首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium biosorption properties of non-living, dried river green alga from a river source, and water hyacinth weed, Eichhornia crassipes from a lake in Zimbabwe have been investigated. The cadmium uptake was found to depend on initial pH, uptake being apparently minimal at low pH values and increasing with an increase in pH. Cadmium biosorption kinetics by both samples is fast, with 80% of total uptake occurring within 60?min. The effect of initial solution pH and initial cadmium concentration on cadmium biosorption from a cadmium solution has been studied. The data for algal biomass fitted the Langmuir monolayer adsorption isotherm, while the biosorption of the metal by water hyacinth weed fitted the Freundlich adsorption isotherm with 1/n values all less than 1. Maximum metal uptake capacities were recorded using 0.35?g of biomass and a 250?mg?L?1 cadmium solution at pH 6.5 and at 25°C and these were about 85 and 50?mg?L?1 for water hyacinth weed and green alga, respectively, showing that water hyacinth weed offered a greater potential for cadmium uptake. The absorption was described by pseudo-second order rate model and the rate constant and equilibrium sorption capacity are reported.  相似文献   

2.
Removal of heavy metals by biosorption   总被引:1,自引:0,他引:1  
Industrialization and urbanization have resulted in increased releases of toxic heavy metals into the natural environment comprising soils, lakes, rivers, groundwaters and oceans. Research on biosorption of heavy metals has led to the identification of a number of microbial biomass types that are extremely effective in bioconcentrating metals. Biosorption is the binding and concentration of adsorbate from aqueous solutions by certain types of inactive and dead microbial biomass. The novel types of biosorbents presently reviewed are grouped under fungal biomass, biomass of non-living, dried brown marine algae, agricultural wastes and residues, composite chitosan biosorbent prepared by coating chitosan, cellulose-based sorbents and bacterial strains. The reports discussed in this review collectively suggest the promise of biosorption as a novel and green bioremediation technique for heavy metal pollutants from contaminated natural waters and wastewaters.  相似文献   

3.
Accumulation of metals by aquatic organisms is mostly affected by other biological components in environments. In this study, cadmium (Cd) accumulation in green algae, Cladophora glomerata (L.) Kutz., exposed to 0.1 and 1.0 mg L?1 of Cd for 15 and 30 days was examined in laboratory conditions in the presence of Nile tilapia Oreochromis niloticus (L.). The green algae C. glomerata accumulated Cd concentrations as 690 ± 70 and 3430 ± 470 mg kg?1 on day 15, and 1130 ± 180 and 6830 ± 1540 mg kg?1 on day 30. There were significant increases (p < 0.05) in metal accumulation by green algae as the exposure time and metal concentration increased. The results also indicated that the presence of Nile tilapia in the medium led to a significant Cd accumulation in the green algae compared to control (p < 0.05).  相似文献   

4.
ABSTRACT

Seagrass (Cymodocea nodosa) ability to remove cadmium and nickel ions from single metal solutions was investigated in the present study. Metal ions were measured in the solution using an atomic absorption spectrophotometer. Various operational parameters (initial pH, biomass dose, metal ion concentration, and contact time) were tested and found to affect the uptake capacity of Cd (II) and Ni (II). More than 70% of biosorption capacity occurred in the first few minutes for both metal ions. The pseudo-second-order kinetic model and the Langmuir model were found to best fit the experimental data of Cd (II) and Ni (II) biosorption. The maximum uptake capacity (qmax) was 11.6 and 16.7?mg.g?1 for Cd (II) and Ni (II), respectively. The biosorbent was characterised using Fourier transform infrared spectrometry (FTIR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). The infrared spectrum demonstrated that hydroxyl, carboxyl, and phenolic functional groups are the major binding sites for Cd (II) and Ni (II) metals. The ion exchange mechanism plays an important role during biosorption process as shown in EDX analysis. Our results conclude that marine macrophyte C. nodosa can be used as a low-cost biosorbent for the removal of Cd (II) and Ni (II) in wastewater.  相似文献   

