首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
• Adding kaolin/zeolite promotes the formation of stable heavy metals. • The potential ecological risk index of co-pyrolysis biochar is extremely low. • Increasing the pyrolysis temperature reduces the leaching toxicity of heavy metals. • The toxicity of biochar reduces with the increasing content of stable heavy metals. Pyrolysis is a promising technique used for treating of sewage sludge. However, the application of pyrolysis products is limited due to the presence of heavy metals. In this study, sewage sludge mixed with kaolin/zeolite was pyrolyzed in a rotary kiln, aiming to improve the immobilization of heavy metals in pyrolytic carbon. The total concentrations, speciation distributions, leaching toxicities, and potential ecological risk indices of heavy metals in pyrolysis biochar were explored to examine the effects of kaolin/zeolite and pyrolytic temperature on immobilizing heavy metals. Further, mineral composition and surface morphology of biochar were characterized by X-ray diffraction and scanning electron microscopy to reveal the potential mechanism of immobilizing heavy metals. Increasing pyrolysis temperature facilitated the stabilization of heavy metals in pyrolysis biochar. The proportions of stable heavy metals in biochar obtained at 650℃ were 54.50% (Cu), 29.73% (Zn), 79.29% (Cd), 68.17% (Pb) and 86.70% (Cr). Compared to sewage sludge, the potential contamination risk index of pyrolysis biochar obtained at 650℃ was reduced to 17.01, indicating a low ecological risk. The addition of 7% kaolin/zeolite further reduced the risk index of co-pyrolysis biochar prepared at 650℃ to 10.86/15.28. The characterization of biochar revealed that increase in the pyrolysis temperature and incorporation of additives are conducive to the formation of stable heavy metal-inorganics. This study demonstrates that the formation of stable mineral compounds containing heavy metals is the key to stabilizing heavy metals in pyrolysis biochar.  相似文献   

2.
Fly ash is a hazardous byproduct of municipal solid wastes incineration (MSWI). An alkali activated blast furnace slag-based cementitious material was used to stabilize/solidify the fly ash at experimental level. The characteristics of the stabilized/solidified fly ash, including metal leachability, mineralogical characteristics and the distributions of metals in matrices, were tested by toxic characteristic leaching procedure (TCLP), X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) respectively. Continuous acid extraction was utilized to extract metal ions and characterize their leaching behavior. The stabilization/solidification procedure for MSWI fly ash demonstrates a strong fixing capacity for the metals by the formation of C-S-H phase, hydrated calcium aluminosilicate and ettringite. The stabilized/solidified fly ash shows a dense and homogeneous microstructure. Cr is mainly solidified in hydrated calcium aluminosilicate, C-S-H and ettringite phase through physical encapsulation, precipitation, adsorption or substitution mechanisms, and Pb is mainly solidified in C-S-H phase and absorbed in the Si-O structure.  相似文献   

3.
主要原材料为高炉矿渣的碱矿渣胶凝材料(HAS)、掺3%沸石的HAS、掺5%沸石的HAS、水泥等4种固化材料被用来固化人工合成含铅、镉、铬等重金属的污泥。污泥固化体中污泥与固化材的掺和比例为4:1。实验结果表明,HAS固化剂对重金属污泥的固化效果要好于水泥,其污泥固化体的无侧限抗压强度高于水泥固化体,同时其固化体的重金属浸出量明显低于水泥。沸石的掺入使HAS固化体的重金属浸出量减小,且随着沸石掺加量的增大,HAS固化体的重金属浸出量相应的减少。  相似文献   

