首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study area, Kuttanad Waters is a part of the Cochin estuarine system on the west coast of India. Kuttanad is well known for its agricultural activity and so the major contribution to the inorganic ions of nitrogen will be from fertilisers applied in agriculture. Based on observed salinity the stations have been divided into three zones. The fresh water zones had higher quantities of silt and clay whereas the estuarine zone was more sandy. The chemical speciation scheme applied here distinguishes three forms of ammoniacal nitrogen species: exchangeable, fixed, and organic ammoniacal nitrogen. No significant trends were observed in the seasonal distribution of total, exchangeable, fixed and organic nitrogen. A significant concentration of exchangeable ammonia was observed in the sediment due to their predominantly reducing environment, which restricts nitrification. High NH4-N concentrations in the pore waters, along with the sedimentary composition leads to a significantly high quantity of fixed NH4-N. The low values for N org is due to high mineralisation or deamination of organic nitrogen  相似文献   

2.
Aerobic composting is a method for the sanitary disposal of human feces as is used in bio-toilet systems. As the products of composting can be utilized as a fertilizer, it would be beneficial if the composting conditions could be more precisely controlled for the retention of fecal nitrogen as long as possible in the compost. In this study, batch experiments were conducted using a closed aerobic thermophilic composting reactor with sawdust as the bulk matrix to simulate the condition of a bio-toilet for the sanitary disposal of human feces. Attention was paid to the characteristics of nitrogen transformation. Under the controlled conditions of temperature at 60°C, moisture content at 60%,anda continuous air supply, more than 70% fecal organic removal was obtained, while merely 17% fecal nitrogen loss was observed over a two-week composting period. The nitrogen loss was found to occur mainly in the first 24 h with the rapid depletion of inorganic nitrogen but with an almost unchanged organic nitrogen content. The fecal NH4-N which was the main component of the inorganic nitrogen ( > 90%) decreased rapidly in the first day, decreased at a slower rate over the following days, and finally disappeared entirely. The depletion of NH4-N was accompanied by the accumulation of NH3 gas in the ammonia absorber connected to the reactor. A mass balance between the exhausted NH3 gas and the fecal NH4-N content in the first 24 hours indicated that the conversion of ammonium into gaseous ammonia was the main reason for nitrogen loss. Thermophilic composting could be considered as a way to keep a high organic nitrogen content in the compost for better utilization as a fertilizer.  相似文献   

3.
Since the ammonia in the effluent of the traditional water purification process could not meet the supply demand, the advanced treatment of a high concentration of NH4 +-N micro-polluted source water by biological activated carbon filter (BACF) was tested. The filter was operated in the downflow manner and the results showed that the removing rate of NH4 +-N was related to the influent concentration of NH4 +-N. Its removing rate could be higher than 95% when influent concentration was under 1.0 mg/L. It could also decrease with the increasing influent concentration when the NH4 +-N concentration was in the range from 1.5 to 4.9 mg/L and the dissolved oxygen (DO) in the influent was under 10 mg/L, and the minimum removing rate could be 30%. The key factor of restricting nitrification in BACF was the influent DO. When the influent NH4 +-N concentration was high, the DO in water was almost depleted entirely by the nitrifying and hetetrophic bacteria in the depth of 0.4 m filter and the filter layer was divided into aerobic and anoxic zones. The nitrification and degradation of organic matters existed in the aerobic zone, while the denitrification occurred in the anoxic zone. Due to the limited carbon source, the denitrification could not be carried out properly, which led to the accumulation of the denitrification intermediates such as NO2 ?. In addition to the denitrification bacteria, the nitrification and the heterotrophic bacteria existed in the anoxic zone.  相似文献   

