首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of a synthetic textile dye (Remazol Brilliant Black Reactive) on cocoa pod husk-based activated carbon was investigated in batch process. The adsorbent prepared was characterized by gas adsorption surface analysis (Brunauer Emmett Teller, BET), scanning electron microscopy, and Fourier transform infrared spectroscopy. The effects of initial dye concentration, contact time, solution temperature, and solution pH were evaluated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models, the first being the best with maximum monolayer coverage of 111?mg?g?1. Kinetic data were fitted into pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models; the pseudo second-order model provided the best correlation. Maximum adsorption was observed at pH 7. Standard free energy, standard enthalpy, and standard entropy were also calculated. The adsorption interaction was found to be endothermic and spontaneous. Both the mean free energy of adsorption and the activation energy show that the mechanism is by physisorption.  相似文献   

2.
This study involves the utilisation of peanut husk for the removal of Drimarine Red HF-3D dye from aqueous solutions. Batch study experiments were conducted with native, HNO3-treated and Na-alginate-immobilised peanut husk biomass. Maximum dye removal (95.24 mg/g) was obtained with HNO3-treated biomass. The experimental data were successfully explained with a pseudo-second-order kinetic model for all types of biosorbents. The equilibrium data fitted well to the Freundlich adsorption isotherm model. A thermodynamic study was also carried out to check the nature of the adsorption process. A fixed-bed column study for Drimarine Red HF-3D was carried out to optimise the effect of bed height, flow rate and initial dye concentration using peanut husk biomass. The column study showed that biosorption capacity increased with the increase in initial dye concentration and bed height, but decreased with increased flow rate. Data for Drimarine Red HF-3D were in very good agreement with the bed depth service time model. Fourier transform infrared analysis demonstrated the involvement of different functional groups in dye biosorption. These results showed that peanut husk biomass possessed good potential for the removal of Drimarine Red HF-3D from aqueous solution.  相似文献   

3.
This study provides an electrocoagulation process for the removal of metals such as cobalt, copper, and chromium from water using magnesium as anode and galvanized iron as cathode. The various parameters like pH, current density, temperature, and inter electrode distance on the removal efficiency of metals were studied. The results showed that maximum removal efficiency was achieved for cobalt, copper, and chromium with magnesium as anode and galvanized iron as cathode at a current density of 0.025?A?dm?2 at pH 7.0. First- and second-order rate equations were applied to study adsorption kinetics. The adsorption process follows second-order kinetics model with good correlation. The Langmuir and Freundlich adsorption isotherm models were studied using the experimental data. The Langmuir adsorption isotherm favors monolayer coverage of adsorbed molecules for the adsorption of cobalt, copper, and chromium. Temperature studies showed that adsorption was endothermic and spontaneous in nature.  相似文献   

4.
Chemically prepared activated carbon derived from banana stalk (BSAC) was used as an adsorbent to remove malachite green (MG) dye from aqueous solution. BSAC was characterised using thermogravimetric analyser, Brunauer Emmett Teller, Fourier transform infrared spectrometry, scanning electron microscopy, pHpzc, elemental analysis and Boehm titration. The effectiveness of BSAC in adsorbing MG dye was studied as a function of pH, contact time, temperature, initial dye concentration and repeated desorption–adsorption processes. pHpzc of BSAC was 4.5 and maximum dye adsorption occurred at pH 8.0. The rate of dye adsorption by BSAC was very fast initially, attaining equilibrium within 120 min following a pseudo-second-order kinetic model. Experimental data were analysed by Langmuir, Freundlich and Dubinin–Raduschevich isotherms. Equilibrium data fitted best into the Langmuir model, with a maximum adsorption capacity of 141.76 mg·g?1. Δ G 0 values were negative, indicating that the process of MG dye adsorption onto BSAC was spontaneous. The positive values of Δ H 0 and Δ S 0 suggests that the process of dye adsorption was endothermic. The regeneration efficiency of spent BSAC was studied using 0.5 M HCl, and was found to be in the range of 90.22–95.16% after four cycles. This adsorbent was found to be both effective and viable for the removal of MG dye from aqueous solution.  相似文献   

5.
The synthesis of 1,3,5-triazine-triethylenetetramine (TATETA), its characterization by infrared spectroscopy and elemental analysis, and its application for removal of Cr(VI) ions from aqueous solution is reported. The effects of pH, contact time, initial concentration of Cr(VI), sorbent dose, and temperature on adsorption were investigated and optimized by batch adsorption experiments. Adsorption was highest at acidic conditions with an equilibration time of 25 min. The adsorption followed a Langmuir model, with an adsorption capacity of 303 mg g?1, was second order in its kinetics, and exothermic and thus spontaneous.  相似文献   

