首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seaweeds belonging to 14 different genera of Chlorophyta, Phaeophyta, and Rhodophyta were analysed to determine the levels of heavy metals in two areas of the Egyptian Red Sea coast. Among the trace metals analysed, Mn and Zn showed the highest mass concentrations in the surface sea waters of the two studied areas. However, algae obtained from the Suez area had higher concentrations of the investigated heavy metals than those collect in the Mars Alam area. Nevertheless, a high variability of the metal levels occurs among the studied algae and also between the investigated areas. Moreover, Zn was the most abundant metal in the seaweeds of the Suez area, while Pb was predominant in the Mars Alam area in red and brown algae. Liagora spp. had the highest average concentration factor of Zn in Suez (29 161-fold), while the average concentration factor in Enteromorpha spp. at Mars Alam was 20 091-fold. The highest Metal Pollution Index (MPI) value was recorded in Liagora spp. (22.0) at Suez. This represents a 4.6-fold higher value than that recorded in Liagora spp. at Mars Alam. Among green, brown, and red algae in Suez, the highest values of MPI were recorded in Cladophora spp. and Halimeda spp. (18.2 and 18.3), Padina spp. (16.2), and Liagora spp. (22.1), respectively; while at Mars Alam, the highest values of MPI were recorded in Cladophora spp. (6.6), Padina spp. (3.4) and Liagora spp. (4.8), respectively.  相似文献   

2.
The concentration of some heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, and Zn) in the muscle, liver, and gills in eight fish species, Caranx crysos, Euthynnus alleferatus, Scomberomorus commerson, Sphyraena viridensis, Sargus sargus, Siganus rivulatus, Mugil species, and Sardinella aurita were collected seasonally from the Mediterranean Sea in the region of Alexandria. The highest concentrations of Cd, Cu, Fe, and Zn were measured in liver tissue, while gill tissue yielded the highest concentrations of Mn, Ni, and Pb. Muscle is the organ of poor accumulation factor for all metals under investigation. Concentration of cadmium in muscle in Mugil species exceeds the permissible limit in summer, while Siganus rivulatus exceeds it in the summer and autumn seasons. On the other hand, copper, nickel, lead, and zinc are still much lower than the permissible levels. The metal pollution index (MPI) for metals was studied, revealing that Siganus rivulatus, Mugil species and Sardinella aurita had the highest MPI. Provisional tolerable daily intake (PTDI) indicates that the concentration levels of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in the muscle of all fish species under investigation are much lower than recommended PTDI values, and accordingly there is no risk for the human consumption of these fish species.  相似文献   

3.

The paper reports heavy metal accumulation in algae collected at four stations and in sediments at three stations on the Black Sea coast of Turkey. The metals analysed are Cd, Co, Cr, Cu, Fe, Pb, Sb and Zn. The metal content of algae increased generally (with some exceptions) from 1991 till 1993 in ?ile and Sinop. In the sediments Sb in ?ile, As in Riva, Fe, Zn in Sinop are high. According to these findings the metal pollution increased in Turkish area of the Black Sea during the years investigated.  相似文献   

4.
Heavy metals pollution in aquatic environments is a major problem contributing to human health issues. The study of these pollutants through bioindicators such as the oyster Crassostrea iredalei is important for (1) determining the levels and sources and (2) regulating the quantity of pollutants. The concentrations of cadmium (Cd), manganese (Mn), copper (Cu), zinc (Zn), and lead (Pb) in tissues of C. iredalei, sediment and surrounding water was measured, and data was analyzed to determine the relationship between sampling periods and between oyster tissue, sediment, and water. The highest concentration of metals in oyster tissue was Zn, followed by Cu, Mn, Cd, and Pb. Concentrations of Cd, Cu, and Zn exceeded the maximum level allowed according to the Malaysian Food Act of 1983, which is equivalent to the WHO recommended levels of heavy metals in organisms used for consumption. The highest metal concentration in sediment was Mn followed by Zn, Pb, Cu, and Cd. Concentrations of heavy metals in surrounding water were Zn, Pb, Cu, Mn, and Cd. There was no correlation between metal concentration in oyster tissue and in sediment for all five metals.  相似文献   

