首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Yuan Z  Sun L  Bi J  Wu H  Zhang L 《Ecological applications》2011,21(7):2822-2832
Human activities disturb the long-term phosphorus (P) cycle in nature, whereby the resulting intensive release of P contributes to the eutrophication of surface water. Hence, a detailed understanding of P flow as it relates to socioeconomic systems is essential for effective nutrient management. This study develops a substance-flow-analysis model for P metabolism for the socioeconomic ecosystem of Shucheng County in Anhui Province in central China as a case study. We estimate P flow using data from questionnaires, face-to-face interviews, published literature, and official statistical databases. Our results show that P flow in Shucheng's current socioeconomic system is linear and openly metabolic. The total P input into Shucheng in 2008 reached 12 748 Mg, mainly as P ores and crops. In all, 43.83% of the total P input was exported, and 30.44% was discharged into surface water. More-balanced nutrient management and options for improving nutrient use efficiency are discussed. The quantifiable, science-based methods used in this study may be applied to neighboring regions of central China for sustainable development and water management.  相似文献   

2.
磷胁迫条件下北美红杉幼苗生长的适应性反应   总被引:3,自引:0,他引:3  
采用温室盆栽的方法探讨了不同的P质量浓度(0、0.018、0.036、0.054、0.071、0.108、0.142和0.213g.L-1,以0.071g.L-1作为对照)处理下北美红杉一年生幼苗生物量及根系生长的反应,结果表明,P供应不足时,幼苗将更多的生物量分配到地下以扩大根系的生长,地下/地上生物量比率增加,缺P时为0.47。高水平供P条件下,增加幅度较大,供P水平增加2倍时,达0.66。幼苗细根/叶生物量比率与地下/地上生物量比率变化规律相似。当供P水平较低时,幼苗的一级侧根数增多,根系的分枝密度增加,二级侧根节点之间距离减小,细根的特定根长增加,这些根系结构特征的变化有利于幼苗吸收更多的养分和水分。P养分供应适宜时,幼苗增加了地上部分的分枝数,以争取更多的地上资源空间。  相似文献   

3.
Six ponds of age 3 were selected 45 km north from Suzhou in the Tailake region, and research conducted on nitrogen and phosphorus cycling in P. vannanmei (Penaeus vannanme) ponds and M. nipponense (Macrobrachium nipponense) hatchery ponds under normal management. Two treatments each had three replications. The results confirmed that feed was the major path of nitrogen and phosphorus input, each accounted for 61.24% (193.81 kg ha(-1)) and 81.08% (45.20 kg ha(-1)) of the total nitrogen and phosphorus input for P. vannanme ponds; the values for M. nipponense ponds were 43.93% (86.31 kg ha(-1)) and 57.67% (14.61 kg ha(-1)), respectively. Water pumped into ponds contributed on average 83.57 kg ha(-1) nitrogen and 8.48 kg ha(-1) phosphorus for P. vannanmei ponds, and 87.48 kg ha(-1) nitrogen and 7.00 kg ha(-1) phosphorus for M. nipponense hatchery ponds. Shrimp harvest recovered 102.81 kg ha(-1) nitrogen (32.94% of the total nitrogen input) and 7.94 kg ha(-1) phosphorus (14.23% of the total phosphorus input) for P. vannanme ponds; and 43.94 kg ha(-1) nitrogen and 4.46 kg ha(-1) phosphorus for M. nipponense hatchery ponds. The sum of nitrogen losses through volatilization, denitrification and sedimentation was 173.62 and 122.39 kg ha(-1), 54.86% and 62.29% of the total nitrogen input for P. vannanme ponds and M. nipponense hatchery ponds, respectively. Sediment accumulated 41.46 and 14.63 kg ha(-1) phosphorus, 74.37% and 64.85% of the total phosphorus input for P. vannanm ponds and M. nipponense hatchery ponds. Draining and seeping caused 40.06 kg ha(-1) nitrogen (12.66% of total nitrogen input) and 6.36 kg ha(-1) phosphorus (11.40% of total phosphorus input) loss to the surrounding water from P. vannanme ponds in 114 days; 30.14 kg ha(-1) nitrogen (15.34% of the total input) and 4.45 kg ha(-1) phosphorus (17.57% of the total input) to channel water from M. nipponense hatchery ponds in 87 days, respectively. Countermeasures for sustainable pond management include improving feeds and feeding, sediment treatments, machine aerating, chemicals with no pollution, and integrated fish-shrimp cultivation. Management of water resources for pond and methods to reduce nitrogen and phosphorus loading into surrounding water from drainage are elucidated.  相似文献   