4.
The ecological security of urban surface water is subject to significant risk due to rapid urbanization. Pollutant discharge and accumulation are among the most critical stressors endangering urban surface water and affecting the normal operation of urban aquatic ecosystem services. In this study, we assessed how pollutant accumulation stresses water purification systems, which perform important urban ecosystem services. First, we applied a water environmental capacity model to calculate thresholds of urban surface water environmental capacity under a given water quality target. Second, based on a stepwise regression method, an equation was used to describe the relationship between stressor factors (pollutant accumulation) and measurable socioeconomic indicators. Third, an ecological risk index was used as an assessment endpoint indicator to assess the negative ecological effect of pollutant accumulation. Finally, risk level was classified according to the risk quotient method. Taking Xiamen City as an example, we analyzed the contribution of different sources of pollutants and evaluated the urban ecological risk posed by two major contaminants present in the environment by measuring chemical oxygen demand (COD) and ammonium nitrogen (NH4+-N). The results show that the ecological risk indexes of both COD and NH4+-N are expected to decrease from 2020 to 2030; that of COD is expected to fall from medium to low, whereas that of NH4+-N is expected to fall from high to medium. These findings demonstrate that the ecological risk posed to the surface water in Xiamen City can be reduced by controlling population growth, optimizing industrial structure, and promoting economic development.  相似文献   

5.
ABSTRACT

Total dissolved nitrogen (TDN), including dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON), is of significant importance in aquatic systems due to its roles in numerous environmental processes, such as nutrients for agriculture activities, sources for lake and estuary eutrophication, and one of the major factors contributing to disinfection byproduct formation. The distribution and impact of DIN on these processes are relatively well-understood; however, information on DON is extremely limited, as there is no direct method for its quantification. DON is conventionally determined by subtracting DIN from TDN. However, significant errors may be introduced if DIN is the predominant species in samples with high concentrations of TDN. In order to deal with this challenge, pretreatment method for nitrogen gas stripping was investigated using 56 water samples collected from various ecosystems. The results indicated that after nitrogen gas stripping pretreatment, removal % of ammonia nitrogen (NH3–N) was more than 87.5%, and the ratios of removal of NH3–N/removal of TDN (β) were over 86.5% for most of 56 samples with high [NH3–N], indicating a high efficiency for removal of NH3–N, and that NH3–N was the predominant nitrogen species removed for the samples with high [NH3–N]. Therefore, nitrogen gas stripping is an appropriate pretreatment method for DON testing when NH3–N is the dominant inorganic nitrogen species.  相似文献   

6.
To determine the impact of photosynthesis and transpiration on nitrogen removal in wetlands, an artificial wetland planted with reeds was constructed to treat highly concentrated domestic wastewater. Under different meteorological and hydraulic conditions, the daily changes of photosynthesis and transpiration of reeds, as well as nitrogen removal efficiency were measured. It was found that net photosynthesis rate per unit leaf area was maintained on a high level (average 19.0 μmol CO2/(m2·s)) from 10:00 to 14:00 in July 2004 and reached a peak of 21.1 μmol CO2/(m2·s) when Photon Flux Density was high during the day. Meanwhile, TN and NH4 +-N removal efficiency rose to 79.6% and 89.6%, respectively—the maximum values observed in the test. Correlation coefficient analysis demonstrated a positive correlation among photon flux density, net photosynthetic rate, transpiration rate, and TN and NH4 +-N removal efficiency. In contrast, there was a negative correlation between stomatal conductance and TN and NH4 +-N removal efficiency. Results suggest that the photosynthesis and transpiration of wetland plants have a great impact on nitrogen removal efficiency of wetlands, which can be enhanced by an increase in the photosynthesis and transpiration rate. In addition, the efficiency of water usage by reeds and nitrogen removal efficiency could be affected by the water level in wetlands; a higher level boosts nitrogen removal efficiency.  相似文献   

