首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The aim of this study was to assess the toxicity reduction of wastewaster after treatment with fly ash. Fly ash is a waste material which is formed as a result of coal burning in power plants, but has the potential to adsorb heavy metal ions. The present study examined the adsorption capacity of fly ash to adsorb Pb2+, Cu2+, and Zn2+ from waste water under different conditions of contact time, pH, and temperature. Uptake of metal ions by fly ash generally rose with increasing pH. At lower temperatures the uptake of heavy metal adsorption were enhanced. Significant reduction in Pb2+ (79%), Cu2+ (53%), and Zn2+ (80%) content was found after treatment with fly ash of waste water treatment. Using the microtox test toxicity of the effluent was reduced by 75% due to removal of Pb2+ ion by the fly ash. Data indicated that fly ash generated by power plants may be used beneficially to remove metals from waste water.  相似文献   

2.
Removal of Cu2+, Cd2+, Pb2+, and Zn2+ from aqueous solutions by activated carbon prepared from stems and seed hulls of Cicer arietinum, an agricultural solid waste, has been studied. The influence of various parameters, such as pH, contact time, adsorbent dose, and initial concentration of metal ions on removal was evaluated. The activated carbon was characterized by FT-IR spectroscopy, X-ray diffraction, and elemental analysis. Sorption isotherms were studied using Langmuir and Freundlich isotherm models. All experimental sorption data were fitted to the sorption models using nonlinear least-squares regression. The maximum adsorption capacity values for activated carbon prepared from Cicer arietinum waste for metal ions were 18 mg g?1 (Cu2+), 18 mg g?1 (Cd2+), 20 mg g?1 (Pb2+), and 20 mg g?1 (Zn2+), respectively. The Freundlich isotherm model fit was best, followed by the pseudo-second-order kinetic model. Desorption studies were carried out with dilute hydrochloric acid for quantitative recovery of the metal ions and for regeneration of the adsorbent.  相似文献   

3.
不同部位梧桐生物质炭对水溶液中镉吸附的机理   总被引:1,自引:0,他引:1  
为了探究梧桐不同部位废弃物所制备的生物质炭(皮、枝、叶)对Cd2+的吸附效率和稳定修复的机理,以此为园林废弃物炭化利用在重金属污染修复方面的应用提供科学依据.利用实验室模拟法,通过高温煅烧法制备梧桐不同部位生物质炭,采用元素分析仪、比表面积及孔隙分析(BET)、X射线衍射仪(XRD)、扫描电镜/能谱(SEM/EDS)及衰减全反射红外光谱(ATR-IR)等技术研究不同反应时间、重金属浓度和溶液初始pH条件下生物质炭对Cd2+吸附效果的影响,并运用四步萃取法和脱附实验分析生物质炭上Cd2+的吸附形态和稳定性.3种生物质炭都在8 h左右达到吸附平衡,最终吸附量依次为树皮炭>枝条炭>叶片炭;溶液初始浓度为0.5—2 g·L-1时Cd2+的吸附量呈增长趋势,在2.5—3g·L-1时逐渐平缓;生物质炭Cd2+吸附量均随着pH的升高而升高,但在pH值为5—8时,吸附的趋势逐渐平稳;树皮炭的酸溶态和非生物利用态的稳定Cd形态要高于枝条炭和叶片炭;比表面积不是影响梧桐生物质炭吸附Cd2+的主要影响因素,吸附动力学,ATR,XRD和重金属形态萃取均证实Cd碳酸盐类矿物生成是主导吸附机理;3种生物质炭的脱附量在4 h后逐渐趋于平衡,其中脱附量最大为叶片炭,最小为树皮炭.梧桐不同部位的初始性质对生物质炭吸附Cd2+具有明显的影响,其中梧桐皮具备更高的吸附量和重金属稳定形态,并且相比其他种类生物质炭有明显优势.因此,从吸附效果和生产成本的角度,本研究建议以梧桐皮为主,枝条和叶片为辅的生物质炭对重金属Cd进行修复治理.  相似文献   