5.
This paper presents data on the concentrations of 5 metals, copper (Cu), cadmium (Cd), iron (Fe), zinc (Zn) and lead (Pb) in Blue Whiting sampled from the Eastern Black Sea coast of Turkey. The highest metal concentrations of Cu, Cd, Fe, Zn and Pb were recorded in Blue Whiting with the values of 2.71, 0.601, 14.137, 15.322 and 1.078 μg g‐1 dry weight, respectively. On average the metal concentrations in Blue Whiting followed the order of Zn > Fe > Cu > Pb > Cd. Temporal differences of concentrations of these metals were significant (p < 0.05). Spatial fluctuations of Cu, Cd, Fe, Zn and Pb concentrations in Blue Whiting were also significant (p < 0.01). It was found that the concentrations of Cu, Cd, Fe, Zn and Pb in the muscle in Blue Whiting were below the limit of Public Health Regulation in Turkey.  相似文献   

6.
This work deals with the biodiversity and distribution of benthic macrophytes in the Ghar El Melh lagoon, a Mediterranean coastal lagoon located in the North of Tunisia. An inventory was made of the benthic flora and submerged macrophyte communities were mapped during two successive campaigns (the summer of 1999 and the winter of 2000). The following 24 macrophyte species were identified: seven red algae, two brown algae, 11 green algae, and four marine angiosperms. The results were compared with available data from the literature. Ruppia cirrhosa is the most dominant species. It is found in all lagoon parts, except in the west sector.Ruppia beds are usually associated withCladophora forming heterogeneous communities. During summerRuppia cirrhosa shows a large distribution, covering an area of ca. 21.4 km2, with dense, extensive beds covering 80–100%. In winter, severalCladophora species have a very large distribution as well, covering nearly an area of 28.5 km2 with an average cover of 46%. The green algaeCaulerpa prolifera is confined to the eastern part of the lagoon which is mainly affected by seawater. In comparison with previous situations, many transformations were observed in biodiversity and spatial distribution of the dominant communities. Thus,Cymodocea nodosa andZostera beds, which dominated in the 1970s, were replaced byZostera andCaulerpa prolifera in the 1980s and are currently succeeded byRuppia cirrhosa andCladophora. Restoration of the Ghar El Melh lagoon will enable an increase in the exchange with the open sea and the circulation of water, in particular in the confined zones. This should considerably improve the water quality and would positively influence the phytobenthic communities.  相似文献   

7.
The use of algae to control heavy metals in the environment   总被引:1,自引:0,他引:1  
Aqueous effluents from a lead mining and milling operation located in southeastern Missouri, USA, caused a degradation of stream quality despite treatment by a large tailings pond. The receiving stream was choked with algal mats which accumulated unexpectedly large amounts of manganese, lead and zinc. A wastewater treatment system was designed to utilize algae and benthic macrophytes to remove metals from the tailings pond effluent. The system has proved successful and water quality in the receiving stream has been improved to drinking water standards.Experiments were conducted to understand more fully the phenomenon of heavy metal accumulation by algae. Radionuclides (210Pb,203Hg,65Zn,109Cd) were used in conjunction with commercially available microculture apparatus to screen several species of algae for heavy metal accumulation. It was found that all species of algae studied concentrated mercury, green algae were more efficient accumulators of cadmium than blue-green algae, one alga (Chlamydomonas) proved best at removing lead from solution and no alga studied removed zinc.  相似文献   

8.
Concentrations of ten metals (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn and Hg) in the edible muscle of Arius maculatus captured from eight different near‐shore and off‐shore sites off the south west coast of the Arabian Sea, Pakistan, were determined by atomic absorption spectrophotometry. Relevant water and sediment samples from the sites were also analysed for the metals. Zinc showed the highest metal concentration (6.763 μg/g, wet weight) in the muscle of the fish, while Mn and Hg showed lowest level (0.019 μg/g, wet weight). Of all the metals investigated, largest scatter (measured as σ) was observed for Zn = 2.058 /μg/g) in fish muscle, for Fe and Mn in sediment (σ = 27481 and 44.50 μg/g) and for As in water (σ = 0.270 μg/L). The metal distribution data pertaining to water, fish and sediment were examined on the basis of simple metal correlations. The statistical study revealed that Ni, Cr, Pb and Cu had significant positive correlations (r > 0.830 at ρ = 0.01). The finding substantiated a trace metal concentration gradient in the area, thereby indicating that the local marine environment is contaminated by anthropogenic sources.  相似文献   

