首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial and temporal variations and the factors influencing primary production have been studied in three different mangrove waters (Pichavaram, Ennore Creek and Adyar Estuary) of South India characterised by different anthropogenic impacts. the gross primary productivity in the unpolluted Pichavaram mangrove was 113 g Cm-2yr-1 exhibiting natural variability with the environmental forcing factors. Human activities have elevated primary productivity in the Ennore Creek mangrove (157g Cm-2yr-1) primarily through the direct discharge of fertilizer effluents. By contrast, a combination of domestic and industrial effluent discharges into the Adyar Estuary mangrove has considerably reduced phytoplankton primary productivity 83g Cm-2yr-1 the Redfield N: P ratio varies from 0.96 N: 1P at Ennore Creek, 1.75N: 1P at Adyar Estuary to 15.2 N: 1P at Pichavaram mangroves. This suggests that the Pichavaram mangroves represent a well equilibrated ecosystem with N: P ratio close to steady-state values in contrast to the anthropogenically altered mangrove ecosystems studied. Results show a significant temporal variability in nutrient concentration in the three mangrove areas. Distinct differences in nutrient concentrations between the dry and the wet seasons have been observed.  相似文献   

2.
The dominant phytoplankton taxa during seasonal periods of peak primary productivity were identified during a 4 yr study (July 1989 to June 1993) in Chesapeake Bay. Maximum phytoplankton abundance occurred from late winter to early spring, and was dominated by a few species of centric diatoms. This development was followed by more diversified assemblages of diatoms and phytoflagellates that produced additional concentration peaks in summer and fall; all these maxima were accompanied by concurrent productivity peaks. High summer productivity resulted when the phytoplankton concentrations of diatoms and phytoflagellates were augmented by an increased abundance of autotrophic picoplankton. There was variability in both the seasonal and annual growth maxima of these algal populations and in total productivity. Higher cell concentrations and productivity were associated with higher nutrient levels on the western side of the bay, at sites adjacent to major tributaries. Periods of highest productivity were in spring and summer, ranging from 176 to 346 g Cm-2yr-1 over the 4 yr period, with a mean annual productivity of 255 g Cm-2yr-1. The bay stations rates ranged from 82 to 538 g Cm-2yr-1.  相似文献   

3.
We describe and apply a method of using tree-ring data and an ecosystem model to reconstruct past annual rates of ecosystem production. Annual data on merchantable wood volume increment and mortality obtained by dendrochronological stand reconstruction were used as input to the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to estimate net ecosystem production (NEP), net primary production (NPP), and heterotrophic respiration (Rh) annually from 1975 to 2004 at 10 boreal jack pine (Pinus banksiana Lamb.) stands in Saskatchewan and Manitoba, Canada. From 1975 (when sites aged 41-60 years) to 2004 (when they aged 70-89 years), all sites were moderate C sinks except during some warmer than average years where estimated Rh increased. Across all sites and years, estimated annual NEP averaged 57 g Cm−2 yr−1 (range −31 to 176 g Cm−2 yr−1), NPP 244 g Cm−2 yr−1 (147-376 g Cm−2 yr−1), and Rh 187 g Cm−2 yr−1 (124-270 g Cm−2 yr−1). Across all sites, NPP was related to stand age and density, which are proxies for successional changes in leaf area. Regionally, warm spring temperature increased NPP and defoliation by jack pine budworm 1 year previously reduced NPP. Our estimates of NPP, Rh, and NEP were plausible when compared to regional eddy covariance and carbon stock measurements. Inter-annual variability in ecosystem productivity contributes uncertainty to inventory-based assessments of regional forest C budgets that use yield curves predicting averaged growth over time. Our method could expand the spatial and temporal coverage of annual forest productivity estimates, providing additional data for the development of empirical models accounting for factors not presently considered by these models.  相似文献   