6.
Water chestnut peel, an agricultural bio-waste, was used as a biosorbent for removal of rhodamine B (RhB), basic textile dye, from an aqueous solution. The effects of various experimental parameters were studied. The equilibrium data correlated well with a Freundlich isotherm (R2 = 0.98–0.99) followed by a Halsey isotherm model (R2 = 0.98–0.99) which indicated heterogeneity of the adsorbent surface and multilayer adsorption of RhB dye onto the water chestnut peel waste (WCPW). High correlation coefficients (R2 = 0.99) together with close agreement between experimental qe (0.4–1.7 mg g?1) and calculated qe (0.4–2.5 mg g?1) suggested that the adsorption process followed pseudo-second-order kinetics, with k2 values in the range of 52–3.4 × 10?1 g mg?1 min?1 at different concentrations. The overall mechanism of adsorption was controlled by both liquid-film and intra-particle diffusions. The negative values of change in Gibb's free energy (?ΔG0 = 19.2–29.2 kJ mol?1) and positive values of change in enthalpy (ΔH0 = 30.9–117.6 kJ mol?1) revealed the process to be spontaneous and endothermic. WCPW was found to be an effective adsorbent for removal of RhB, a cationic dye, from an aqueous solution.  相似文献   

7.
Mercury adsorption by silica and maghemite nanoparticles (NPs) was studied with the aim of comparing their performance in the remediation of acid mine drainage (AMD) contaminated water. Calculated distribution coefficients (Kd) showed that both NPs are exceptional adsorbents. However, adsorbate coverage per unit area was 30 times higher for maghemite than for silica NPs, despite the latter having a surface area ~15 times greater. Maghemite adsorbed 75% of available Hg compared to 56% by silica, making it a more efficient sorbent than silica under AMD conditions. Kinetics and isotherm data for both adsorbents were fitted by the pseudo-second-order (R2 = 1) and the Freundlich (R2 ≥ 0.98) models, implying that adsorption to both NP types was by chemisorption. Adsorption increased with NP concentrations and pH and was enhanced in the presence of manganese and sulfate ions although adsorption to silica was inhibited in 1:2 Hg-to-Mn systems. Importantly, trends in simulated wastewater were replicated in actual AMD-contaminated water samples. This study highlights the fact that properties besides surface area and charge of adsorbents determine adsorbent performance, and superior attributes may not always lead to higher adsorption efficiencies.  相似文献   

8.
Removal of p-chlorophenol (pCP) from synthetic aqueous solutions was studied through adsorption on a biosorbent developed from chitosan (CS) and sodium alginate (SA), the natural cationic and anionic polysaccharides, respectively. Chitosan-coated sodium alginate beads were prepared and treated with calcium chloride solution in order to improve the stability as well as hydrophobic character. The resulting beads (CS/CA) were characterized using FTIR spectra, scanning electron microscopy (SEM), and BET surface analysis. The efficiency of this biosorbent in removing pCP from aqueous medium was studied under batch equilibrium and dynamic column flow experimental conditions. The binding capacity of the biosorbent was studied as a function of initial pH, contact time, initial concentration of adsorbate and amount of biomass. The data were fitted to pseudo-first-order, pseudo-second-order, and Weber–Morris models and found that the adsorption process followed pseudo-first-order kinetics. Further, the equilibrium data were fitted to Freundlich, Langmiur, and Dubinin–Radushkevich (D–R) adsorption isotherms and the isotherm constants were evaluated for adsorption of pCP. The maximum monolayer adsorption capacity of CS/CA beads was found to be 127 mg g?1. Column flow results were used to generate breakthrough curves. The experimental results suggested that the chitosan–calcium alginate blended biosorbent was effective for the removal of pCP from aqueous medium.  相似文献   