4.
As a biomass agricultural waste material, coconut shells were used for the preparation of high-quality modified activated carbon. Chemical modification of the surface of the prepared activated carbon is done by oxidation using H2O2 and HNO3, respectively. The surface area and pore volume of the coconut shells activated carbon are increased by the chemical modification, and followingly the removal of the metals is improved. The structural morphology and composition of the modified activated carbon coconut shells (MACCS) were evaluated by Fourier transform infrared (FTIR) spectra, thermogravimetric analysis–differential thermal analysis (TGA-DTA), scanning electron microscope (SEM), X-ray diffraction (XRD), surface area analysis (SAA), X-ray fluorescence (XRF), and carbon, hydrogen, nitrogen, and sulfur (CHNS) elemental analysis. The prepared MACCS has reasonably good chemical stability. The influence of solution pH, contact time, adsorbent dosage, adsorption temperature, initial metal concentrations, and interfering ions on the adsorption performance of the investigated ions onto the prepared sorbent was examined by a batch method. The selectivity sequence for sorption of Eu3+, Ce3+, Sr2+, and Cs+ ions on MACCS was found to be Eu3+?>?Ce3+?>?Sr2+?>?Cs+. The saturation capacities of MACCS for the studied metal ions were found to be 136.84, 85.55, 69.85, and 60.00?mg?g?1 for Eu3+, Ce3+, Sr2+, and Cs+ ions, respectively. The thermodynamic parameters, ΔH°, ΔS°, and ΔG° were also evaluated.  相似文献   

5.
A heteropolyacid Zr(IV) tungstate-based cation exchanger has been synthesized. An amorphous sample, prepared at pH 1.2 and having a Na+ ion exchange capacity of 0.92?meq?g?1, was selected for further studies. Its physicochemical properties were determined using Fourier transform infrared spectrometer, X-ray diffraction, thermogravimetric, and scanning electron studies. To understand the cation exchange behavior of the material, distribution coefficients (K d) for metal ions in various solvent systems were determined. Some important binary separations of metal ions, namely Mg2+–Bi3+, Cd2+–Bi3+, Fe3+–Bi3+, Th4+–Bi3+, and Fe3+–Zn2+, were achieved on such columns. The practical utility of these separations was demonstrated by separating Fe3+ and Zn2+ ions quantitatively in commercial pharmaceutical formulation. The cation exchanger has been successfully applied also for the treatment of industrial wastewater and a synthetic mixture. All the results suggests that Zr(IV) tungstate has excellent potential for the removal of metals from aqueous systems using packed columns of this material.  相似文献   

6.
Removal of Cu2+, Cd2+, Pb2+, and Zn2+ from aqueous solutions by activated carbon prepared from stems and seed hulls of Cicer arietinum, an agricultural solid waste, has been studied. The influence of various parameters, such as pH, contact time, adsorbent dose, and initial concentration of metal ions on removal was evaluated. The activated carbon was characterized by FT-IR spectroscopy, X-ray diffraction, and elemental analysis. Sorption isotherms were studied using Langmuir and Freundlich isotherm models. All experimental sorption data were fitted to the sorption models using nonlinear least-squares regression. The maximum adsorption capacity values for activated carbon prepared from Cicer arietinum waste for metal ions were 18 mg g?1 (Cu2+), 18 mg g?1 (Cd2+), 20 mg g?1 (Pb2+), and 20 mg g?1 (Zn2+), respectively. The Freundlich isotherm model fit was best, followed by the pseudo-second-order kinetic model. Desorption studies were carried out with dilute hydrochloric acid for quantitative recovery of the metal ions and for regeneration of the adsorbent.  相似文献   

7.
制革污泥固化稳定化处理   总被引:3,自引:0,他引:3  
为有效控制制革污泥中的重金属铬污染并安全填埋,采用石灰、粉煤灰和煤渣作为固化剂对制革污泥进行固化/稳定化处理,考察固化剂对制革污泥中重金属毒性的影响,并探讨了固化/稳定化的最佳工艺条件.结果表明,当石灰、粉煤灰和煤渣的掺量分别为0.12 kg.kg-1、0.02 kg.kg-1和0.08 kg.kg-1,养护天数为6 d时,制革污泥固化块抗压强度达到884 kPa,含水率由固化前的79.60%降低至30.20%,满足《危险废物填埋污染控制标准》(GB 18598—2001)的要求.固化块浸出液中Cu、Pb、Zn、Ni浓度同固化前相比,分别降低了92.1%、96.7%、92.8%、88.9%,Cr、Cd、Mn均未检出.固化块浸出液的铬浓度随着石灰添加量的增加而降低,随粉煤灰添加量的增加则为先降低、然后再升高,当石灰与粉煤灰添加量比为6∶1时,协同固化效果显著.  相似文献   