9.
Evaluation of tests to assess the quality of mine-contaminated soils   总被引:1,自引:0,他引:1  
An acid metal-contaminated soil from the Aljustrel mining area (a pyrite mine located in SW Portugal in the Iberian Pyrite Belt) was subjected to chemical characterisation and total metal quantification (Cd, Cr, Cu, Ni, Pb and Zn). Water-soluble metals were determined and a sequential extraction procedure was used to investigate metal speciation. Two bioavailable metal fractions were determined: a mobile fraction and a mobilisable fraction. Soil ecotoxicity was studied using a battery of bioassays: plant growth test and seed germination with cress (Lepidium sativum L.), earthworm (Eisenia fetida) mortality, E. fetida avoidance behaviour, luminescent inhibition of Vibrio fischeri and Daphnia magna immobilisation. Although the total content of Cu, Zn and Pb in the soil was large (362, 245 and 1,250 mg/kg dry matter, respectively), these metals were mostly structurally bound (87% for Cu, 81% for Zn and 89% for Pb) and, therefore, scarcely bioavailable. Nonetheless, the D. magna immobilization test using soil leachate showed an EC50 (48 h) of 36.3% (v/v), and the luminescent inhibition of V. fischeri presented an EC20 (15 min) of 45.2% and an EC20 (30 min) of 10.7% (v/v), suggesting a considerable toxic effect. In the direct exposure bioassays, E. fetida avoided the mine soil at the highest concentrations (50%, 75% and 100% v/v). At the same soil concentrations, cress showed negligible growth. The results suggest the need to use a battery of toxicity tests, in conjunction with chemical methods, in order to assess the quality of mine-contaminated soils correctly.  相似文献   

10.
Cadmium (Cd), copper (Cu), and zinc (Zn) in carrots obtained from different regions throughout Japan were assessed in a baseline study on the contents of trace metals in foods. These three metals were measured by flameless atomic absorption spectrophotometry. The geometric mean contents (with one geometric standard deviation indicated in parentheses) of Cd, Cu, and Zn were 0.02 (2.2), 0.7 (2.1), and 2.4 (1.6) mg?kg?1 wet weight in carrots obtained in Japan. While there was a close relationship among the contents of the three metals in the carrots grown in Cambisols and Gleysols, a significant relationship was recognized only between the contents of Cd and Zn in those grown in Andosols and Fluvic Gleysols. Cd and Zn are classified as 2B metals in the periodic table of elements, and the authors speculate that the similarity of the metal characteristics between Cd and Zn may be responsible for the close relationship in the contents of the two metals, with no relation to the soil type.  相似文献   

11.
Snails, Nerita lineata, were collected from 15 sites along the west intertidal area of Peninsular Malaysia from December 2005 until April 2006. The concentrations of heavy metals (Cd, Cu, Pb, and Zn) were determined in the total soft tissues, operculums, and shells of the snails. Different patterns of heavy metal distributions were found in the different tissues (shell, operculums, and soft tissues) as well as spatial variations of heavy metal concentrations in the snails. This shows that the distribution of metals in the shells and the total soft tissues of N. lineata were not similar which could be due to different rates of metal accumulation, excretion, and sequestration. Since N. lineata is abundant on the rocky shores, below jetties and mangrove trees along the west intertidal area of Peninsular Malaysia and accumulate heavy metals, the snails are therefore potential biomonitors of heavy metal contamination for the west intertidal area of Peninsular Malaysia.  相似文献   

12.
The concentrations of Zn, Cu, Cd, and Pb were determined in different tissues of mudskipper fishes Periophthalmodon schlosseri caught at two selected locations (Morib and Remis) of the intertidal mudflat area of Selangor state, West Coast of Peninsular Malaysia and in surface sediment samples. Metal concentrations in the mudskipper tissue and in the sediment samples tended to vary significantly (p < 0.05) between the two locations. Higher metal concentrations (except for Zn) were mostly found in the tissues of mudskippers from Remis. For sediment samples, significantly (p < 0.05) higher metal concentrations of all metals were also found at Remis. Generally, metal distribution between different tissues of mudskipper varied with scales being highly accumulative of Zn, Cd, and Pb, while for Cu, the highest mean concentrations were found in the liver. The lowest mean concentrations of Zn, Cu, and Cd were found in the muscles except for Pb, which was lowest in the liver. This study suggests that mudskippers can be potential biomonitoring organisms for heavy metal bioavailability and contamination of intertidal coastal mudflats. The concentrations of Cd and Pb were slightly above the acceptable limits of Malaysian and European food safety guidelines.  相似文献   