9.
A new adsorbent sulfhydryl and carboxyl functionalized magnetite nanocellulose composite [(MB-IA)-g-MNCC] was synthesized by graft co-polymerization of itaconic acid onto magnetite nanocellulose (MNCC) using EGDMA as cross linking agent and K2S2O8 as free radical initiator. The adsorption occurs maximum in the pH 6.5. The best fitted kinetic model was found to be pseudo-second-order kinetics. Therefore the mechanism of Co(II) adsorption onto (MB-IA)-g-MNCC follows ion exchange followed by complexation. The Langmuir model was the best fitted isotherm model for the adsorption of Co(II) onto the (MB-IA)-g-MNCC. Simulated nuclear power plant coolant water samples were also treated with (MB-IA)-g-MNCC to demonstrate its efficiency for the removal of Co(II) from aqueous solutions in the presence of other metal ions. To recover the adsorbed Co(II) ions and also to regenerate the adsorbent to its original state 0.1?M HCl was used as suitable desorbing agent. Six cycles of adsorption-desorption experiments were conducted and was found that adsorption capacity of (MB-IA)-g-MNCC has been decreased from 97.5% in the first cycle to 84.7% in the sixth cycle. Recovery of Co(II) using 0.1?M HCl decreased from 93.2% in the first cycle to 79.3% in the sixth cycle.

Abbreviations: T: absolute temperature; qe: amount adsorbed at equilibrium; qt: amount adsorbed at time t; CELL: cellulose; Co: cobalt; Ce: concentration at equilibrium; CHCl: concentration of HCl; CNaOH: concentration of NaOH; CA: concentrations of acid; CB: concentrations of base; Wg: dry weight of composite; Wi: dry weight of MNCC; DS: energy dispersive spectra; EGDMA: ethylene glycol dimethacrylate; Ce: equilibrium concentration; KL: equilibrium constant; F: Faradays constant; FTIR: Fourier transform infrared spectra; ΔGo: free energy change; KF: Freundlich adsorption capacity; 1/n: Freundlich constant; R: gas constant; D: grafting density; ECo: initial concentration; IA: itaconic acid; IA-g-MNCC: itaconic acid-grafted-magnetite nanocellulose composite; b: Langmuir constant; MNCC: magnetite nanocellulose composite; Q0: Maximum adsorption capacity; (MB-IA)-g-MNCC: 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite; NC: nanocellulose; pHpzc: Point of zero charge; K2S2O8: potassium peroxy sulphate; k1: pseudo-first-order rate constant; k2: pseudo-second-order rate constant; SEM: scanning Electron Microscope; bs: Sips adsorption capacity; Qs: Sips maximum adsorption capacity; ΔH°: standard enthalpy change; ΔS°: standard entropy change; A: surface area; σ0: surface charge density; 1/ns: surface heterogeneity factor; VSM: vibrating sample magnetometer; V: volume of solution; W: weight of (MB-IA)-g-MNCC; Mcomposite: weight of the composite; XRD: X-ray diffraction  相似文献   


10.
• Functional groups of AM and EDTA in composite increased removal of Cr(VI) and CR. • Removal process reached equilibrium within 30 min and was minimally affected by pH. • Elimination of Cr(VI) was promoted by coexisting CR. • Adsorption process of CR was less influenced by the presence of Cr(VI). • Mechanisms were electrostatic attraction, surface complexation and anion exchange. We prepared ethylenediaminetetraacetic acid (EDTA)-intercalated MgAl-layered double hydroxide (LDH-EDTA), then grafted acrylamide (AM) to the LDH-EDTA by a cross-linking method to yield a LDH-EDTA-AM composite; we then evaluated its adsorptive ability for Congo red (CR) and hexavalent chromium (Cr(VI)) in single and binary adsorption systems. The adsorption process on LDH-EDTA-AM for CR and Cr(VI) achieved equilibrium quickly, and the removal efficiencies were minimally affected by initial pH. The maximum uptake quantities of CR and Cr(VI) on LDH-EDTA-AM were 632.9 and 48.47 mg/g, respectively. In mixed systems, chromate removal was stimulated by the presence of CR, while the adsorption efficiency of CR was almost not influenced by coexisting Cr(VI). The mechanisms involved electrostatic attraction, surface complexation, and anion exchange for the adsorption of both hazardous pollutants. In the Cr(VI) adsorption process, reduction also took place. The removal efficiencies in real contaminated water were all higher than those in the laboratory solutions.  相似文献   

11.
Banana peels were employed for the removal of metribuzin from aqueous solution. Sorption in the batch mode was optimized regarding pH, contact time, sorbent dose, initial pesticide concentrations, and temperature. The sorption data were fitted to pseudo-first-order, pseudo-second-order, intraparticle diffusion, Elovich, and liquid film diffusion model, the pseudo-second-order exhibiting best fit (R2 = 0.9803). Of the four most common sorption isotherm models (Langmuir, Freundlich, Tempkin, and Dubinin–Radushkevich), the data followed the Langmuir isotherm with highest correlation. The maximum adsorption capacity was found to be 167 mg g?1. Gibbs free energy, enthalpy, and entropy showed that the sorption was exothermic and spontaneous.  相似文献   