4.
The spatial distribution of mangroves in the Mngazana Estuary under sea level rise induced by climate change, together with different substrate elevation change scenarios was predicted for 2020, 2050 and 2100. The present inundation frequency tolerance range was from 0.8 to 31.2 %, equivalent to substrate elevation thresholds of 1.1 and 1.7 m amsl. These thresholds were measured by field surveys and analysis of a gauge station situated near the mouth of the estuary. The predictions were based on the assumption that the inundation frequency tolerance range of mangrove stands remains constant in the future. Through the use of a digital elevation model an initial increase of 2.10 ha year?1 was found in mangrove area between present and 2020 (from 122.6 to 143.6 ha). This was due to habitat becoming available that is currently too compacted for seedling establishment to occur. This compaction resulted from human and cattle traffic for grazing. Thereafter there would be a mean loss of 0.66 ha year?1 from 2020 through 2100. Landward migration of mangroves would not take place due to the elevation limit of adjacent non-mangrove areas. In addition, the loss rate would increase to 1.01 ha year?1 under insufficient sediment accretion, but would decrease to 0.18 ha year?1 under thriving mangroves condition. The analysis of sea storm event in September 2008 showed that local water level increased by 28 cm and maximum affected area was 87.0 ha (about 71 % of mangrove stands). The inundation continued over 5 days. The results indicated that the combination impact of sea level rise, substrate elevation change and sea storm would possibly be a threat to tropical African estuaries with large flat intertidal areas and mangroves.  相似文献   

5.
The fresh water reaching an estuary fluctuates on many scales and the fluctuation in the flow over a time period is also due to the anthropogenic activities like construction of dams, diversions and upstream withdrawals. These fluctuations may have profound effects on the estuarine ecosystem, which usually has remarkable biological productivity and diversity. A desktop analysis is carried out by compiling historical records of discharge and other hydrological information to study the dynamics of the river Coleroon, a distributary of the Cauvery River, Tamil Nadu, India. Remote sensing analysis was carried out on images ranging from the years 1977 to 2008 and the changes in the Pichavaram mangrove areas adjoining the Coleroon were studied by comparing the results with the freshwater flow into the ecosystem. Environmental flow analysis indicates that the minimum flow needed for a healthy mangrove system in Pichavaram is 750.75 cumecs; however, this is currently achieved only 12 % of the time. The reduction in freshwater flow over the years has resulted in loss of species diversity and degradation of the mangroves; this needs to be corrected immediately to conserve the Pichavaram mangrove ecosystem.  相似文献   

6.
Mangrove forests and seagrass beds frequently occur as adjacent habitats in the temperate waters of southeastern Australia. At low tide when fish cannot occupy mangroves they might utilise adjacent habitats, including seagrass. We first sampled small fish from seagrass beds close to and far from mangroves in the Pittwater estuary, NSW, Australia. Seagrass beds close to mangroves had a greater density of fish species than beds far from mangroves (close: mean 16.0 species net−1, SE 1.0; far: 13.2, 1.3; P < 0.05). In particular, juvenile fish were in greater densities near to than far from mangroves (close: 5.3, 0.4; far: 3.1, 0.4; P < 0.05). We then sampled the mangrove forests during the high tide and seagrass beds during the low tide, in beds along a continuum of distances from mangroves. Multivariate analysis showed that fish assemblages differed with distance from mangroves, and the differences were attributed to the composition of the fish assemblage (i.e. presence/absence of fish species), not the abundances of individual species. In particular, fish that utilise mangrove forests at high tide were found in greater species densities and species richness in seagrass nearer to mangroves. A negative relationship was found between the density of mangrove-utilising fish species and the distance of the bed from mangroves (R 2 = 0.37, P < 0.05). This confirms the important connectivity between mangroves and seagrass for fish in temperate Australian waters.  相似文献   