4.
淀山湖浮游藻类增长的氮磷限制性营养研究   总被引:1,自引:0,他引:1  
2009年1月至12月对淀山湖浮游藻类生物量及主要营养元素N、P含量进行了监测,并利用藻类增长的生物学评价(NEB)方法对浮游藻类增长的限制性营养元素进行了研究,采用双变量相关性分析了水体中N、P含量与浮游藻类生物量的相关性.结果表明,磷含量与藻类生物量有显著的正相关(Rmax=0.980),添加磷能明显促进藻类生物量...  相似文献   

5.
Small GE  Pringle CM  Pyron M  Duff JH 《Ecology》2011,92(2):386-397
Nutrient recycling by animals is a potentially important biogeochemical process in both terrestrial and aquatic ecosystems. Stoichiometric traits of individual species may result in some taxa playing disproportionately important roles in the recycling of nutrients relative to their biomass, acting as keystone nutrient recyclers. We examined factors controlling the relative contribution of 12 Neotropical fish species to nutrient recycling in four streams spanning a range of phosphorus (P) levels. In high-P conditions (135 microg/L soluble reactive phosphorus, SRP), most species fed on P-enriched diets and P excretion rates were high across species. In low-P conditions (3 microg/L SRP), aquatic food resources were depleted in P, and species with higher body P content showed low rates of P recycling. However, fishes that were subsidized by terrestrial inputs were decoupled from aquatic P availability and therefore excreted P at disproportionately high rates. One of these species, Astyanax aeneus (Characidae), represented 12% of the total population and 18% of the total biomass of the fish assemblage in our focal low-P study stream but had P excretion rates > 10-fold higher than other abundant fishes. As a result, we estimated that P excretion by A. aeneus accounted for 90% of the P recycled by this fish assemblage and also supplied approximately 90% of the stream P demand in this P-limited ecosystem. Nitrogen excretion rates showed little variation among species, and the contribution of a given species to ecosystem N recycling was largely dependent upon the total biomass of that species. Because of the high variability in P excretion rates among fish species, ecosystem-level P recycling could be particularly sensitive to changes in fish community structure in P-limited systems.  相似文献   

6.
类羧酸对棕壤中与磷素转化有关的生物活性的影响   总被引:2,自引:0,他引:2  
可欣  李培军  张昀  颜丽  朱宁  关连珠 《生态环境》2004,13(4):636-637,676
类羧酸是一种带有羧基的化工副产品,其主要成分是二羧酸和三羧酸,具有较强的络合能力,可以用作鳌合剂。通过室内恒温培养试验,研究了类羧酸对棕壤中与磷素转化有关的生物活性的影响。研究结果表明:土壤中性磷酸酶活性与土壤有机磷转化强度间存在显著直线相关关系。并且,施用类羧酸能增加土壤微生物生物量磷含量,增强土壤中有机磷化合物的水解,增加土壤有效磷的含量,从而改善土壤的供磷能力。  相似文献   

7.
我国化肥施用量及其可能污染的时空分布特征   总被引:13,自引:1,他引:13  
李军  黄敬峰  程家安 《生态环境》2003,12(2):145-149
近年来,随着化肥施用量的增加,由化肥污染所引起的环境问题逐渐被人们所认识。文章利用我国各省历年主要农作物播种面积和化肥用量资料,提出了化肥施用量评价指数。我国总的化肥施用量没有超过适宜施用量;氮肥实际施用量基本接近于适宜施用量,而磷肥、钾肥的实际施用量严重不足。但对全国各省情况的研究表明,东部地区的氮肥施用量普遍超过或接近于适宜施用量,而中西部地区的氮肥施用量普遍小于适宜施用量;各省磷肥和钾肥的施用量普遍严重不足。因此,应降低东部的氮肥用量以减少污染,同时增加中西部的氮肥施用量。全国各省均应增加磷、钾肥施用量,调整氮、磷、钾肥的比例,有计划地安排我国氮、磷、钾肥的施用量及合理比例,从化肥污染的源头减少化肥污染。  相似文献   