12.
As part of a joint USA/USSR Environmental Agreement to determine the distribution and concentration of Chernobyl radioactivity in the northwest Black Sea area, the sediment from eight stations was collected and analyzed to assess the ability of this material to adsorb radiocaesium. Batch tests were conducted in which Cs-137 tracer was added to mixtures of sediment and bottom water, with contact solutions ranging from 85 Bq ml-1 to 1,760 Bq ml-1. This work was done in an argon atmosphere at 9.5°C, which is the average temperature of the sediment. Isotherms were linear for all cores and distribution ratios (RD) calculated from the slopes of the isotherms ranged from 660 to 1,660 ml g-1. These isotherms fit a simplified Freundlich isotherm. Correlations of RD to a number of sediment parameters describing texture and mineralogy were determined. A close relationship was observed between RD for caesium and the percentage of illite contained in the samples.  相似文献   

13.
In this study, the adsorption characteristics of As(III) and As(V) from water and wastewater using polyacrylamide-grafted banana stem with quaternary ammonium functionality (PGBS-AE) were investigated. Infrared spectroscopic, and thermogravimetric analyses were performed to affirm the polymer grafting, functionality, morphology, and thermal stability. Batch experiments were carried out to understand the effect of contact time, concentration, pH, adsorbent dose, and temperature of the solution for the adsorption of As(III) and As(V) onto PGBS-AE. Equilibrium was achieved within 1 h and the optimum pH was found to be 9.0 and 3.0 for As(III) and As(V), respectively. Isotherm studies showed that the Langmuir equation fits best. Maximum adsorption capacities of 50 and 5.5?g?kg?1 were obtained for As(III) and As(V) at 30°C. The endothermic nature of adsorption was evident as the adsorption efficiency increased with temperature. The thermodynamic parameters were evaluated to explain the feasibility of adsorption and to predict the nature of adsorption. The competence of the adsorbent for practical purposes was also analyzed by treating with a fertilizer industry effluent sample. Studies pertaining to adsorbent regeneration and readsorption of As(III) and As(V) were carried out for four consecutive cycles.  相似文献   

14.
Abstract

As part of a joint USA/USSR Environmental Agreement to determine the distribution and concentration of Chernobyl radioactivity in the northwest Black Sea area, the sediment from eight stations was collected and analyzed to assess the ability of this material to adsorb radiocaesium. Batch tests were conducted in which Cs-137 tracer was added to mixtures of sediment and bottom water, with contact solutions ranging from 85 Bq ml?1 to 1,760 Bq ml?1. This work was done in an argon atmosphere at 9.5°C, which is the average temperature of the sediment. Isotherms were linear for all cores and distribution ratios (RD) calculated from the slopes of the isotherms ranged from 660 to 1,660 ml g?1. These isotherms fit a simplified Freundlich isotherm. Correlations of RD to a number of sediment parameters describing texture and mineralogy were determined. A close relationship was observed between RD for caesium and the percentage of illite contained in the samples.  相似文献   

15.

The paper reports heavy metal accumulation in algae collected at four stations and in sediments at three stations on the Black Sea coast of Turkey. The metals analysed are Cd, Co, Cr, Cu, Fe, Pb, Sb and Zn. The metal content of algae increased generally (with some exceptions) from 1991 till 1993 in ?ile and Sinop. In the sediments Sb in ?ile, As in Riva, Fe, Zn in Sinop are high. According to these findings the metal pollution increased in Turkish area of the Black Sea during the years investigated.  相似文献   

16.
A new adsorbent (ABS) with amidoxime functional group was prepared through graft polymerization of acrylonitrile onto banana stem (BS) using ceric ammonium nitrate (CAN)/HNO3 initiator system, followed by treatment with hydroxylamine hydrochloride in alkaline solution. Infrared spectroscopy, surface area analyzer, thermogravimetry, and potentiometric titration were used for the characterization of the adsorbent. Effective removal of U(VI) ions was demonstrated at the pH range 4.0–6.0. The mechanism for the removal of U(VI) ions by ABS was based on complexation adsorption model. Equilibrium was achieved in approximately 3 h. The experimental kinetic data were analyzed using first-order, second-order, and Elovich kinetic models, and are well fitted with second-order kinetics. The temperature dependence indicates an exothermic process. U(VI) adsorption was found to decrease with increase of ionic strength. The Freundlich isotherm model fitted the experimental equilibrium data well. The adsorption efficiency was tested using synthetic nuclear industry effluents. The maximum adsorption capacity for U(VI) removal was found to be 80 mg g-1 at 20°C. Adsorbed U(VI) ions were desorbed effectively, about 99% by 0.2 M HCl. Repeated adsorption/desorption cycles show the feasibility of the ABS for the removal of U(VI) ions from water and nuclear industry effluents.  相似文献   