7.
Spatial and temporal distributions of water quality using multivariate statistical techniques for the evaluation of nutrients (NO2-N, NO3-N, NH4-N, PO4-P, SiO4-Si, total N, total P) in relation to some physico-chemical features (DO, BOD, TSS, TDS, SO42−, Cl) were studied for 31 different stations of the Mahanadi river–estuarine system in the eastern part of India. The seasonal nutrient variations (except SiO4-Si) exhibit higher values during monsoon season in unpolluted stations and the reverse trends for polluted stations, which are related to agricultural run-off and regional anthropogenic activities respectively. Silicate shows a well defined pattern of distribution with a higher concentration during the monsoon, which is slightly removed from the estuarine water of Mahanadi during the pre-monsoon season. The results of R-mode factor analyses revealed that anthropogenic contributions are responsible for the increase in nutrients and the decrease in DO and pH levels of the water. The magnitude of BOD with respect to total N and P demonstrates the intensity of organic pollution in the system. The removal of silicate in the saline system is clearly visible through factor analysis and the different mode of association of TSS is reflected seasonally. The relationships among the stations are highlighted by cluster analysis, represented in dendograms to categorize different levels of contamination.  相似文献   

8.
Few people have so far explored into the research of the dynamics of various nitrogenous compounds (including water-soluble nitrogen) in composting of food wastes. This study aimed to investigate the solid-phase nitrogen, water-soluble nitrogen, nitrogen loss together with ammonia volatilization in the process of food wastes composting. A laboratory scale static aerobic reactor in the experiment was employed in the composting process of a synthetic food waste, in which sawdust was used as the litter amendment. In the experiment, oxygen was supplied by continuous forced ventilation for 15 days. The results have shown that the concentrations of total nitrogen and organic nitrogen decrease significantly in the composting process, whereas NH4 +-N concentration increases together with little fluctuation in NO3 ?-N. After composting, the total content of the water-soluble nitrogen compounds in the compost greatly increased, the total nitrogen loss amounted to 50% of the initial nitrogen, mainly attributed to ammonia volatilization. 56.7% of the total ammonia volatilization occurred in the middle and late composting of the thermophilic stage. This suggested that the control at the middle and late composting of thermophilic stage is the key to nitrogen loss in the food waste compost.  相似文献   

9.
Algal biofilmtechnology is a new and advanced wastewater treatment method. Experimental study on removing nitrogen and phosphorus from simulated wastewater using algal biofilm under the continuous light of 3500 Lux in the batch and continuous systems was carried out in this paper to assess the performance of algal biofilm in removing nutrients. The results showed that the effect of removing nitrogen and phosphorus by algal biofilm was remarkable in the batch system. The removal efficiencies of total phosphorus (TP), total nitrogen (TN), ammonia-nitrogen (NH3-N), and chemical oxygen demand (COD) reached 98.17%, 86.58%, 91.88%, and 97.11%, respectively. In the continuous system, hydraulic retention time (HRT) of 4 days was adopted; the effects of removing TP, TN, NH3-N, and COD by algal biofilm were very stable. During a run of 24 days, the removal efficiencies of TP, TN, NH3-N, and COD reached 95.38%, 83.93%, 82.38%, and 92.31%, respectively. This study demonstrates the feasibility of removing nitrogen and phosphorus from simulated wastewater using algal biofilm.  相似文献   

10.
The efficiency of microalgae in removing various pollutants in landfill leachate after pretreatment by free stripping or air stripping was tested by a laboratory batch system. The results showed that Chlorella pyrenoidosa and Scenedesmus sp. had similar removal efficiencies with regard to ammoniacal‐nitrogen, oxidized‐nitrogen, orthophosphate and chemical oxygen demand (COD). The COD removal by algal treatment was better in Junk Bay (JB) leachate than in Gin Drinkers’ Bay (GDB) leachate (14–21% and 0.4–7% respectively). No significant difference (P > 0.05) was found in removing other nutrients including ammoniacal‐nitrogen, oxidized‐nitrogen and orthophosphate between leachate from the two landfills, regardless of the pretreatment used. The removal efficiencies of ammoniacal‐nitrogen and phosphorus were found to be higher in air‐stripped leachate than in free‐stripped one. Removal of ammoniacal‐nitrogen and phosphorus in air‐stripped leachate was 30% and 87% respectively. Poor removal of ammoniacal‐nitrogen was probably due to a deficiency in phosphorus (high N : P ratio) for algal growth in leachate. The two‐stage leachate treatment (ammonia stripping followed by algal purification) resulted in overall reduction of COD (38–51%), ammoniacal‐nitrogen (72–96%) and orthophosphate (79–96%).  相似文献   