8.
通过设置8/16、12/12、16/8不同光暗比,分析了附生细菌存在下不同光照时间对铜绿微囊藻(M icrocystis aeruginosa)生长及其与附生假单胞菌(Pseudom onassp.)磷代谢之间关系的影响。结果表明:光照时间越长,铜绿微囊藻生长越快,16 h光照下的比增长速率为8 h光照下的1.6倍。铜绿微囊藻的快速生长促进了附生细菌中磷的释放;藻细胞增殖越快,附生细菌释放的磷越多。铜绿微囊藻对数生长期末,8、12、16 h光照下附生细菌磷含量分别降至对数生长初期的87.8%、78.6%和64.9%。铜绿微囊藻对附生细菌磷释放的促进作用是由藻细胞生长对磷的消耗再吸收导致的。  相似文献   

9.
A review of results of fertilization experiments in wet dune slacks is presented. In most cases the above-ground biomass appeared to be limited by nitrogen availability. Primary phosphorus limitation was assessed only once in a dune slack where sod cutting had been applied very recently. In most other case studies phosphorus limits biomass production after nitrogen deficiency was lifted. Potassium availability is of minor importance for biomass production in this type of ecosystem. Singular nitrogen additions led to increased dominance ofCarex andJuncus species as well as perennial grasses, such asAgrostis stolonifera andCalamagrostis epigejos. A combined addition of nitrogen and phosphorus led to total dominance of grasses, while the characteristic basiphilous pioneer species (including mosses) decreased or even disappeared. Certain mechanisms are considered which may maintain nutrient availability in slacks with basiphilous pioneer vegetation at a low level, despite of the accumulation of nutrients in the developing organic soil layer. Some implications for management and further research are discussed.  相似文献   

10.
Six ponds of age 3 were selected 45 km north from Suzhou in the Tailake region, and research conducted on nitrogen and phosphorus cycling in P. vannanmei(Penaeus vannanme) ponds and M. nipponense(Macrobrachium nipponense) hatchery ponds under normal management. Two treatments each had three replications. The results confirmed that feed was the major path of nitrogen and phosphorus input, each accounted for 61.24%(193.81 kg ha–1) and 81.08%(45.20 kg ha–1) of the total nitrogen and phosphorus input for P. vannanme ponds; the values for M. nipponense ponds were 43.93%(86.31 kg ha–1) and 57.67%(14.61 kg ha–1), respectively. Water pumped into ponds contributed on average 83.57 kg ha–1 nitrogen and 8.48 kg ha–1 phosphorus for P. vannanmei ponds, and 87.48 kg ha–1 nitrogen and 7.00 kg ha–1 phosphorus for M. nipponense hatchery ponds. Shrimp harvest recovered 102.81 kg ha–1 nitrogen (32.94% of the total nitrogen input) and 7.94 kg ha–1phosphorus (14.23% of the total phosphorus input) for P. vannanme ponds; and 43.94 kg ha–1 nitrogen and 4.46 kg ha–1phosphorus for M. nipponense hatchery ponds. The sum of nitrogen losses through volatilization, denitrification and sedimentation was 173.62 and 122.39 kg ha–1, 54.86% and 62.29% of the total nitrogen input for P. vannanme ponds and M. nipponense hatchery ponds, respectively. Sediment accumulated 41.46 and 14.63 kg ha–1 phosphorus, 74.37% and 64.85% of the total phosphorus input for P. vannanm ponds and M. nipponense hatchery ponds. Draining and seeping caused 40.06 kg ha–1 nitrogen (12.66% of total nitrogen input) and 6.36 kg ha–1 phosphorus (11.40% of total phosphorus input) loss to the surrounding water from P. vannanme ponds in 114 days; 30.14 kg ha–1nitrogen (15.34% of the total input) and 4.45 kg ha–1 phosphorus (17.57% of the total input) to channel water from M. nipponense hatchery ponds in 87 days, respectively. Countermeasures for sustainable pond management include improving feeds and feeding, sediment treatments, machine aerating, chemicals with no pollution, and integrated fish-shrimp cultivation. Management of water resources for pond and methods to reduce nitrogen and phosphorus loading into surrounding water from drainage are elucidated.  相似文献   