8.
Powdered maize tassels were studied and found to exhibit metal sorption properties due to the availability of functional groups. The tassels have a high amount of soluble organic substances that can dissolve in aqueous media, contributing to secondary pollution during a water treatment process. A chelating agent was chemically attached on the maize tassels with a view to increase the sorption capacity, minimize leaching, and enhance the tassels’ stability. Thermogravimetric analysis confirmed that modification improved their thermal stability to withstand temperatures above 600°C as well as reduced the “secondary pollution”. The modified sorbent was employed for the sorption of lead, copper, and cadmium ions in both the model solutions and the real samples. The contact time and pH were optimized after which Langmuir and Freundlich isotherms were applied to the data. The sorption capacities for Cu2+, Cd2+, and Pb2+ improved from 3.4, 0.8, and 1.7?g?kg?1, respectively, to 6.3, 2.6, and 2.6?g?kg?1 in the same order. The sorbent was shown to remove up to 95% of the metals in less than 10 min. This study has a potential application for the remediation of polluted waters.  相似文献   

9.
The microbial leaching process was evaluated for the treatment of synthetic sediments contaminated with cadmium and nickel sulfides. A series of batch leaching experiments was conducted to compare metal solubilization in sediment inoculated with Acidithiobacillus ferrooxidans -inoculated sediments to that in sterile control sediment. The rate and extent of metal solubilization were significantly higher in A. ferrooxidans -inoculated reactors than in acidified sterile reactors. The efficiency of cadmium (Cd) solubilization (80) in the bioleaching process was higher than that of nickel (Ni) solubilization (60). The performance of leaching reactors containing only culture supernatants was comparable to that of A. ferrooxidans -inoculated reactors, indicating that indirect non-contact leaching by the products of microbial metabolism is the predominant mechanism for metal solubilization rather than direct microbial sulfide oxidation. Moreover, the similar (60–75%) extents of Cd2+ leaching with A. ferrooxidans , cell-free filtrate, and Fe3+ suggest that abiotic oxidation of CdS by Fe3+ controls the overall leaching rate, and the role of A.␣ferrooxidans is most likely not to oxidize CdS mineral directly but to regenerate Fe3+ as an oxidant.  相似文献   

10.
Phytochelatins, or (γ-glutamyl-cysteine) n -glycine, are specialized peptides produced by plants and algae to mitigate toxic metal exposure, for instance in response to high levels of metals such as Cu, Cd, and Zn. Stability constants and structural characterization of metal–phytochelatin complexes are lacking. This information is required to gain mechanistic insights on the metal selectivity of phytochelatins. Here, we studied structural coordination and thermodynamic stability by performing molecular dynamics simulations of a fully hydrated phytochelatin molecule complexed with Ca2+, Mg2+, Fe2+, Zn2+, and Cu2+. Our results predict the following decreasing order for the thermodynamic stability of the phytochelatin complexes: Zn2+ ≥ Cu2+ ≥ Fe2+ > Mg2+ > Ca2+. The favorable binding energies with Zn2+ and Cu2+ over the other metal cations can be explained by shorter binding distances and greater coordination from carboxylate and keto O atoms. Conformational rearrangement of phytochelatin following metal chelation was captured by monitoring changes in the solvent-accessible volume. Accessibility of solvent molecules to the phytochelatin structure was inversely proportional to the distance between the coordinated ligands and the chelated metal. These new findings demonstrate the influence of the metal–phytochelatin structure on the metal-binding thermodynamics and the phytochelatin conformation, both of which are important to evaluate the intracellular role of phytochelatin in mediating algal response to toxic heavy metal exposure.  相似文献   