11.
A new biological nitrogen removal process, which is named herein “The circulating fluidized bed bioreactor (CFBBR)”, was developed for simultaneous removal of nitrogen and organic matter. This process was composed of an anaerobic bed (Riser), aerobic bed (Downer) and connecting device. Influent and nitrified liquid from the aerobic bed enters the anaerobic bed from the bottom of the anaerobic bed, completing the removal of nitrogen and organic matter. The system performance under the conditions of different inflow loadings and nitrified liquid recirculation rates ranging from 200% to 600% was examined. From a technical and economic point of view, the optimum nitrified liquid recirculation ratewas 400%. With a shortest total retention time of 2.5 h (0.8 h in the anaerobic bed and 1.5 h in the aerobic bed) and a nitrified liquid recirculation rate of 400% based on the influent flow rate, the average removal efficiencies of total nitrogen (TN) and soluble chemical oxygen demand (SCOD) were found to be 88% and 95%, respectively. The average effluent concentrations of TN and SCOD were 3.5 mg/L and 16 mg/L, respectively. The volatile suspended solid (VSS) concentration, nitrification rate and denitrification rate in the system were less than 1.0 g/L, 0.026-0.1 g NH4 +-N/g VSS·d, and 0.016–0.074 g NOx ?-N/g VSS·d, respectively.  相似文献   

12.
Batch experiments were conducted to study the short-term biological effects of rare earth ions (La3+, Ce3+) and their mixture on the nitrogen removal in a sequencing batch reactor (SBR). The data showed that higher NH4 +-N removal rate, total inorganic nitrogen removal efficiency, and denitrification efficiency were achieved at lower concentrations of rare earth elements (REEs) (<1 mg/L). In the first hour of the aeration stage of SBR, the presence of REEs increased the total inorganic nitrogen removal efficiency and NH4 +-N removal efficiency by 15.7% and 10%–15%, respectively. When the concentrations of REEs were higher than 1 mg/L, the total inorganic nitrogen removal efficiency decreased, and nitrate was found to accumulate in the effluent. When the concentrations of REEs was up to 50.0 mg/L, the total inorganic nitrogen removal efficiency was less than 30% of the control efficiency with a high level of nitrate. Lower concentrations of REEs were found to accelerate the nitrogen conversion and removal in SBR.  相似文献   

13.
The effects and mechanism of chemical oxygen demand (COD), nitrogen, and phosphorus concentration removal by an integrated vertical-flow constructed wetland were studied in the wetland system during one inlet–outlet operating period, in two typical stages (each stage is connective 24 h, sampled once every 4 h). The concentration of ammonia decreased along the flow direction in the system, while levels of nitrate (NO3?-N) increased. In one operating period, total nitrogen (TN) concentration fell with rising operation time due to evacuative reoxygenation. The TN and NH3-N removal rates in the system were 26.6% and 97.5%, respectively. COD decreased rapidly in the early stages and more gradually in the direction of water flow of the wetland system. Average total phosphorus (TP) removal rate was 20.71%. TN and NO3?-N levels in water of the wetland had a tendency to decline gradually with increasing operation time. Ammonia concentrations displayed only a small variation with operation time. The results also indicated that the wetland was able to maintain its temperature. The oxygen content differed during the various operating stages and exerted a marked influence on COD, TP, and TN removal.  相似文献   