13.
Five trace metals (Cu, Zn, Fe, Mn and Cd) were determined in different tissues and organs (muscle, liver, brain, gills, gonads and intestines) of some Tilapia spp. (Oreochromis spp. and Sarotherodon galilaues) collected from two Egyptian Lakes (Edku and Mariut, exposed to different types of pollutants), El-Umum Drain, and from the fishing farm El-Nozha Hydrodrome. Our results indicate that metal accumulation in different organs vary considerably between the same and among different Tilapia spp. There is a preferential accumulation of metals by different organs. Liver is a target organ for Cu accumulation, whereas the brain and flesh tissues clearly accumulate more levels of Zn than the other studied elements. Amongst the studied elements, Cd concentrations in the different organs are the lowest. It was found that edible parts of Tilapia spp. collected from Lake Mariut accumulate the highest levels of the studied elements (Fe, Zn, Mn and Cu for S. galilaues and Cd for Oreochromis niloticus), compared with those in the other studied areas. In general, the levels of Cd (0.0–0.11?ppm), Cu (0.25–1.85?ppm) and Zn (3.58–8.46?ppm) in the edible parts of studied fish cannot be considered as hazardous levels.  相似文献   

14.
Two marine bivalves, Mytilus galloprovincialis and Callista chione, were exposed to various concentrations of cadmium and nickel (0.5, 1.0, 2.5 and 20 ppm), for 20 days, plus 10 days’ depuration period, in a laboratory experiment. Animals from each experimental condition were dissected and the bioaccumulation and distribution of Cd and Ni were determined in their gills, mantles and remaining bodies. The concentrations of Fe and Zn were also measured. Heavy metal tolerance, bioconcentration and distribution of heavy metals in tissues were considerably different in M. galloprovincialis and C. chione: (i) both animals were tolerant to Ni pollution, even at the highest concentration used; (ii) C. chione was more tolerant to Cd; (iii) M. galloprovincialis was a better Cd and Ni accumulator, with the exception of the highest Cd concentration tested, where C. chione accumulated more Cd; (iv) Fe and Zn levels were much more affected in M. galloprovincialis; (v) in general, accumulation and distribution of Ni and Cd in the tissues were metal-, species- and time of exposure- dependent; (vi) significant amounts of heavy metals remained in the tissues after 10 days’ depuration. Our results support a hypothesis for a two competing processes mechanism for metal accumulation and detoxification.  相似文献   

15.
White lupin is an annual crop that has been used for phytostabilization of acidified multicontaminated (heavy metals and As) soils from the Aznalcóllar spill-affected area, Southern Spain. One of the most important factors for successful phytostabilization is monitoring the pollutant bioavailability in the soil. The aim of this work was to determine the best-suited method for assessing the bioavailability of heavy metals together with As in the Aznalcóllar spill-affected area, by means of a systematic comparison between different extraction methods (Ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA), CaCl2, NaNO3, BCR, (NH4)2SO4 and rhizo). Both AB-DTPA and the first step of the BCR method were found to be unsuitable for assessing the bioavailability of heavy metals and As to plants growing in acidic soils. However, CaCl2-extractable As, Cu, and Zn and NaNO3-extractable As and Zn were well correlated with their concentrations in plant organs. Rhizo and (NH4)2SO4, with the highest determination coefficients, were the most recommended simple extraction methods to assess the bioavailability of As, Cu, Fe, Mn, and Zn in acidified multicontaminated soils using white lupin as an excluder model plant.  相似文献   

16.
Kinetic measurements of metal accumulation in two marine macroalgae   总被引:5,自引:0,他引:5  
 We measured the uptake kinetics of four metals (Cd, Cr, Se and Zn) in two marine macroalgae (the green alga Ulva lactuca and the red alga Gracilaria blodgettii). Metal uptake generally displayed a linear pattern with increasing exposure time. With the exception of Cr, which exhibited comparable uptake rate constants at different concentrations, uptake rate constants of Cd, Se and Zn decreased with increasing metal concentration, indicating that the seaweeds had a higher relative uptake at lower metal concentration. Uptake of Cd and Zn was higher in U. lactuca than in G. blodgettii, whereas uptake of Cr and Se was comparable between the two species. Only Cd and Zn uptake in U. lactuca was significantly inhibited by dark exposure. A decrease in salinity from 28 to 10‰ enhanced the uptake of Cd, Cr, Se and Zn in U. lactuca 1.9-, 3.0-, 3.6-, and 1.9-fold, respectively. In G. blodgettii, Cd uptake increased twofold when salinity was decreased from 28 to 10‰, whereas uptake of Cr and Zn was not significantly affected by salinity change. The calculated depuration rate constants of metals in U. lactuca were 0.01 d−1 for Cd, 0.05 to 0.08 d−1 for Cr, 0.14 to 0.16 d−1 for Se, and 0.12 to 0.15 d−1 for Zn, and were relatively independent of the metal body burden in the algae. The predicted bioconcentration factor was 3 × 104 for Cd, 2 × 103 for Cr, 40 to 150 for Se, and 1 to 2 × 104 for Zn in U. lactuca. Our kinetic study suggested that U. lactuca would be a good biomonitor of Cr and Zn contamination in coastal waters. Received: 14 September 1998 / Accepted: 29 May 1999  相似文献   