11.
Several aquatic environments have been contaminated with heavy metals dumped via industrial effluents. Numerous studies have been published regarding the removal of single metals from aqueous solutions by microalgal biomass. However, such studies do not reflect the actual problem associated with industrial effluents because usually more than one metal species is present. Here we studied the biosorption capacity of Zn2+ and Cd2+ as single- and binary-metal systems by two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, isolated from a polluted site in Northern Portugal. For each metal independently, D. pleiomorphus showed a higher metal sorption capacity than S. obliquus, at concentrations ranging from 60 to 300 mg/l (except 150 mgCd/l). Maximum amounts of Zn2+ and Cd2+ removed were 22.3 and 60.8 mg/g by S. obliquus, and 83.1 and 58.6 mg/g by D. pleiomorphus. In binary-metal solutions, S. obliquus was in general able to remove Zn2+ to higher extents than Cd2+, whereas the opposite was observed with D. pleiomorphus. The simultaneous uptake of Zn2+ and Cd2+ by both microalgae was considerably lower than that of their single-metal counterparts, at equivalent concentrations. Although microalgal uptake from binary-metal solutions was lower than from single-metal ones, the wild microalgae selected were able to efficiently take up mixtures of Zn2+ and Cd2+ up to 300 mg/l of both metals—thus materializing a promising bioremediation vector for polluted waters.  相似文献   

12.
The aim of this study was to assess the toxicity reduction of wastewaster after treatment with fly ash. Fly ash is a waste material which is formed as a result of coal burning in power plants, but has the potential to adsorb heavy metal ions. The present study examined the adsorption capacity of fly ash to adsorb Pb2+, Cu2+, and Zn2+ from waste water under different conditions of contact time, pH, and temperature. Uptake of metal ions by fly ash generally rose with increasing pH. At lower temperatures the uptake of heavy metal adsorption were enhanced. Significant reduction in Pb2+ (79%), Cu2+ (53%), and Zn2+ (80%) content was found after treatment with fly ash of waste water treatment. Using the microtox test toxicity of the effluent was reduced by 75% due to removal of Pb2+ ion by the fly ash. Data indicated that fly ash generated by power plants may be used beneficially to remove metals from waste water.  相似文献   

13.
In this research, we evaluated the toxic effect of metal ions on mycelial growth and phosphate-solubilising activity of soil-borne micromycetes isolated from the Phragmites australis rhizosphere using Pikovskaya-agar plates supplemented with four metal concentrations. The diameter growth rate (DGR) decreased as the metal concentration rise for all tested fungi. Trichoderma atroviride had the fastest growth rate (1.48?cm2?day?1) and was the least susceptible to Al3+, Cd2+, Cr3+, Cu2+ and Pb2+ with a median effective concentration (MEC50) of 12.19, 0.48, 4.51, 11.44 and 50.05?mM, respectively. Aspergillus japonicus was the most tolerant to Co2+, Ni2+ and Zn2+, with MEC50 values of 3.36, 1.095 and 2.34?mM, respectively. Penicillium italicum was the most tolerant to Cr6+ (MEC50?=?0.677?mM). The ability to solubilise phosphate remained, despite the decrease in the DGR, and P. italicum and Penicillium dipodomyicola had the highest Phosphate Solubilisation Indexes (PSIs) at 1.97 and 2.12, respectively. In particular, P. italicum recorded the highest PSI of all the studied isolates at 0.62?mM Cr3+ (PSI?=?4.74). A. japonicus and T. atroviride were the most tolerant isolates to all tested metals, which suggests that these isolates are promising candidates for further study with regard to mycoremediation and biofertilisation of metal-polluted soils.  相似文献   