14.
In order to improve the nitrogen removal efficiency and save operational cost, the feasibility of the alternating aerobic-anoxic process (AAA process) applied in a sequencing batch reactor (SBR) system for nitrogen removal was investigated. Under sufficient influent alkalinity, the AAA process did not have an advantage over one aerobicanoxic (OAA) cycle on treatment efficiency because microorganisms had an adaptive stage at the alternating aerobic-anoxic transition, which would prolong the total cycling time. On the contrary, the AAA process made the system control more complicated. Under deficient influent alkalinity, when compared to OAA, the AAA process improved treatment efficiency and effluent quality with NH4 +-N in the effluent below the detection limit. In the nitrification, the average stoichiometric ratio between alkalinity consumption and ammonia oxidation is calculated to be 7.07 mg CaCO3/mg NH4 +-N. In the denitrification, the average stoichiometric ratio between alkalinity production and NO3 ?-N reduction is about 3.57 mg CaCO3/mg NO3 ?-N. As a result, half of the alkalinity previously consumed during the aerobic nitrification was recovered during the subsequent anoxic denitrification period. That was why the higher treatment efficiency in the AAA process was achieved without the supplement of bicarbonate alkalinity. If the lack of alkalinity in the influent was less than 1/3 of that needed, there is no need for external alkalinity addition and treatment efficiency was the same as that under sufficient influent alkalinity. Even if the lack of alkalinity in the influent was more than 1/3 of that needed, the AAA process was an optimal strategy because it reduced the external alkalinity addition and saved on operational cost.  相似文献   

15.
长三角城郊樟溪流域水体氮磷分布特征及其影响因素   总被引:1,自引:0,他引:1  
快速城镇化和人类活动导致城郊流域水体营养盐污染和富营养化问题加重,识别氮、磷污染对流域水质的管控具有重要的意义。本研究选取长三角典型城郊地区宁波樟溪流域,在流域内根据土地利用类型、地形特征等布设样点,于2016年连续4个季度进行水样采集,研究樟溪流域河流水体氮、磷的含量及形态,及氮、磷在该流域的时空分布特征,并对其来源和影响因素进行分析。研究结果表明,流域内氮、磷分布具有较大的空间差异性,其中NH+4-N(n.d.~1.375 mg·L~(-1))、TN-N(0.570~11.363 mg·L~(-1))、DIP(n.d.~0.169 mg·L~(-1))、TP(0.010~1.908 mg·L~(-1))。在子流域空间分布上,人类活动频度越高的区域氮、磷的浓度越高,各采样点水体不同形态氮含量和磷含量具有明显的季节变化规律:春季和秋季的含量要高于夏季和冬季。本研究选取采样点距城镇距离、距源头距离以及土地利用类型所占采样点缓冲区的比例来表征人类活动的影响,结果表明,TN和TP含量与距城镇距离呈显著负相关关系,表明城镇化水平对流域氮、磷污染的重要影响。另外,典型城郊流域河流水体氮、磷污染主要受土地利用类型的影响,其含量与农业和城镇用地呈显著正相关关系(P0.01),其含量随人类活动频度的增加而升高。  相似文献   

16.
The large amounts of nitrogen-containing mineral fertilisers in industrial agriculture are leading to water pollution with effects such as eutrophication and death of aquatic life. There is therefore a need for techniques to keep N in the soil to prevent leaching in waters. Here, we tested the effect of the addition of vermiculite, a phyllosilicate mineral, to the soil, on fertiliser NH4 +-N retention in laboratory experiments during 14–45 days. The added amount of vermiculite was twice the amount of the nitrogen fertilizer added. Our results show that addition of vermiculite increases NH4 +-N retention by over 30%, compared to a control. Adding vermiculite is thus a promising technique to control the eutrophication of water systems as well as reducing agriculture cost.  相似文献   

17.
Nitrous oxide (N2O) is a greenhouse gas that can be released during biological nitrogen removal from wastewater. N2O emission from a sequencing batch reactor (SBR) for biological nitrogen and phosphorus removal from wastewater was investigated, and the aims were to examine which process, nitrification or denitrification, would contribute more to N2Oemission and to study the effects of heterotrophic activities on N2O emission during nitrification. The results showed that N2O emission was mainly attributed to nitrification rather than to denitrification. N2O emission during denitrification mainly occurred with stored organic carbon as the electron donor. During nitrification, NaO emission was increased with increasing initial ammonium or nitrite concentrations. The ratio of N2O emission to the removed ammonium nitrogen (N2O- N/NH4-N) was 2.5% in the SBR system with high heterotrophic activities, while this ratio was in the range from 0.14% to 1.06% in batch nitrification experiments with limited heterotrophic activities.  相似文献   