4.
In this work, a new procedure for the enrichment of the trace amount of Cu2+, Ni2+, Co2+, Pb2+, Fe2+, and Zn2+ ions based on the utilization of multiwalled carbon nanotubes (MWCNT) modified with 2-(2-hydroxy-5-nitrophenyl)-4,5-diphenyl imidazole as chelating agent prior to their determination by flame atomic absorption spectrometry has been described. The influence of effective parameters including pH, amount of ligand and MWCNT, composition of eluent, and coexisting ions on recoveries of understudy metal ions was examined. At the optimum pH of 5.0, all metal ions were quantitatively sorbed onto the proposed solid phase and completely desorbed with 8?mL of 5.0?mol?L?1 HNO3. The detection limit of Cu2+, Co2+, Ni2+, Pb2+, Fe2+, and Zn2+ ions was 1.7, 2.4, 2.3, 2.9, 2.8, and 1.4?µg?L?1, while the preconcentration factor was 63 for Cu2+ and 94 for the other metal ions and relative standard deviations between 1.8 less than 3.0%. The proposed procedure was applied for the analysis of various samples.  相似文献   

5.
Previous studies have demonstrated that cadmium can induce biochemical and physiological changes in yeast Saccharomyces cerevisiae. However, studies on the influence of cadmium on the ion balance in the cell and the interaction between cadmium and other ions are still relatively few in number. By using inductively coupled plasma-atomic emission spectrometry, the contents of some cations, including Zn2+, Ca2+, Fe3+, Cu2+, Mg2+, K+, and Na+ were measured. The data showed that the levels of Zn2+ and Fe3+ were increased, while those of Cu2+, K+, and Na+ were decreased after cadmium treatment. Afterwards, using the drop test assay, the interactions between cadmium and the selected ions were investigated. The results suggested that the cytotoxicity of cadmium could be attributable to the interference of cadmium with the intracellular cation homoeostasis. Calcium channel transporter Cch1 participates in the intracellular uptake of cadmium. Additionally, Zn2+, Ca2+, Fe3+, Mg2+, and K+ can rescue the toxic effect of cadmium in yeast.  相似文献   

6.
As a biomass agricultural waste material, coconut shells were used for the preparation of high-quality modified activated carbon. Chemical modification of the surface of the prepared activated carbon is done by oxidation using H2O2 and HNO3, respectively. The surface area and pore volume of the coconut shells activated carbon are increased by the chemical modification, and followingly the removal of the metals is improved. The structural morphology and composition of the modified activated carbon coconut shells (MACCS) were evaluated by Fourier transform infrared (FTIR) spectra, thermogravimetric analysis–differential thermal analysis (TGA-DTA), scanning electron microscope (SEM), X-ray diffraction (XRD), surface area analysis (SAA), X-ray fluorescence (XRF), and carbon, hydrogen, nitrogen, and sulfur (CHNS) elemental analysis. The prepared MACCS has reasonably good chemical stability. The influence of solution pH, contact time, adsorbent dosage, adsorption temperature, initial metal concentrations, and interfering ions on the adsorption performance of the investigated ions onto the prepared sorbent was examined by a batch method. The selectivity sequence for sorption of Eu3+, Ce3+, Sr2+, and Cs+ ions on MACCS was found to be Eu3+?>?Ce3+?>?Sr2+?>?Cs+. The saturation capacities of MACCS for the studied metal ions were found to be 136.84, 85.55, 69.85, and 60.00?mg?g?1 for Eu3+, Ce3+, Sr2+, and Cs+ ions, respectively. The thermodynamic parameters, ΔH°, ΔS°, and ΔG° were also evaluated.  相似文献   