7.
In order to examine the role of position in the tidal range on biomass production and nutrient pools in Spartina alterniflora in an Argentinian estuary, we estimated productivity, the concentration of C, N and P in tissues and pools (concentration×biomass) of these elements in low (LM) and high (HM) zones. Aboveground biomass of S. alterniflora was higher in HM than in LM. Aboveground primary productivity was 106 and 439 g dry wt m?2 year?1 in LM and HM, respectively. Belowground biomass was similar in LM and HM. Belowground primary productivity was 526 and 744 g dry wt m?2 year?1 for LM and HM, respectively. Nutrient pools were higher in HM than in LM. Biomass and productivity values were low, which makes nutrient pools low. The lower values of the parameters analysed in LM than in HM indicate that position in the tidal range is an important factor in this system, possibly due to the effect of flooding. Moreover, this pattern is opposite to the general one observed in the northern hemisphere, meaning that studying marshes from different environments is worth doing. Because pools were higher in HM, this zone would be more important for nutrient input to the estuary.  相似文献   

8.
Dissolved nutrients, Chl-a and primary productivity were measured from seven transects along the coastal waters of the southeastern Arabian Sea during northeast monsoon. Ten major estuaries were chosen to study the influence of estuarine discharge on the nutrient dynamics in the coastal waters. The mean water discharge of the estuaries in the north (64.8?±?18?×?105?m3?d?1) was found to be higher than those in the south (30.6?±?21.4?×?105?m3?d?1), whereas the nutrient concentrations were found to be higher in the estuaries of the south. The results from the offshore waters were discussed in accordance with the depth contour classification, that is, shelf (depth?≤?30?m) and slope waters (depth?≥?30?m). Our results suggest that the estuarine discharge plays a major role in the nutrient distribution in near shore shelf waters, whereas in shelf and slope waters, it was mainly controlled by in situ biological processes. The inorganic form of N to P ratios were found to be higher than Redfield ratio in slope waters when compared with shelf waters, suggesting that PO43? (<0.15?µmol?L?1) is a limiting nutrient for primary production. The multivariate statistical analysis revealed that the nutrient dynamics in the coastal waters was controlled by both biological and physical processes.  相似文献   

9.
The present work is a multi-temporal satellite based study on the spatial dynamic of an important coastal habitat, the Pichavaram mangrove ecosystem, over a period of 15 years. The Pichavaram mangrove forest near Chidambaram, South India is the second largest mangrove forest in the world. Unsupervised classification, the Iterative Self Organising Data Analysis Technique (ISODATA), has been used to classify the mangrove cover into the open and dense classes. The status of the classes has been monitored using Landsat TM of 1991, 2001, and Resourcesat–1 LISS IV of 2006 satellite data. The study demonstrated that by classifying mangrove ecosystem into just the 3 classes using remote sensing data and by studying their temporal variations, it is possible to get a reasonably accurate picture of the extent and condition of the mangrove ecosystem. The total area of the Pichavaram mangrove showed a net increase of 2.51 km2 within a span of 15 years (1991 to 2006). The hot spots that are at a risk of being degraded, and on the other hand, the mangrove areas that are well managed are identified using Geographical Information System (GIS) tools for the restoration and conservation measures.  相似文献   

10.
The seasonal growth rates and nitrogen and carbon fluxes were estimated for two subtidalMacrocystis integrifolia Bory kelp forests in British Columbia, Canada from changes in population structure through time. Mean relative growth rates of the forests varied from a high of 4.3% d-1 to a low of-3.6% d-1. Mean net assimilatioon rates of carbon (a photosynthesis analog) varied from a high of 0.66 g C m-2 of foliage d-1 to a low of-0.87 g C m-2 d-1. The leaf area index ranged from 0.3 to 11.9. Annual carbon input on a foliage area basis was calculated at 250 g C m-2 yr-1. Annual carbon input to the forest was estimated at 1 300 g C m-2 of ocean bottom yr-1. The yearly nitrate nitrogen input to the forest was estimated at 60 g N m-2 of ocean bottom yr-1. The net ecosystem production varied from-520 to +31 g C m-2 of ocean bottom yr-1. The intra-forest, inter-forest and seasonal variabilities of these productivity parameters are discussed.  相似文献   