11.
The standing stock and taxonomic composition of zooplankton (>200 m) were monitored in the lagoon of Tikehau atoll from April 1985 to April 1986. These data were supplemented by two 10 d studies on the variability, structure and functioning of the pelagic ecosystem. The biomass of animals >200 m comprised 50% of the total biomass of all organisms from 35 to >2000 m. The zooplankton populations were characterized by successive blooms of copepods, larvaceans, pteropods and salps, probably arising from the periodic input of detritus from the reef during windy periods. As a result, the ecosystem was not in a steady state and the data for the fluxes of organic matter are presented separately for April 1985 and April 1986. Using the C:N:P ratio method, net growth efficiencies, K 2, were calculated for total mesozooplankton, mixed copepods, and two planktonic species, Undinula vulgaris and Thalia democratica. Combined with nitrogen and phosphorus excretion rates, these K 2 values enabled the assessment of production rates. On a 24 h basis, P:B ratios (%) were close to 100 for the total zooplankton and 54, 34 and 800 for mixed copepods, U. vulgaris and T. democratica, respectively. These ratios are 5.7 times lower than that recorded for phytoplankton. High productivity may be ascribable to the high density of seston, the high temperature (29.5°C), and the kind of organisms present. Zooplankton production equalled 38 and 30% of 14C uptake during April 1985 and April 1986, respectively. Ingestion of animals >35m was calculated by means of assimilation efficiencies and amounted to 17 and 7% of particulate organic carbon, 100 and 38% of living carbon, and 64 and 140% of primary production during the two periods, respectively. Finally, inorganic exduring was 32 and 18% of phytoplankton nitrogen and phosphorus requirements. A model based on the dimensional structure of the pelagic food-web, has been drawn to illustrate the biomass and carbon, nitrogen and phosphorus fluxes in the study area. The lagoon appears to export part of its planktonic biomass, which is 4.2 times lower one sea mile outside the main pass connecting the lagoon to the open ocean.  相似文献   

12.
The impactof cladocerans metabolic activities on the carbon (C), nitrogen (N) and phosphorus (P) dynamics in Lake Kinneret (Israel) is presented. The study, is based on the incorporation of field data and experimental measurements. Grazing, respiration and production rates of Diaphanosoma spp., Ceriodaphnia spp. and Bosmina spp. were experimentally measured at three temperatures, and the results were extrapolated to the field biomass distribution atthese respective temperatures, and the total lake capacity was calculated using the following equation: consumption = respiration + production + excretion. The field capacity of consumption, respiration and production were found to be mostly correlated with biomass density, but the temporal fluctuation of the percent of excretion from consumed energy differed. The increase in P, decline in N and decrease in the TN/TP mass ratio in the epilimnion of Lake Kinneret during 1969-2004 created N limitation. An increase in C and dedine in TN, with a consequential increase in the C/TN ratio were documented. TP was augmented but the C/TP ratio was only slightly increased. During 1975-2004, P was probably, a minor limitation for cladoceran growth. The positive impact of recycled P by cladocerans underthe N limitation in Lake Kinneret is discussed. There is a current threat on the water quality, derived from N limitation (mostly in summer-fall) and consequent Cyanophyta blooms. Thus, the role of recycled P bygrazers may be significant.  相似文献   

13.
The main objective of this work was to investigate the temporal variability of hydrochemical parameters in two coastal regions of the Northeastern Black Sea: the Gelendzhik bay, influenced by anthropogenic activities and the Golubaya bay an open coastal region. Dissolved oxygen, biochemical oxygen demand, pH, alkalinity, phosphate, organic phosphorus, silicates, nitrates, nitrites, ammonia, organic nitrogen, oil products and heavy metals were measured. Si/P and Si/N ratios showed that the Gelendzhik bay waters were significantly enriched in nitrogen and phosphorus compounds. Unlike the Golubaya bay, phosphates were always present in the Gelendzhik bay, and development of photo-synthesis was not limited by these. Features of seasonal variability of nutrients in the Gelendzhik bay (increased concentrations and pronounced summer-autumn maximum) appeared to be a result of human impact—outflow of nutrients with shore input and recreational activities during the summer holiday season. The data obtained indicate that pollution from local spots from the coast of the Black Sea, related primarily to eutrophication, could play a large role in the nutrient balance of the sea and could affect its ecological state.  相似文献   