17.
Biochar, is a low-cost material that can be used as an alternative adsorbent for the removal of heavy metals. In this study, a low-cost and efficient adsorbent synthesised from Jatropha curcas seeds was used for the uptake of Cu2+ from aqueous solutions. The as-prepared adsorbent was characterised by scanning electron microscopy and Brunauer–Emmett–Teller analysis post calcination at 500 °C, its BET surface area and total pore volume were 39.62?m2?g?1 and 0.049?m3?g?1, respectively. Subsequently, the effects of initial pH of the solution, contact time, and adsorbent material dosage on the adsorption of Cu2+ by the prepared adsorbent were investigated. The as-prepared adsorbent exhibited a high performance, with a maximum adsorption amount of 32.895?mg?g?1 for Cu2+ at pH 5.0 and 25 °C, owing to the presence of ?OH, C=O, C–O, Si-O-Si, and O-Si-O on its surface. The predominant Cu2+ adsorption mechanism was assumed to be ion exchange. Notably, the Cu2+ adsorption could attain equilibrium within 90?min. In addition, the fact that the Langmuir model was a better fit than the Freundlich model for the isotherm data of Cu2+ adsorption by the as-prepared adsorbent suggested that the adsorption of Cu2+ was a monolayer adsorption process.  相似文献   

18.
Sediment, mussel, and seawater samples were collected three times during 2001–2003 at nine sampling stations along the mid-Black Sea coast of Turkey. The samples were analyzed with GC-ECD for contents of various organochlorine pesticides (OCPs) in the environment. DDT and its metabolites were detected at concentrations significantly above the detection limits. The highest concentrations of DDT metabolites measured in the sediment and mussel samples were 35.9 and 14.0 ng/g wet weight respectively. Considerable levels of aldrin, dieldrin, endrin, heptachlor epoxide, lindane, endosulfan sulphate, and HCB were also detected in the sediment, mussel, or seawater samples. Although these persistent toxic compounds have been banned for some years in Turkey, they may still be used illegally in some regions, contributing to their significant levels in the environment. The biota–sediment accumulation factor (BSAF) estimated for DDT and its metabolites in mussels was 2.9, which is nearly two times higher than the benchmark of 1.7. In spite of such high BSAF values observed for these toxic compounds, their levels in mussels were significantly below the international legal limits recommended by the Food and Agriculture Organization of the United Nations. Edible biota from the waterbodies examined may thus still be considered safe for human consumption at this time. However, as pollutants can biomagnify through the food chain over time, further routine sampling and analysis of biota along the Black Sea coast are warranted in order to better assess the threat of OCPs to public health in the region.  相似文献   

19.
李北罡  马钦  刘培怡 《生态环境》2010,19(8):1901-1905
研究了黄河中下游10个不同表层沉积物在黄河水体中对磷酸盐(P)的吸附动力学及其影响因素和吸附机理。结果表明:(1)不同黄河沉积物对P的吸附能力各不相同,但吸附量随时间的变化具有相同的变化趋势,吸附速率均在前8h内较快,以后逐渐趋缓,在48h时基本达到吸附平衡。不同黄河沉积物对P的吸附量均随P初始质量浓度的增加而增大,随沉积物含量增大而减小;(2)不同沉积物在不同P初始质量浓度下对P的吸附动力学均符合Lagergren二级吸附动力学模型及Weber-Morris扩散方程,求得二级吸附速率常数和扩散速率常数分别在11.9866~157.55g·mg^-1·h^-1和0.0005~0.0119mg·g^-1·h^-1/2之间,吸附过程由P在沉积物内扩散控制。  相似文献   

20.
刘伟  王彬  刘畅  黄燕  王启铭  梁馨予  谌书 《环境化学》2021,40(1):272-282
兽用抗菌药物环丙沙星(CIP,ciprofloxacin)的大量使用引发了人们的广泛关注.文章研究了CIP在亚高山草甸土剖面土壤上的吸附动力学、吸附热力学和pH、有机质含量、阳离子交换量等因素对吸附的影响,以揭示CIP在亚高山草甸土上的吸附机制,为CIP的生态风险评价提供一定的依据.结果表明,CIP在亚高山草甸土上的吸...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号