11.
ABSTRACT

In order to evaluate the ecological risk reductions of copper (Cu) and cadmium (Cd) and the change of nutrient contents and stoichiometry in a smelter-impacted farmland in Guixi, Jiangxi Province, China, with ~ 800?mg Cu kg?1 soil and 0.8?mg Cd kg?1 soil, an three years in situ experiment was conducted. The field trial consisted of 4 ×?5?m plots in a completely randomised block design. Hydroxyapatite was added at 10?g kg?1 soil and Sedum plumbizincicola, Elsholtzia splendens, and Pennisetum sp. were planted. Post-treatment soil and plant samples were collected annually and analysed for Cu and Cd bioaccessibility, soil carbon: nitrogen: phosphorus (C:N:P), and the stoichiometries of soil β-glucosidase (BG), N-acetylglucosaminidase (NAG), and acid phosphatase (AP) activity levels. The results indicated that the hydroxyapatite treatments significantly reduced Cu and Cd bioaccessibility as well as the ratio of C:P and N:P. Moreover, BG, NAG, and AP activity levels all increased relative to those in untreated soil. Plants may also influence soil BG, NAG, and AP activity. This study demonstrated that in situ Cu and Cd stabilisation by hydroxyapatite and phytoextraction is ecologically safe and can alter soil mineral nutrient ecological stoichiometry and enzyme activity.  相似文献   

12.
The decomposition of the mangrove Rhizophora mangle and the seagrass Thalassia testudinum was examined using litterbags along a natural gradient in nutrient availability. Seagrass leaves had a higher fraction of their biomass in the labile pool (57%), compared to mangrove leaves (36%) and seagrass rhizomes (29%); the overall decomposition rates of the starting material reflected the fractionation into labile and refractory components. There was no relationship between the N or P content of the starting material and the decomposition rate.

Nutrient availability had no influence on decomposition rate, and mass was lost at the same rate from litterbags that were buried in the sediment and litterbags that were left on the sediment surface. The dynamics of N and P content during decomposition varied as a function of starting material and burial state. N content of decomposing mangrove leaves increased, but seagrass rhizomes decreased in N content during decomposition while there was no change in seagrass leaf N content. These same general patterns held for P content, but buried seagrass leaves increased in P content while surficial leaves decreased. δ13C and δ15N changed by as much as 2‰ during decomposition.  相似文献   

13.
Penaeid shrimp can be useful ecological indicators of linkages between shallow tropical coastal habitats, acting as integrators of carbon and nitrogen sources due to their generalist feeding habits and their mobility between habitats and with tidal cycles. In the current study, the contribution of mangrove, seagrass and microbial mat to the nutrition of two penaeid shrimp species, Penaeus semisulcatus and Metapeneus ensis, in a shallow arid embayment in the Arabian Gulf was assessed through a combination of analysis of stomach contents and dual carbon and nitrogen stable isotope signatures. Shrimp tissue stable isotope signatures identified seagrass as a major source of carbon and nitrogen for both species, contributing 21–38?% (1–99?‰). Microbial mat was also detected as a significant nutritional source for early-stage Metapenaeus affinis postlarvae (1–27?%). However, mangroves were not identified as a significant source, with the range of results including the possibility of a zero contribution. Moreover, the greatest possible contribution of mangroves as source of carbon was less than for the other primary producers. This may be due the high salinity and wide temperature range limiting mangrove productivity as well as the low export of dissolved and particulate organic material out of the mangroves due to low rainfall.  相似文献   

14.
Pelagic primary production and benthic and pelagic aerobic metabolism were measured monthly at one site in the estuarine plume region of the nearshore continental shelf in the Georgia Bight. Benthic and water-column oxygen uptake were routinely measured and supplemented with seasonal measures of total carbon dioxide flux. Average respiratory quotients were 1.18:1 and 1.02:1 for the benthos and water column, respectively. Benthic oxygen uptake ranged from 1.23 to 3.41 g O2 m-2 d-1 and totalled 756 g O2 m-2 over an annual period. Water column respiration accounted for 60% of total system metabolism. Turnover rates of organic carbon in sediment and the water column were 0.09 to 0.18 yr-1 and 6.2 yr-1, respectively. Resuspension appeared to control the relative amounts of organic carbon, as well as the sites and rates of organic matter degradation in the benthos and water column. Most of the seasonal variation in benthic and pelagic respiration could be explained primarily by temperature and secondarily by primary productivity. On an annual basis, the shelf ecosystem appeared to be heterotrophic; primary production was 73% of community metabolism, which was 749 g C m-2 yr-1. The timing of heterotrophic periods through the year appeared to be closely related to both river discharge and the periodicity of growth and death of marsh macrophytes in the adjacent estuary. The results of this study support the estuarine outwelling hypothesis of Odum (1968).This is Contribution No. 530 from the University of Georgia Marine Institute. This work was supported by the Georgia Sea Grant College Program maintained by the National Oceanic and Atmospheric Administration, US Department of Commerce  相似文献   