5.
The adsorption of copper, zinc, cobalt, lead and cadmium ions onto Colpomenia sinuosa was studied as a function of contact time, initial metal ion concentration and initial pH. In addition, desorption studies were performed. Characterisation of this adsorbent was also confirmed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) analysis. Batch adsorption experimental data were analysed using Langmuir, Freundlich and Dubinin–Raduschkevich (D–R) adsorption isotherms. The results indicated that the biosorption equilibrium was well described by both the Freudlich and D–R isotherms. Moreover, sorption kinetics was performed and it was observed that equilibrium was reached in<60 min, which could be described by the pseudo-second-order kinetic model for all heavy metals. The sorption of heavy metals onto the biomass was largely dependent on the initial solution pH. The elution efficiency for heavy metal ions desorption from C. sinuosa was determined for 0.1 M HCl, 1.0 M HCl and 1.0 M HNO3. Desorption efficiency and also adsorption capacity were highest for Pb(II). The results indicate that C. sinuosa has great potential for the removal of heavy metals in an ecofriendly process.  相似文献   

6.
藻细胞膜电信号对重金属的快速反应研究   总被引:1,自引:0,他引:1  
为探讨藻细胞膜电信号对重金属离子的响应特征,运用细胞外表面技术和电化学方法研究了淡水藻——大型轮藻(Nitellaflexilis)藻细胞膜电位和膜电阻对汞、镉、铅的快速反应.结果表明,细胞膜电位和膜电阻对汞、镉响应灵敏且快速,30min内即对1μmol·L-1Hg2+、Cd2+表现出超极化和膜电阻增大反应,而5、10μmol·L-1Hg2+、Cd2+则在15min内引起细胞去极化、膜电阻减小,且剂量效应显著.细胞膜电信号对Pb2+的响应浓度为100μmol·L-1,30min内细胞先去极化后超极化,膜电阻持续增大.重金属作用前后相比,高浓度Hg2+、Cd2+(5、10μmol·L-1)导致藻细胞不可逆损伤,而其低浓度所致的损伤可恢复.Pb2+致藻细胞不可逆损伤的最低浓度为500μmol·L-1.对比膜电信号对3种离子的响应特点,发现藻细胞膜电位和膜电阻对Hg2+和Cd2+的响应灵敏度大于Pb2+.  相似文献   

7.
The biosorption of heavy metals is considered to be one of the best alternatives for the treatment of wastewater. The metal binding capacity of algae and acid-treated algae is investigated to find out the removal characteristics of Cr(VI), Ni(II) and Cu(II) ions from single metal solutions. Batch experiments are conducted and the study is extended to investigate the effect of pH, amount of adsorbent and adsorbate concentration on the extent of biosorption. The results indicate that the adsorption capacity of algae depends strongly on pH. The maximum adsorption of Cr(VI), Ni(II) and Cu(II) occurs at pH values of 2, 7 and 4.3, respectively. The adsorption process follows first-order kinetic equation. The data obtained are correlated with Freundlich and Langmuir adsorption isotherms.  相似文献   

8.
Seaweeds belonging to 14 different genera of Chlorophyta, Phaeophyta and Rhodophyta were analyzed to determine the levels of heavy metals in two areas of the Egyptian Red Sea coast. Among the trace metals analyzed, Mn and Zn showed the highest mass concentrations in the surface seawaters of the two studied areas. However, algae obtained from Suez area had the highest concentrations of the investigated heavy metals than those collected from Mars Alam area. Nevertheless, a high variability of the metal levels occurs among the studied algae and also between the investigated areas. Moreover, Zn was the most abundant metal in the seaweeds of the Suez area, while Pb was predominant in Mars Alam area in red and brown algae. L. farinosa had the highest average concentration factor of Zn in Suez (29161 fold), while it was 20091 fold in E. intestinalis at Mars Alam. The highest value of metal pollution index (MPI) was recoded in L. farinosa (22.0) at Suez. It represents 4.6 fold of that value recorded in L. farinosa at Mars Alam. Among green, brown and red algae in Suez, the highest values of MPI were recorded in Cladophora (mixed sub-species) and H. comuto (18.2 and 18.3), P. pavonia (16.2) and L. farinosa (22.1), respectively; while at Mars Alam, they were recorded in Cladophora (mixed sub-species) (6.6), P. pavonia (3.4) and L. farinosa (4.8), respectively.  相似文献   