17.
Mussels have been widely used as bioindicators of coastal contamination, and recent reports have demonstrated that metals are accumulated from both the dissolved phase and from ingested food. In the winter and spring of 1995, we examined the influence of the chemical composition of food (protein content, trace element concentrations and ratios in the diatom Thalassiosira pseudomana) on the assimilation of six trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis (L.). Differences of up to 38% in diatom protein content had no major influence on the assimilation of any trace element or carbon. Protein assimilation in M. edulis examined with a 35S radiotracer was also independent of protein content in the diatoms. Similarly, Se assimilation in mussels was not affected by the different Se concentrations in the diatoms. Cd assimilation increased with increasing Cd concentration, presumably due to higher desorption of Cd under acidic conditions typical of the mussel gut. Zn assimilation was inversely related to Zn concentration in the food particles, implying a partial regulation of this metal in the mussels. There was no evidence of any interaction of Cd and Zn in their assimilation by the mussels. These results suggest that mussels are highly responsive, in an element-specific way, to some components of ingested food (e.g., metal concentration), but other food components (such as the biochemical composition of the algae) have little effect on assimilation.  相似文献   

18.
The use of algae (Ulva fasciata, green and Sargassum sp., brown) to reduce lead and cadmium levels from mono-metal solutions was investigated. The brown algae showed higher efficiency for the accumulation of lead (~1.5 times) and cadmium (~2 times) than green algae. The optimum pH value is found to be between 4 and 5.5. Regarding biomass concentration, an increase in metals percentage removal and a decrease in metal uptake capacity coincided with the increase in biomass concentration. All light metals (Ca, Mg and Na) showed a suppressive effect on biosorption capacity. The enhancement of biosorption in the case of NaOH was obvious. The biosorption process (65–90%) occurred within 3?min. Experimental data were in high agreement with the pseudo-second-order kinetic model and Freundlich model for lead and cadmium biosorption using different biosorbents. In the desorption study, 0.2?mol?L?1 HCl recorded the best concentration for the elution of metals from the biomass. The biosorption capacity decreased over the four operational cycles for both lead and cadmium. Infrared analysis showed that amino, hydroxyl and carboxyl functional groups provide the major biosorption sites for metal binding. Use of the above-mentioned algae for cheap metal absorbance is considered as one water treatment criterion.  相似文献   

19.
Green-lipped mussels, Perna viridis, were collected from the eastern and western parts of the Johore Straits in September 2004 and January 2005. Based on the heavy metal concentrations in the different soft tissues (gonad, foot, mantle, gills, muscle, and remaining soft tissues) of these mussel samples, the eastern part of the Johore Straits (which is divided into two portions by a causeway), recorded higher levels of bioavailability and contamination by Cd, Cu, Fe, Ni, and Zn when compared to the western part, while Kg. Pasir Puteh in the eastern part was found to record the highest bioavailability and contamination by heavy metals. The use of different soft tissues of P. viridis as biomonitors of bioavailability and contamination by Cd, Cu, Fe, Pb, Ni, and Zn in the semi-enclosed Johore Straits is proposed, since erroneous results due to spawning and the problem of defecation before dissection could be overcome. Hence, a more accurate interpretation of the bioavailability and contamination by heavy metals in coastal waters could be obtained. To our knowledge, this is the most detailed study on the bioavailability and contamination of heavy metals in the Johore Straits on the Malaysian side of the waterway carried out by using the different soft tissues and metal distribution based on the Mussel Watch approach.  相似文献   

20.
Oysters Isognomon alatus containing high concentrations of Zn, Cu, Pb and Cd were collected from the Sepang Besar River, and transferred to the Sepang Kecil River where the native oysters contain low metal concentrations. Concentrations of heavy metals in oysters were measured monthly over six months. The concentrations of all metals decreased significantly (p<0.05) for Cd 87%, Pb 83%, Cu 78%, and Zn 59%. In addition, metal depuration in oysters was investigated under laboratory conditions. Oysters were exposed to 100?µg?g?1 of metals for two weeks followed by one week of depuration. Our studies suggest that metals in oysters tend to be lost in the order, Cd>Pb>Cu>Zn. A comparison between laboratory and field data showed that depuration of metals under the laboratory conditions is significantly faster than in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号