15.
The spatial distribution of the C/N ratios and variations in δ13C and δ15N of suspended particulate matter were used to characterise their source in Asia’s largest brackish water lagoon, Chilika, India. In addition, the significance of re-mineralised nutrients in the primary productivity of the shallow lagoon was also determined through quantification of the subsurface nitrogen uptake conditions at two relatively stable locations in the lagoon. The results indicated that the influence of terrestrial organic matter was the maximum in the northern sector and was relatively limited at the central and southern part of the lagoon. In situ 15N uptake experiments (daytime) under biogeochemically stable conditions revealed that the N uptake by phytoplankton ranged between 0.24 and 1.01?mM?m?3?h?1 during pre-monsoon and post-monsoon seasons. New production and regenerated production in the shallow lagoon was also estimated by calculating f-ratios (ratio of nitrate assimilation by phytoplankton to total nitrogenous nutrient assimilation, have been estimated), which varied from 0.52 in the post-monsoon to 0.38 in the pre-monsoon. Lowering of the f-ratio from post- to pre-monsoon indicated a dominance of mineralisation over the new production.  相似文献   

16.
Constructed wetlands (CWs) have been used effectively to remove nitrogen (N) and phosphorus (P) from non-point sources. Effluents of some CWs were, however, still with high N and P concentrations and remained to be pollution sources. Widely distributed paddy fields can be exploited to alleviate this concern. We were the first to investigate a combination system of three-level CWs with wetland paddy fields in a full scale to remove N and P from rural unregulated non-point sources. The removal efficiencies (REs) of CWs reached 57.3 % (37.4–75.1 %) for N and 76.3 % (62.0–98.4 %) for P. The CWs retained about 1,278 kg N ha?1 year?1 and 121 kg P ha?1 year?1. There was a notable seasonal change in REs of N and P, and the REs were different in different processing components of CWs. The removal rates of wetland paddy fields adopt “zero-drainage” water management according to local rainfall forecast and physiological water demand of crop growth reached 93.2 kg N ha?1 year?1 and 5.4 kg P ha?1 year?1. The rice season had higher potential in removing N and P than that in the wheat season. The whole combined system (0.56 ha CWs and 5.5 ha wetland paddy fields) removed 1,790 kg N year?1 and 151 kg P year?1, which were higher than those from CWs functioned alone. However, another 4.7-ha paddy fields were needed to fully remove the N and P in the effluents of CWs. The combination of CWs and paddy fields proved to be a more efficient nutrient removal system.  相似文献   

17.
R. M. Morton 《Marine Biology》1990,105(3):385-394
The fishes occurring in a subtropical mangrove (Avicennia marina) area in Moreton Bay, Australia, were studied for one year (November 1987 to November 1988, inclusive). Fishes within the mangroves were sampled using a block net, whilst those in adjacent waters were sampled using seine and gill nets. Forty six percent of the species, 75% of the number of fishes and 94% of the biomass taken during the study (all methods combined) were of direct importance to regional fisheries. The fish community utilising the habitat within the mangrove forest differed from that occurring in adjacent waters in terms of density, standing crop, species composition and diversity-index values. Standing-crop estimates for the fishes occurring within the mangroves (study period mean ± SD = 25.3 ± 20.4 g m–2) were amongst the highest recorded values for estuarine areas whilst those for adjacent waters (2.9±2.3 g m–2) were comparable to those of other estuarine studies.  相似文献   