7.
The photocatalytic bleaching of some dyes (erythrosin-B, fast green FCF and eosin Y) was carried in the presence of semiconducting zinc oxide and was observed spectrophotometrically. The effects of various operating variables like pH, concentration of dyes, amount of semiconductor and light intensity on the efficiency of the reaction were also observed. Attempts have been made to study the effect of the addition of other metal ions (Fe2+, Ni2+, Ag+, Cu2+, Co2+, V2+ and Mn2+). All the added metal ions increase the reaction rate to some extent. It was also observed that Fe2+ is most effective in photobleaching of erythrosin-B, whereas V2+ is more effective in the cases of fast green FCF and eosin Y. A tentative mechanism has been proposed.  相似文献   

8.
Biochar, is a low-cost material that can be used as an alternative adsorbent for the removal of heavy metals. In this study, a low-cost and efficient adsorbent synthesised from Jatropha curcas seeds was used for the uptake of Cu2+ from aqueous solutions. The as-prepared adsorbent was characterised by scanning electron microscopy and Brunauer–Emmett–Teller analysis post calcination at 500 °C, its BET surface area and total pore volume were 39.62?m2?g?1 and 0.049?m3?g?1, respectively. Subsequently, the effects of initial pH of the solution, contact time, and adsorbent material dosage on the adsorption of Cu2+ by the prepared adsorbent were investigated. The as-prepared adsorbent exhibited a high performance, with a maximum adsorption amount of 32.895?mg?g?1 for Cu2+ at pH 5.0 and 25 °C, owing to the presence of ?OH, C=O, C–O, Si-O-Si, and O-Si-O on its surface. The predominant Cu2+ adsorption mechanism was assumed to be ion exchange. Notably, the Cu2+ adsorption could attain equilibrium within 90?min. In addition, the fact that the Langmuir model was a better fit than the Freundlich model for the isotherm data of Cu2+ adsorption by the as-prepared adsorbent suggested that the adsorption of Cu2+ was a monolayer adsorption process.  相似文献   

9.
The -N-acetyl-D-glucosaminidase (NAGase, EC 3.2.1.52) from prawn (Penaeus vannamei) was purified by extraction with 30% ethanol solution and ammonium sulfate fractionation, then chromatographed on Sephadex G-100 followed by DEAE-cellulose (DE-32) columns. The purified enzyme determined to be homogeneous by polyacrylamide gel electrophoresis (PAGE) and SDS-PAGE. The specific activity of the purified enzyme was 1,560 U mg–1. Enzyme molecular weight was determined to be 105,000 Da; it contained two subunits of the same mass (45,000 Da). The pI value was calculated to be 4.8 by isoelectric focusing. The optimum pH and optimum temperature of the enzyme for the hydrolysis of pNP--D-GlcNAc (enzyme substrate) were determined to be pH 5.2 and 45°C, respectively. The behavior of the enzyme during hydrolysis of pNP--D-GlcNAc followed Michaelis–Menten kinetics, with Km=0.254 mM and Vm=9.438 M min–1, at pH 5.2 and 37°C. The stability of the enzyme was investigated, and the results showed that the enzyme was stable in a pH range from 4.2 to 10.0 and at temperatures <40°C. The effects of metal ions on the enzyme were also studied. Li+, Na+ and K+ had no influence on enzyme activity. Mg2+, Ca2+ and Mn2+ activated the enzyme, while Ba2+, Zn2+, Co2+, Cd2+, Hg2+, Pb2+ Cu2+, Fe3+ and Al3+ showed various degrees of inhibitory effects on the enzyme.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

