NO2-N, NO3-N, NH4-N, PO4-P, SiO4-Si, total N, total P) in relation to some physico-chemical features (DO, BOD, TSS, TDS, SO42−, Cl) were studied for 31 different stations of the Mahanadi river–estuarine system in the eastern part of India. The seasonal nutrient variations (except SiO4-Si) exhibit higher values during monsoon season in unpolluted stations and the reverse trends for polluted stations, which are related to agricultural run-off and regional anthropogenic activities respectively. Silicate shows a well defined pattern of distribution with a higher concentration during the monsoon, which is slightly removed from the estuarine water of Mahanadi during the pre-monsoon season. The results of R-mode factor analyses revealed that anthropogenic contributions are responsible for the increase in nutrients and the decrease in DO and pH levels of the water. The magnitude of BOD with respect to total N and P demonstrates the intensity of organic pollution in the system. The removal of silicate in the saline system is clearly visible through factor analysis and the different mode of association of TSS is reflected seasonally. The relationships among the stations are highlighted by cluster analysis, represented in dendograms to categorize different levels of contamination.  相似文献   

19.
The groundwater samples collected from the shallow and deep groundwater aquifers of an industrial area of the Kanpur city (Uttar Pradesh, India) were analyzed for the concentration levels and distribution pattern of nitrogenous species, such as nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N), ammonical-nitrogen (NH4-N), organic-nitrogen (Org-N) and total Kjeldahl-nitrogen (TKN) to identify the possible contamination source. Geo-statistical approach was adopted to determine the distribution and extent of the contaminant plume. In the groundwater aquifers NO3-N, NO2-N, NH4-N, TKN, Org-N and Total-N ranged from 0.10 to 64.10, BDL (below detection limit)-6.57, BDL-39.00, 7.84–202.16, 1.39–198.97 and 8.89–219.43 mg l−1, respectively. About 42% and 26% of the groundwater samples of the shallow and deep groundwater aquifers, respectively, exceeded the BIS (Bureau of Indian Standards) guideline value of 10 mg l−1 for NO3-N and may pose serious health hazards to the people of the area. The results of the study revealed that the groundwater aquifers of the study area are highly contaminated with the nitrate and indicates point source pollution of nitrate in the study area.  相似文献   

20.
To study heavy metal pollution and assess the health risk of river water in Huayuan County, Xiangxi, Hunan Province, 11 water samples were collected from the Huayuan River and Brother Rivers in August and December 2016. Heavy metal (Pb, Zn, Cr, Cu, Fe, and Ni) concentrations were determined from the samples. The health risk assessment model recommended by the U.S. Environmental Protection Agency (USEPA) was applied to assess the health risk of heavy metals in the main surface waters of Huayuan County. The results indicated that the concentrations of heavy metals (Pb, Zn, Cr, Cu, Fe, and Ni) of surface water in the research area were 2.57 × 10-3, 4.66 × 10-4, 1.65 × 10-3, 6.27 × 10-4, 0.19, and 8.50 × 10-4 mg/L, respectively. The health risk of surface waters with heavy metals was high. Therefore, the chemical carcinogenic substance (Cr) health risk index was five or six times higher than that of chemical non-carcinogens (Pb, Zn, Cu, and Ni). The average health risk indices of non-carcinogenic substances were in the order Pb > Cu > Zn > Ni. The correlation and principal component analysis of surface water showed that the six heavy metal elements were composed of three main components in the main surface waters of the county. The first principal component was comprised of Fe and Ni (33.28%), which was mainly from internal pollution. The second component was comprised of Cu and Cr (26.98%), which was primarily due to industrial waste water, rainwater leaching mineral waste produced by heavy metal mining, and smelting enterprises. The third component, resulting from geochemical pollution, was Zn (17.10%). The health risk indices triggered by heavy metal in surface waters was high. Heavy metal pollutants in the research area need to be controlled in the order Cr, Pb, Cu, Zn and Ni. © 2018 Science Press. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号