18.
Purple photosynthetic bacteria from a tropical mangrove environment   总被引:4,自引:0,他引:4  
Purple photosynthetic bacterial strains were isolated from mud samples collected from the mudflats of Pichavaram mangroves (Tamil Nadu, India) in 1989 and 1990. The presence of two major groups of photosynthetic purple bacteria was recorded, viz., Group 1: purple sulphur bacteria (family Chromatiaceae, strains belonging toChromatium sp.); and Group 2: purple nonsulphur bacteria (family Rhodospirillaceae, strains apparently belonging toRhodopseudomonas sp.).  相似文献   

19.
Large areas of mangroves in India are heavily disturbed by cattle grazing, hypersalinity, and other human-induced impacts. In two disturbed Avicennia marina forests and two undisturbed A. marina and Rhizophora apiculata forests in the Pichavaram mangroves of the Vellar–Coleroon estuarine complex, southeast India, we measured the rates and pathways of microbial decomposition of soil organic matter to determine if human impact is altering biogeochemical activity within these stands. Rates of total carbon oxidation (TCOX) were higher in the undisturbed A. marina forest (mean 199 mol C m–2 year–1) than in the two impacted stands (43 and 79 mol C m–2 year–1); rates of total carbon oxidation in the R. apiculata forest averaged 75 mol C m–2 year–1. Sulphate reduction (range 21–319 mmol S m–2 day–1) was the major decomposition pathway (65–85% of TCOX), except at the most disturbed forest (30% of TCOX). Rates of sulphate reduction at all sites peaked in sub-surface soils to a depth of about 1 m, leading to little carbon burial (3–5% of total C input). There was some evidence of measurable iron and manganese reduction in association with tree roots. Rates of microbial activity were rapid in comparison with rates measured in other mangrove soils, reflecting high rates of phytoplankton production and organic matter retention in this lagoon. Human-induced disturbance creates a sharp zonation of dry, hypersaline soil overlying less saline, wetter soil, suppressing surface microbial and root growth. We conclude that this vertical alteration of soil characteristics and biogeochemistry shifts the cycling of nutrients between trees and microbes to a disequilibrium state, partly explaining why mangroves are stunted in these declining forests.Communicated by G. F. Humphrey, Sydney  相似文献   

20.
Daytime sampling of mangrove and seagrass (Halophila/Halodule community) habitats every 7 wk at Alligator Creek, Queensland, Australia, over a period of 13 mo (February 1985–February 1986) using two types of seine net, revealed distinct mangrove and seagrass fish and crustacean faunas. Total abundance of fish and relative abundance of small and large fish also varied between habitats and seasonally. Post-larval, juvenile and small adult fish captured with a small seine-net (3 mm mesh) were significantly more abundant (4 to 10 times) in the mangrove habitat throughout the 13 mo of sampling. Mangrove fish abundance showed significant seasonality, greatest catches being recorded in the warm, wet-season months of the year. Relative abundances of larger fish (captured in a seine net with 18 mm mesh) in the two habitats varied throughout the year, but did not show a seasonal pattern. At the same site, small crustaceans were significantly more abundant in the mangroves in all but one dryseason sample. Similar comparisons for three riverine sites, sampled less frequently, in the dry and wet seasons of 1985 and 1986, respectively, showed that in general mangrove habitats had significantly more fish per sample, although the relative abundance of fish in mangroves and other habitats changed with season. Crustacean catches showed a similar pattern, except that densities among sites changed with season. Fish and crustacean abundance in mangroves varied among sites, indicating that estuaries differ in their nursery-ground value. The juveniles of two commercially important penaeid prawn species (Penaeus merguiensis and Metapenaeus ensis) were amongst the top three species of crustaceans captured in the study, and both were significantly more abundant in the mangrove habitat. By contrast, mangroves could not be considered an important nursery for juveniles of commercially important fish species in northern Australia. However, based on comparisons of fish catches in other regions, the results of the present study indicate the importance of mangroves as nursery sites for commercially exploited fish stocks elsewhere in South-East Asia. Contribution No. 378 from the Australian Institute of Marine Science  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号