10.
A laboratory batch experimental study has been carried out to evaluate the adsorption capacity of selected metal species in acid mine drainage (AMD) by bentonite clay. Bentonite clay was mixed with simulated AMD at specific solid–liquid (S/L) ratios and agitated in a reciprocating shaker and adsorption of selected toxic metals assessed over time. Cation exchange capacity varied from 1140 to 1290 meq kg?1. Contact of AMD with bentonite leads to increase in pH and a possible reduction in electrical conductivity and total dissolved solids. At constant agitation time of 60 min, the pH increased with dosage of bentonite. Removal of Mn2+, Al 3+, and Fe3+ was observed to be greatest at 60 min of agitation. Bentonite clay exhibits high adsorption for Al3+ and Fe3+ at concentration less than 300 mg L?1, while the capacity for Mn2+ was observed to be lower. Adsorption capacity for SO42? was low with a great percentage of the SO42? remaining in solution. Adsorption capacity of bentonite with more complex formulated AMD and gold tailing leachates was low for Fe3+, Al3+, and Mn2+. This indicates that optimum adsorption of bentonite clay is dependent on the chemistry of the AMD and its application might be site specific.  相似文献   

11.
Effects of heavy metals on lysosomes were studied in living cells from the mussel (Mytilus galloprovincialis Lam.). Haemolymph cells were obtained from the mussel adductor muscle, stained with neutral red (NR), and analysed by digital imaging to evaluate NR retention times within lysosomes. Exposure to Hg2+, Cd2+ and Cu2+ induced a reduction of NR retention time, indicating lysosomal membrane destabilisation. The intensity of these effects was correlated with the metal affinity for sulfhydryls. In contrast, Zn2+ showed no effect on lysosomes. Moreover, 200 μM Zn2+ protected lysosomes against the effects of Cd2+ and Cu2+, but not against Hg2+. Cell loading with the fluorescent pH probe Lyso Sensor followed by digital imaging showed a rise of lysosomal pH induced by Cd2+ and Hg2+, while Zn2+ prevented the effect of Cd2+ and also partially that of Hg2+. The different protective effect of Zn2+ against Hg2+ suggests a dual action of Hg2+ on lysosomes, possibly involving both membrane destabilisation and proton pump inhibition. Cell exposure to 17 β-estradiol also caused a reduction of NR retention time, which was synergistic to that of Hg2+. This suggests a common pathway between metals and hormone, possibly involving Ca2+ signaling. Received: 17 November 1999 / Accepted: 29 June 2000  相似文献   

12.
A method for the solid phase extraction of trace metals, namely Co, Cu, Pb, Ni and Zn, from environmental and biological samples using column Amberlite XAD-7 loaded with 2-hydroxy-propiophenone-4-phenyl-3-thiosemicarbazone (HPPPTSC) and determination by inductively coupled spectrometry (ICP–AES) has been developed. The reagent has the capacity to form chelate complexes with the metals because of three binding sites in the reagent molecule. The optimum experimental conditions for the quantitative sorption of five metals, pH, effect of flow rate, concentration of eluent, sorption capacity and the effect of diverse ions on the preconcentration of analytes have been investigated. The sorption capacity of the resin has 83, 127, 35, 88 and 85?µmol?g?1 for Co2+, Cu2+, Pb2+, Ni2+ and Zn2+, respectively. The preconcentration factors for Co2+, Cu2+, Pb2+, Ni2+ and Zn2+ were 100, 110, 120, 140 and 150, respectively. The accuracy of the proposed procedure was evaluated by standard reference materials. The achieved results were in good agreement with certified values. The proposed method was applied for the determination of trace metals in river water and plant leaves.  相似文献   

13.
A polymer with characteristics similar to those of humic acids was obtained by synthesis reactions from oxidative polymerization in an alkaline medium using para-benzoquinone, hydroquinone and 4-aminobenzoic acid as precursors. Samples of natural and synthetic humic acid were used to examine the adsorption behavior of Cu2+ ions on these substrates. The mathematical models described by Langmuir and Freundlich equations were applied, yielding the maximum adsorption intensity values K′ (Langmuir), maximum adsorption capacity, b (Langmuir) and the adsorbent adsorption capacity, m (Freundlich). Based on solubility studies, pH 3 was selected for the development of the adsorption experiment. The Cu2+ ion presented a favorable adsorption, with RL (equilibrium parameter) responses in Langmuir isotherms falling within the desirable ranges.  相似文献   