9.
The use of algae to control heavy metals in the environment   总被引:1,自引:0,他引:1  
Aqueous effluents from a lead mining and milling operation located in southeastern Missouri, USA, caused a degradation of stream quality despite treatment by a large tailings pond. The receiving stream was choked with algal mats which accumulated unexpectedly large amounts of manganese, lead and zinc. A wastewater treatment system was designed to utilize algae and benthic macrophytes to remove metals from the tailings pond effluent. The system has proved successful and water quality in the receiving stream has been improved to drinking water standards.Experiments were conducted to understand more fully the phenomenon of heavy metal accumulation by algae. Radionuclides (210Pb,203Hg,65Zn,109Cd) were used in conjunction with commercially available microculture apparatus to screen several species of algae for heavy metal accumulation. It was found that all species of algae studied concentrated mercury, green algae were more efficient accumulators of cadmium than blue-green algae, one alga (Chlamydomonas) proved best at removing lead from solution and no alga studied removed zinc.  相似文献   

10.
在以往藻红外测试技术的急性毒性测试中,每次每个测试杯测试1个藻温,共2个测试组,并用藻最大响应温差1个指标进行毒性评价,测试结果的可行性和稳定性不理想,针对这个问题提出了改进方法:1)每次每个测试杯连测3个藻温;2)改为3个测试组;3)将单指标法改为三指标法;4)增加测试结果的重现性分析。通过蒸馏水毒性测试实验和重金属毒性测试实验,分析改进方法的效果。结果显示,不同指标方法中,三指标法控制假结果出现率为20%,控制效果最好;在测试4元重金属共存(总浓度0.066~0.156 mg·L~(-1))的毒性时,测试3个藻温的所有指标法的平均重现率(%)/重现性(%)均为100%/100%,测试1个藻温的三指标法的平均重现率(%)/重现性(%)为67%/100%,表明测试高浓度的重金属毒性时,不同指标法都有很好的评价效果;在测试一元重金属(0.001~0.1 mg·L~(-1))毒性时,只有三指标法的平均重现率(%)/重现性(%)是100%/100%,远高于其他指标法,表明只有三指标法才可准确测试低浓度重金属的毒性。在测试5种不同重金属共存的毒性时,三指标法的平均重现率(%)/重现性(%)平均为86.8%/100%。研究表明,改进后的技术用于化学品急性毒性测试,灵敏度高和稳定性好,结果可靠。  相似文献   

11.
The sorption capacity of the microalga, Chlorella vulgaris, was investigated using different metals (Cu, Zn, Cd and Ni), in both monometallic and bimetallic solutions. The final metal concentrations were significantly low. In the case of copper, an acid pretreatment (at pH 3) of the biomass was required to avoid an excessive increase in pH and the subsequent precipitation of metal during tests. This pretreatment was not necessary for the rest of the metals. The study of the influence of pH led to a greater metal uptake at a higher pH, suggesting a clear competition between metal cations and protons during the biosorption process. The biomass concentration was also a relevant variable, and the best sorption capacities were achieved at the lowest biomass concentration. pH also had a great influence on the elution of the metal retained by the biomass. The best recovery yields were obtained for the lower pH of the eluent solution. Sorption isotherms were well fitted to the Langmuir model, for both single-metal and two-metal systems. In both cases, the biomass showed a greater affinity for Cd.  相似文献   

12.
Biosorption potential of green macroalgae Cladophora sp., (GAC) for the removal of hexavalent chromium (Cr(VI)) and malachite green (MG) from aqueous medium was investigated. Optimal conditions for biosorption experiments were determined as a function of initial pH, GAC dosage, temperature and initial concentration of Cr(VI) and MG. The biosorption equilibrium data were fitted with the isotherm models of Langmuir, Freundlich, Kiselev, Frumkin and Jovanovic, while the experimental data were analysed using the kinetic models such as pseudo-first-order, pseudo-second-order, Ritchie's and intraparticle diffusion. The Langmuir maximum biosorption capacity was calculated as 100.00?mg/g (Cr(VI)) and 142.85?mg/g (MG). The biosorption kinetic data showed better agreement with the pseudo-second-order kinetic model. The thermodynamic parameters indicated spontaneous and endothermic nature of the biosorption process for Cr(VI) removal, whereas exothermic in the case of MG removal. Furthermore, the biosorption efficiencies of the GAC reusability were found significant up to five cycles and tested using 0.1, 0.5 and 1.0?M HCl, respectively. The results of the present study indicated that GAC is a suitable biosorbent for the sequestration of Cr(VI) and MG from aqueous solutions.  相似文献   