14.
Terrestrial ecosystems consist of mutually dependent producer and decomposer subsystems, but not much is known on how their interactions are modified by plant diversity and elevated atmospheric CO2 concentrations. Factorially manipulating grassland plant species diversity and atmospheric CO2 concentrations for five years, we tested whether high diversity or elevated CO2 sustain larger or more active soil communities, affect soil aggregation, water dynamics, or nutrient cycling, and whether plant diversity and elevated CO2 interact. Nitrogen (N) and phosphorus (P) pools, symbiotic N2 fixation, plant litter quality, soil moisture, soil physical structure, soil nematode, collembola and acari communities, soil microbial biomass and microflora community structure (phospholipid fatty acid [PLFA] profiles), soil enzyme activities, and rates of C fluxes to soils were measured. No increases in soil C fluxes or the biomass, number, or activity of soil organisms were detected at high plant diversity; soil H2O and aggregation remained unaltered. Elevated CO2 affected the ecosystem primarily by improving plant and soil water status by reducing leaf conductance, whereas changes in C cycling appeared to be of subordinate importance. Slowed-down soil drying cycles resulted in lower soil aggregation under elevated CO2. Collembola benefited from extra soil moisture under elevated CO2, whereas other faunal groups did not respond. Diversity effects and interactions with elevated CO2 may have been absent because soil responses were mainly driven by community-level processes such as rates of organic C input and water use; these drivers were not changed by plant diversity manipulations, possibly because our species diversity gradient did not extend below five species and because functional type composition remained unaltered. Our findings demonstrate that global change can affect soil aggregation, and we advocate that soil aggregation should be considered as a dynamic property that may respond to environmental changes and feed back on other ecosystem functions.  相似文献   

15.
纳米材料对玉米磷营养的影响初探   总被引:4,自引:0,他引:4  
利用纳米材料处理水浇灌玉米(Zeamays),探讨了纳米材料对玉米磷营养的影响;用纳米材料处理水浸提磷矿粉,验证了纳米材料处理水对磷矿粉溶解性的促进作用。用纳米材料处理水浇灌玉米植株,可提高玉米的株高、茎粗以及生物量,使玉米植株地上部的氮磷钾的总量提高,同时可以提高植株中磷的含量7%~10%。取磷矿粉放于纳米材料处理水中,振荡、过滤,测定过滤液中的水溶性磷的含量,纳米材料可使磷矿粉浸提液中水溶性磷的含量较对照高20%~70%。利用纳米材料处理水提高磷矿的有效性,为提高磷的有效性、充分利用低品位磷矿提供了一条新的途径。  相似文献   

16.
In 1970, a programme of land recuperation started in Venezuelan savannas, strongly affected by the seasonality of precipitation; therefore, a network of dykes has been built to alleviate the floods and retain water throughout the dry period. Under the dyked system, the environment has been altered, allowing a change in the herbaceous vegetation towards aquatic species and an increase in primary production. It is assumed that a considerable quantity of nutrients is lost from the ecosystem through the floodgates, a situation that could be worsened with the climate change. This contribution describes the atmospheric input and total output in stream run-off of phosphorous (P) in a flooded savanna. Internal pools of the biogeochemical cycle of P associated with terrestrial compartments are described. In the flooded savanna, a large amount of P is immobilised (29.6?kg?ha?1) in their above ground biomass by grasses, and in soil microbial biomass. The P budget was nearly balanced, as measured losses were cancelled out by the inputs in rainfall. Soils act as a sink, retaining P coming either from precipitation or from desorption/mineralisation processes. That interruption can be maximised, and losses of P and other nutrients can be minimised with an adequate management of the floodgate.  相似文献   