14.
Polysaccharide natural seed coat from the tree Magonia pubescens, in the form of hydrogel was used to remove metals in aqueous solution. Swelling tests indicate that seed coat presents hydrogel behavior, with maximum water absorption of 292 g water/g. Adsorption experiments performed using Na+, Mg2+, K+, Ca2+, Cr3+, Fe3+ and Zn2+ demonstrated that the polysaccharide structure has a high capacity to extract these ions from the aqueous solution. Scanning electron microscopy revealed significant morphological changes of the material before and after water contact. Differential scanning calorimetry measurements indicate a signal shift of the water evaporation temperature in the material with adsorbed zinc. X-ray photoelectron spectroscopy analysis combined with theoretical studies by the density functional theory and on Hartree–Fock (HF) level evidence that the metallic ions were adsorbed through coordination with hydroxyl groups of polysaccharide. In the case of Zn2+ the lowest HF energy was observed for the tetracoordination mode, where Zn2+ is coordinated by two hydroxyl groups and two water molecules.  相似文献   

15.
Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg?1 predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m2 g?1) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.  相似文献   

16.
Thermodynamic and kinetic studies on the adsorption of Cs+ and Sr2+ by Na-exchanged clinoptilolite-rich zeolite rock from Akita (Northern Japan) were performed for the purpose of nuclear waste treatment. The thermodynamic parameters such as selectivity coefficient, thermodynamic equilibrium constant, and standard free energy of exchange were evaluated. These values indicated that the selectivity order was determined as Cs+ > Na+ > Sr2+. In order to discuss the adsorption mechanism of Cs+ and Sr2+ onto Na-exchanged clinoptilolite, the effective diffusion coefficients were calculated and two kinetic models, pseudo-first-order and pseudo-second-order kinetic model, were tested. For all systems studied, chemisorption seems significant in the rate-controlling step, and the pseudo-second-order kinetic model provided the best correlation of the experimental data.  相似文献   

17.
The biosorption of Cd2+ and Cu2+ onto the immobilized Saccharomyces cerevisiae (S. cerevisiae) was investigated in this study. Adsorption kinetics, isotherms and the effect of pH were studied. The results indicated that the biosorption of Cd2+ and Cu2+ on the immobilized S. cerevisiae was fast at initial stage and then became slow. The maximum biosorption of heavy metal ions on immobilized S. cerevisiae were observed at pH 4 for Cd2+ and Cu2+. by the pseudo-second-order model described the sorption kinetic data well according to the high correlation coefficient (R 2) obtained. The biosorption isotherm was fitted well by the Langmuir model, indicating possible mono-layer biosorption of Cd2+ and Cu2+ on the immobilized S. cerevisiae. Moreover, the immobilized S. cerevisiae after the sorption of Cd2+ and Cu2+ could be regenerated and reused.  相似文献   

18.
Summary. Orb-web-spiders present a series of different strategies for prey capture, involving the use of different types of silk for web building, the use of adhesive traps in the webs, the secretion of toxic compounds to the spider’s preys in the adhesive coating of the capture web and the biosynthesis of a wide range of structurally related acylpolyamine toxins in their venoms. The polyamine toxins usually block neuromuscular junctions and/or the central nervous system (CNS) of Arthropods, targeting specially the ionotropic glutamate receptors; this way these toxins are used are as chemical weapons to kill / paralyze the spider’s prey. Polyamine toxins contain many azamethylene groups involved with the chelation of metal ions, which in turn can interact with the glutamate receptors, affecting the toxicity of these toxins. It was demonstrated that the chelation of Ni+2, Fe+2, Pb+2, Ca+2 and Mg+2 ions by the desalted crude venom of Nephilengys cruentata and by the synthetic toxin JSTX-3, did not cause any significant change in the toxicity of the acylpolyamine toxins to the model-prey insect (honeybees). However, it was also reported that the chelation of Zn+2 ions by the acylpolyamines potentiated the lethal / paralytic action of these toxins to the honeybees, while the chelation of Cu+2 ions caused the inverse effect. Atomic absorption spectrometry and Plasma-ICP analysis both of N. cruentata venom and honeybee’s hemolymph revealed that the spider’s venom concentrates Zn+2 ions, while the honeybee’s hemolymph concentrates Cu+2 ions. These results are suggesting that the natural accumulation of Zn+2 ions in N. cruentata venom favors the prey catching and/or its maintenance in the web, while the natural accumulation of Cu+2 ions in prey’s hemolymph minimizes the efficiency of the acylpolyamine toxins as killing/paralyzing tool.  相似文献   