14.
The photocatalytic bleaching of some dyes (erythrosin-B, fast green FCF and eosin Y) was carried in the presence of semiconducting zinc oxide and was observed spectrophotometrically. The effects of various operating variables like pH, concentration of dyes, amount of semiconductor and light intensity on the efficiency of the reaction were also observed. Attempts have been made to study the effect of the addition of other metal ions (Fe2+, Ni2+, Ag+, Cu2+, Co2+, V2+ and Mn2+). All the added metal ions increase the reaction rate to some extent. It was also observed that Fe2+ is most effective in photobleaching of erythrosin-B, whereas V2+ is more effective in the cases of fast green FCF and eosin Y. A tentative mechanism has been proposed.  相似文献   

15.
In this work, a new procedure for the enrichment of the trace amount of Cu2+, Ni2+, Co2+, Pb2+, Fe2+, and Zn2+ ions based on the utilization of multiwalled carbon nanotubes (MWCNT) modified with 2-(2-hydroxy-5-nitrophenyl)-4,5-diphenyl imidazole as chelating agent prior to their determination by flame atomic absorption spectrometry has been described. The influence of effective parameters including pH, amount of ligand and MWCNT, composition of eluent, and coexisting ions on recoveries of understudy metal ions was examined. At the optimum pH of 5.0, all metal ions were quantitatively sorbed onto the proposed solid phase and completely desorbed with 8?mL of 5.0?mol?L?1 HNO3. The detection limit of Cu2+, Co2+, Ni2+, Pb2+, Fe2+, and Zn2+ ions was 1.7, 2.4, 2.3, 2.9, 2.8, and 1.4?µg?L?1, while the preconcentration factor was 63 for Cu2+ and 94 for the other metal ions and relative standard deviations between 1.8 less than 3.0%. The proposed procedure was applied for the analysis of various samples.  相似文献   

16.
A study was conducted to investigate the effects of metal mixtures on the Chironomus plumosus. Two methods of preparing the mixtures were used, the Toxic Unit (TU) method and the parts per million (PPM) + PPM method. A comparison was undertaken between the two methods to observe the ease with which (1) experiment could be conducted and (2) whether LC50 values could be obtained. In this study, it was noted that the PPM + PPM method was an easier method to conduct metal mixture experiments as the LC50 values could be easily calculated for individual metals and compared with the LC50 values of metals obtained from single metal experiments. The findings showed that the LC50 value for zinc (Zn) was more toxic for chromium (Cr) when it was reduced from 9.6 to 0.3 mg L?1, with silver the LC50 value became 3.6 mg L?1, 4.5 mg L?1 with nickel (Ni). In the PPM + PPM method, the LC50 value for Zn was observed to be 10.2 mg L?1 when in mixture with chromium, 23.8 mg L?1 with silver, and 13.4 mg L?1 with Ni. Changes in the 96 h LC50 value were found to be significant for all metals.  相似文献   

17.
A method for the solid phase extraction of trace metals, namely Co, Cu, Pb, Ni and Zn, from environmental and biological samples using column Amberlite XAD-7 loaded with 2-hydroxy-propiophenone-4-phenyl-3-thiosemicarbazone (HPPPTSC) and determination by inductively coupled spectrometry (ICP–AES) has been developed. The reagent has the capacity to form chelate complexes with the metals because of three binding sites in the reagent molecule. The optimum experimental conditions for the quantitative sorption of five metals, pH, effect of flow rate, concentration of eluent, sorption capacity and the effect of diverse ions on the preconcentration of analytes have been investigated. The sorption capacity of the resin has 83, 127, 35, 88 and 85?µmol?g?1 for Co2+, Cu2+, Pb2+, Ni2+ and Zn2+, respectively. The preconcentration factors for Co2+, Cu2+, Pb2+, Ni2+ and Zn2+ were 100, 110, 120, 140 and 150, respectively. The accuracy of the proposed procedure was evaluated by standard reference materials. The achieved results were in good agreement with certified values. The proposed method was applied for the determination of trace metals in river water and plant leaves.  相似文献   

18.