17.
Due to climate change and anthropogenic nutrients’ runoff into freshwater or shallow lakes, eutrophication caused by phosphorus (P) can be seen in the frequent occurrence of cyanobacterial blooms and excessive growth of macrophytes. Subsequently, decomposition of cyanobacterial bloom biomass (CBB) and macrophytes leads to massive autochthonous organic matter (OM) and creates hypoxia in bodies of water. In this study, we investigated the effects of OM and iron on phosphorus release from lake sediments under anaerobic conditions. As with CBB, the addition of cellulose also enhanced P release from sediments during microcosm experiments, while total phosphorus (TP) concentration in the overlying water displayed an inverse relationship to cellulose amendment, with high TP concentration (0.41?±?0.07?mg?L?1) observed in the treatment of less cellulose amendment (1?g of cellulose). In addition, P release from OM-rich sediments was effectively inhibited when amorphous FeOOH was added to the microcosms. P release was inhibited by 66–92% when the weight ratio between total Fe and total P in sediments varied from 18 to 60. Thus, iron treatment was useful to inhibit P release from OM-rich sediments, and could alleviate eutrophication problems.  相似文献   

18.
氮是湿地植物生长必不可少的营养元素之一,但当外源氮输入超出植物生长需要时,氮素将抑制植物生长。不同植物对氮输入的响应不同,同一植物不同器官对氮输入的响应也不一致。为了探讨氮输入对湿地植物生长和氮吸收的影响机制,本文选取滇西北典型湖泊湿地纳帕海湖滨挺水植物茭草(Zizania caduciflora)和水葱(Scirpus validus)为对象,通过控制实验,研究了3个不同氮输入水平[0 g·m-2·a-1(对照,CK)、20 g·m-2·a-1(N20)、40 g·m-2·a-1(N40)]对茭草和水葱生物量积累、根冠比、氮吸收的影响。结果表明:培养期内,茭草地上生物量始终表现为N40〉N20〉CK,即氮输入促进茭草地上生物量积累;而水葱地上生物量随培养时间不同而发生变化,培养早期N20处理促进水葱地上生物量积累,N40处理抑制水葱地上生物量积累。茭草地下生物量表现为N40〉CK〉N20,即氮输入不足抑制茭草地下生物量积累,足够氮输入促进茭草地下生物量积累;水葱地下生物量表现为CK〉N20〉N40,即氮输入抑制水葱地下生物量积累。植物地上部分和地下部分生长对氮输入的响应也不一致,导致植物根冠比发生变化,茭草根冠比表现为N20  相似文献   

19.
Industrial pollutions are responsible for alterations in biogeochemical cycling of phosphorus (P) in freshwater systems. The objectives of the present study were to quantify the major P forms and assess the relationship between P fractions in water and surface sediments of Govind Ballabh Pant Sagar (GBPS) reservoir, India. Surface water samples (n?=?48) and surface sediment samples (n?=?48) were collected from six regions of GBPS reservoir in December 2014. The results showed that total particulate phosphorus (TPP) and total dissolved phosphorus (TDP) account for 45%–58% and 42%–55% of total phosphorus (TP) in the surface water. The authigenic-P was found to be more than 84% of the total P in surface sediments. The TPP showed a positive statistical relationship with sedimentary P fractions (authigenic-P, exch-P, and organic-P) indicated the impact of industrial pollution load on inorganic and organic P fractions in water and sediments of GBPS reservoir. The discriminant fraction analysis (DFA) revealed that the exch-P, Fe(III)-bound-P, detrital-P, organic-P, and TPP were sensitive indicators of P dynamics in the industrially polluted GBPS reservoir.  相似文献   

20.
苏北盐城海岸带陆源氮磷污染负荷估算初探   总被引:3,自引:1,他引:3  
海岸带陆源氮磷污染输入是导致近海赤潮的主要原因,但目前尚缺乏系统的调查研究。文章采用野外实地调查和文献调研相结合的方法,从农田径流、养殖废水排放、居民生活污水和工业废水排放等几个方面,初步估算了盐城海岸带陆源氮磷污染负荷的分配情况。结果表明,盐城海岸带主要陆源污染源中,养殖水域氮磷排放总量为7641t和480t,分别占排放总量的75.1%、63.5%;其次为居民工矿的生活生产污水,其氮磷排放量为2083t和232t,占总排放量的20.5%、30.7%;农田目前看来不是盐城海岸带主要的陆源污染源,排放量仅占4.4%和5.8%。在当前海岸带陆源污染源治理中,除采取有力措施控制养殖水域养分流失外,农村和乡镇生活生产污水的排放也应引起重视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号