19.
To investigate the potential use of Lentinus edodes (L. edodes) residue for Cd2+ adsorption, poly alcohol Na alginate (PVA) was applied to immobilize it. The parameters including contact time, pH, adsorbent dosages, and coexisting metal ions were studied. The suitable pH for immobilized L. edodes was 4?C7 wider than that for raw L. edodes (pH 6?C7). In the presence of Pb2+ concentration varying from 0 to 30 mg·L?1, the Cd2+ adsorption ratios declined by 6.71% and 47.45% for immobilized and raw L. edodes, respectively. While, with the coexisting ion Cu2+ concentration varied from 0 to 30 mg·L?1, the Cd2+ adsorption ratios declined by 12.97% and 50.56% for immobilized and raw L. edodes, respectively. The Cd2+ adsorption isotherms in single-metal and dual-metal solutions were analyzed by using Langmuir, Freundlich, and Dubinin-Radushkevich models. The Cd2+ adsorption capacities (q m) in single-metal solution were 6.448 mg·L?1 and 2.832 mg·L?1 for immobilized and raw L. edodes, respectively. The q m of immobilized L. edodes were 1.850 mg Cd·g?1 in Cd2+ + Pb2+ solution and 3.961 mg Cd·g?1 in Cd2+ + Cu2+ solution, respectively. The Cd2+ adsorption processes subjected to both adsorbents follow pseudo-second-order model. Mechanism study showed the functional group of L. edodes was -OH, -NH, -CO, and PVA played an important role in metal adsorbing. Mining wastewater treatment test showed that PVA-SA-immobilized L. edodes was effective in mixed pollutant treatment even for wastewater containing metal ions in very low concentration.  相似文献   

20.
Phytochelatins, or (γ-glutamyl-cysteine) n -glycine, are specialized peptides produced by plants and algae to mitigate toxic metal exposure, for instance in response to high levels of metals such as Cu, Cd, and Zn. Stability constants and structural characterization of metal–phytochelatin complexes are lacking. This information is required to gain mechanistic insights on the metal selectivity of phytochelatins. Here, we studied structural coordination and thermodynamic stability by performing molecular dynamics simulations of a fully hydrated phytochelatin molecule complexed with Ca2+, Mg2+, Fe2+, Zn2+, and Cu2+. Our results predict the following decreasing order for the thermodynamic stability of the phytochelatin complexes: Zn2+ ≥ Cu2+ ≥ Fe2+ > Mg2+ > Ca2+. The favorable binding energies with Zn2+ and Cu2+ over the other metal cations can be explained by shorter binding distances and greater coordination from carboxylate and keto O atoms. Conformational rearrangement of phytochelatin following metal chelation was captured by monitoring changes in the solvent-accessible volume. Accessibility of solvent molecules to the phytochelatin structure was inversely proportional to the distance between the coordinated ligands and the chelated metal. These new findings demonstrate the influence of the metal–phytochelatin structure on the metal-binding thermodynamics and the phytochelatin conformation, both of which are important to evaluate the intracellular role of phytochelatin in mediating algal response to toxic heavy metal exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号