13.
Hexavalent chromium contamination in water is an issue of huge concern due to its use at a high scale, toxicity and non-biodegradability. Biosorption is a cost effective and unconventional strategy for the elimination of Cr(VI). Here, a novel biosorbent Senna siamea seed pod biomass and its chemically activated form have been investigated for the elimination of hexavalent chromium from aqueous solution. The biosorbent was characterized by using BET, FTIR, FESEM-EDX and TGA techniques. Parameters controlling the biosorption process were optimized as pH 2.0, temperature 30°C, initial Cr(VI) concentration 500?mg/L, biosorbent dose 0.5?g/L. Optimized contact time was 210 and 180 min for pristine biomass and activated carbon, respectively. Langmuir isotherm correlated well with experimental data revealing that the biosorption occurred in monolayer pattern. Maximum biosorption capacity calculated by Langmuir biosorption isotherm was 119.18 and 139.86?mg/g for S. siamea pristine biomass and activated carbon, respectively. Pseudo-second order kinetic model correlated well with experimental data. Thermodynamic studies suggested that the biosorption process occurs in a non-spontaneous, stable and endothermic manner. These interesting findings on Cr(VI) biosorption by S. siamea seed pod biomass and S. siamea zinc chloride activated carbon vouches for its potential application as an unconventional biosorbent.  相似文献   

14.
利用非活体生物质去除废水中重金属的研究   总被引:26,自引:0,他引:26  
章明奎  方利平 《生态环境》2006,15(5):897-900
为了解非活体牛物质去除废水中重金属的效果,选择了玉米芯、水稻谷壳、花生壳、松树树皮和茶叶等5种非活体生物质,州室内模拟方法比较研究了它们对重金属的吸附能力。结果表明,生物质对重金属的吸附是一个快速反应,可在20-30min内达到平衡。pH值对牛物质吸附阳离子型重金属有很大的影响,吸附量随pH值上升而增加,pH值在4.5以上时可达到较高水平。5种生物质对重金属都有较高吸附能力,它们吸附重金属的能力依次为:花生壳〉松树树皮〉玉米芯〉水稻谷壳〉茶叶。生物质去除废水中重金属的效果一般为:Cu、Pb〉Cd〉Zn。用碱、柠檬酸和磷酸对生物质进行改性处理可显著增强其对重金属的去除能力。生物质是一种廉价、有效的吸附剂,可替代商品吸附剂用于废水中重金属的去除,主要重金属的移除率在85%以上。  相似文献   

15.
The presence of toxic heavy metals in the environment is considered as a risk factor for adverse human and environmental health effects. Farahabad Region is a tourist center in the southern coast of Caspian Sea in Mazandaran Province of Iran. Environmental monitoring of this site is important for public health for individuals visiting and residing in this region. Although numerous biomonitoring data are available globally, very few if any apparent investigations have been conducted in this region. In this study, concentration of three heavy metals chromium (Cr), lead (Pb), and cadmium (Cd) was determined for one year in Cladophora glomerata, the predominant macroalga species present in this region. Detection of heavy metals was performed with atomic absorption spectrophotometer using standard methods. Results showed that the range of Cr metal in various algal samples was 29–55 ppm/g dry weight. The levels of Pb in algal samples (Cladophora) ranged from 2 to 8 ppm/g dry weight. The Cd concentrations in C. glomerata biomass ranged from 1.5 to 8.2 ppm/g dry biomass. In view of potential threats of such high metal concentrations in coastal waters and in algal tissues, it is necessary to adopt conservation measures to ensure public health safety.  相似文献   

16.
A mathematical model for the uptake of heavy metals in the benthic algae Ascophyllum nodosum has been developed. The model allows assignment of age-dependent growth parameters which also may be a function of external factors. Mortality curves for A. nodosum corresponding to a highly polluted and a nearly unpolluted area have been used in the study of metal uptake. Uptake has been simulated for different values of growth parameters and different concentrations of heavy metals in seawater. Emphasis has been on the uptake of zinc. The simulations showed that the concentration of zinc in the algae changed much less (6%) than the biomass (30%) with changes in intrinsic growth rate, mortality and carrying capacity.The concentration in the algae was found to be an approximately linear function of the mean concentration in seawater up to about 100 ppb. At very high concentrations, associated with high mortality, the deviation from linearity may be significant (about 13% at 162 ppb at one locality). The calculation indicates further that variations in the zinc concentration in the seawater are considerably damped in the algae.Simulations have also been performed to study the effects of sampling different parts of the algae, and some initial simulations have been performed to study the effects of heavy metal exchange between algae and sea water.  相似文献   