The huge amounts of sewage sludge produced by municipal wastewater treatment plants induce major environmental and economical issues, calling for advanced disposal methods. Traditional methods for sewage sludge disposal increase greenhouse gas emissions and pollution. Moreover, biochar created from sewage sludge often cannot be used directly in soil applications due to elevated levels of heavy metals and other toxic compounds, which alter soil biota and earthworms. This has limited the application of sewage sludge-derived biochar as a fertilizer. Here, we review biomass and sewage sludge co-pyrolysis with a focus on the stabilization of heavy metals and toxicity reduction of the sludge-derived biochar. We observed that co-pyrolyzing sewage sludge with biomass materials reduced heavy metal concentrations and decreased the environmental risk of sludge-derived biochar by up to 93%. Biochar produced from sewage sludge and biomass co-pyrolysis could enhance the reproduction stimulation of soil biota by 20‒98%. Heavy metals immobilization and transformation are controlled by the co-feed material mixing ratio, pyrolysis temperature, and pyrolysis atmosphere.

  相似文献   

19.
Effects of heavy metals on lysosomes were studied in living cells from the mussel (Mytilus galloprovincialis Lam.). Haemolymph cells were obtained from the mussel adductor muscle, stained with neutral red (NR), and analysed by digital imaging to evaluate NR retention times within lysosomes. Exposure to Hg2+, Cd2+ and Cu2+ induced a reduction of NR retention time, indicating lysosomal membrane destabilisation. The intensity of these effects was correlated with the metal affinity for sulfhydryls. In contrast, Zn2+ showed no effect on lysosomes. Moreover, 200 μM Zn2+ protected lysosomes against the effects of Cd2+ and Cu2+, but not against Hg2+. Cell loading with the fluorescent pH probe Lyso Sensor followed by digital imaging showed a rise of lysosomal pH induced by Cd2+ and Hg2+, while Zn2+ prevented the effect of Cd2+ and also partially that of Hg2+. The different protective effect of Zn2+ against Hg2+ suggests a dual action of Hg2+ on lysosomes, possibly involving both membrane destabilisation and proton pump inhibition. Cell exposure to 17 β-estradiol also caused a reduction of NR retention time, which was synergistic to that of Hg2+. This suggests a common pathway between metals and hormone, possibly involving Ca2+ signaling. Received: 17 November 1999 / Accepted: 29 June 2000  相似文献   

20.
Bioleaching from soil artificially contaminated with analogues of radionuclides, Co and Sr, was carried out using a Fe-oxidizing bacterium, Acidithiobacillus ferrooxidans. Due to bacterial metabolism, the pH and dissolved Fe3+ concentration in a biotic slurry decreased and increased respectively, over time, but the concentrations of Co and Sr extracted from the soil showed no significant enhancement compared with those under abiotic control. In both cases, Co and Sr were leached from the soil during the initial period of the experiment, due to the initially low solution pH of 2.0, and the dissolved concentrations remained almost constant for the duration of the experiment (300 h). Since oxidation of Fe2+ by A. ferrooxidans led to the production of Fe precipitates and colloidal suspensions, the Co and Sr extracted into solution were most likely re-adsorbed onto the Fe solids. Also, A. ferrooxidans, without an external supply of Fe2+, extracted almost equal or greater amounts of Co and Sr from the soil than when Fe2+ was supplied. Under the same leaching conditions, the extent of Sr removal was much lower than that of Co. On the contrary to the high efficiency of microbial metal leaching in biohydrometallurgy for low-graded sulfide ores, which has been widely documented, conventional bioleaching techniques with A. ferrooxidans supplied with enough Fe2+ showed low efficiency for the removal of radionuclides loosely bound onto soil particle surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号