18.
长春市土壤微生物生化作用与重金属化学形态关系研究   总被引:2,自引:0,他引:2  
研究了长春市土壤微生物的生化作用强度(氨化作用强度、固氮作用强度,纤维素分解强度和土壤基础呼吸)与重金属(Pb、Cd、Cu、Zn和Ni)化学形态的关系。通过科学采样和实验室测试分析了不同功能区土壤中,重金属含量和化学形态与微生物生化作用强度,并使用相关分析、偏相关分析多种数据统计方法进行数据处理。结果表明:各功能区因土地利用方式的差别和土壤中重金属的各种化学形态对土壤微生物生化作用强度有不同的影响。其中氨化作用与交换态Cd、Zn和Ni含量呈显著正相关;固氮作用与土壤重金属各化学形态相关性均不显著;呼吸作用与铁锰氧化物结合态Pd和交换态Cu呈显著正相关;纤维素分解作用强度与交换态Pd含量呈显著负相关。在土壤理化性质等相关变量受控时,重金属化学形态对微生物生化作用强度的影响有较明显的变化。其中与无控制变量相比,在控制变量作用下,纤维素分解作用强度受交换态Pd影响上升了0.0314,表现为交换态Pd抑制纤维素分解作用强度。呼吸作用与交换态Pd的相关系数在无控制因素情况下为-0.1425,在有控制因素情况下为-0.3230,表明交换态Pd促进呼吸作用强度。而有机结合态Ni表现为抑制固氮作用。因此可利用交换态Pd与纤维素分解作用强度、呼吸作用强度的相互关系,有机结合态Ni与固氮作用的相互关系等相结合来评价城市土壤重金属污染状况。文章为评价长春城市土壤重金属污染提供了微生物学指标的理论依据。  相似文献   

19.
Reverse osmosis system with the disc-tube module (DT-RO) was applied to treat landfill leachate on full scale at the Changshengqiao Sanitary Landfill, Chongqing City, China. In the first six-mouth operation phase, the treatment performance of DT-RO system had been excellent and stable. The removal rate of chemical oxygen demand (COD), total organic carbon (TOC), electrical conductivity (EC), and ammonia nitrogen (NH3-N) reached 99.2–99.7%, 99.2%, 99.6%, and over 98%, respectively. The rejection of Ca2+, Ba2+, and Mg2+ was over 99.9%, respectively. Suspended solid (SS) was not detected in product water. Effective methods had been adopted to control membrane fouling, of which chemical cleaning is of utmost importance to guarantee the long smooth operation of the DT-RO system. The DT-RO system is cleaned in turns with Cleaner A and Cleaner C. At present, the 1st stage cleaning cycle by Cleaner A and Cleaner C is conducted every 100 and 500 h, respectively, depending on raw the water quality.  相似文献   

20.
Activated sludge was monthly sampled from a saline sewage treatment plant of Hong Kong (China) during June 2007 to May 2008 to analyze the microbial community shift along with environmental variations using denaturing gradient gel electrophoresis of polymerase chain reaction amplified 16S rDNA fragments. Environmental changes resulted into a seasonal microbial community shift characterized by alterations in species number and abundance in the sewage treatment plant. Correspondence analysis and cluster analysis on community structure profile showed that the 12 monthly samples fell into four groups, which is in accordance with season changing in Hong Kong. Canonical correspondence analysis revealed that PO 4 3t- -P and NH 4 + -N posed more significant effects on community structure than total phosphorus and total nitrogen, respectively. Compared with sludge retention time, influent total phosphorus had an inverse effect on the community structure shift, and chemical oxygen demand and NH 4 + -N showed a similar effects. Results of this study may contribute to the development of new knowledge involving the microbial community shift in sewage treatment plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号