17.
The aquatic plant, Hydrocotyle umbellata, was studied for its toxicity and accumulation of lead (Pb) and chromium (Cr) in a synthetic solution. Plants were cultured in a modified Hoagland's nutrient solutions supplemented with 20, 40, 60, 80, and 100 mg Pb/l as lead nitrate [Pb(NO3)2] and 2, 4, 6, 8, and 10 mg Cr/l as potassium dichromate (K2Cr2O7). They were separately harvested after 3, 6, 9, and 12 days. Plants exposed to Pb and Cr showed significant decreases in the biomass productivity and total chlorophyll content when the exposure time and metal concentration were increased. The accumulation of Pb and Cr in the plants was significantly increased, but it was not linear with the exposure time and metal concentration. Both metals were accumulated higher in the roots than in the shoots. The bioconcentration factor of Pb was higher than that of Cr at the same exposure time, indicating a higher accumulation potential of Pb than Cr in H. umbellata. Toxicity symptoms of both metals showed a reduction in the production of new plantlets, withering of petioles, and change in color of roots from light green to dark brown. Pb caused leaf chlorosis, whereas Cr caused leaf necrosis. The toxicity symptoms increased when the exposure time and metal concentration were increased.  相似文献   

18.
In this study, the biosorption of Malachite green (MG) onto Turbinaria conoides, brown marine algae, was studied with respect to initial pH, temperature, initial dye concentration, and sorbent dosage. The optimum initial pH and temperature values for MG removal were found to be 8.0 and 30°C, respectively. Sorbent dosage was found to strongly influence the removal of MG. Equilibrium studies were carried out to test the validity of the Langmuir (q max = 66.6 mg/g and b = 0.526 mL mol/L) and the Freundlich (n = 1.826 and K = 3.751 mg/g) isotherms. The kinetic studies indicated the validity of the pseudo first-order and second-order equation.  相似文献   

19.
Seaweeds belonging to 14 different genera of Chlorophyta, Phaeophyta, and Rhodophyta were analysed to determine the levels of heavy metals in two areas of the Egyptian Red Sea coast. Among the trace metals analysed, Mn and Zn showed the highest mass concentrations in the surface sea waters of the two studied areas. However, algae obtained from the Suez area had higher concentrations of the investigated heavy metals than those collect in the Mars Alam area. Nevertheless, a high variability of the metal levels occurs among the studied algae and also between the investigated areas. Moreover, Zn was the most abundant metal in the seaweeds of the Suez area, while Pb was predominant in the Mars Alam area in red and brown algae. Liagora spp. had the highest average concentration factor of Zn in Suez (29 161-fold), while the average concentration factor in Enteromorpha spp. at Mars Alam was 20 091-fold. The highest Metal Pollution Index (MPI) value was recorded in Liagora spp. (22.0) at Suez. This represents a 4.6-fold higher value than that recorded in Liagora spp. at Mars Alam. Among green, brown, and red algae in Suez, the highest values of MPI were recorded in Cladophora spp. and Halimeda spp. (18.2 and 18.3), Padina spp. (16.2), and Liagora spp. (22.1), respectively; while at Mars Alam, the highest values of MPI were recorded in Cladophora spp. (6.6), Padina spp. (3.4) and Liagora spp. (4.8), respectively.  相似文献   

20.

The paper reports heavy metal accumulation in algae collected at four stations and in sediments at three stations on the Black Sea coast of Turkey. The metals analysed are Cd, Co, Cr, Cu, Fe, Pb, Sb and Zn. The metal content of algae increased generally (with some exceptions) from 1991 till 1993 in ?ile and Sinop. In the sediments Sb in ?ile, As in Riva, Fe, Zn in Sinop are high. According to these findings the metal pollution increased in Turkish area of the Black Sea during the years investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号