首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Composite adsorbent materials containing calcium alginate, clinoptilolite, and coal-derived humic acid were prepared. Humic acid (HA), clinoptilolite (CL), alginate (AL), alginate-entrapped humic acid (AL/HA), clinoptilolite (AL/CL), and humic acid/clinoptilolite (AL/HA/CL) samples were characterized. The effectiveness of the samples as adsorbents for the removal of cadmium (Cd), mercury (Hg), and lead (Pb) were studied in a series of batch-adsorption experiments. For the AL, AL/HA, AL/CL, and AL/HA/CL adsorbents, uptake versus time data were evaluated using two kinetic models, a linear and a non-linear pseudo-first-order and a pseudo-second-order model. The data for each metal ion on all adsorbents showed good correspondence with the pseudo-second-order kinetic model. The equilibrium data were fitted to Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin isotherm models. The results show that a non-linear method seems more appropriate for obtaining isotherm parameters. The non-linear Freundlich and Langmuir models for Pb and Hg produced a best fit with high R 2 value (0.99). For HA adsorbent, the equilibrium data for Cd removal better fit to the non-linear Dubinin–Radushkevich isotherm.  相似文献   

2.
Removal of p-chlorophenol (pCP) from synthetic aqueous solutions was studied through adsorption on a biosorbent developed from chitosan (CS) and sodium alginate (SA), the natural cationic and anionic polysaccharides, respectively. Chitosan-coated sodium alginate beads were prepared and treated with calcium chloride solution in order to improve the stability as well as hydrophobic character. The resulting beads (CS/CA) were characterized using FTIR spectra, scanning electron microscopy (SEM), and BET surface analysis. The efficiency of this biosorbent in removing pCP from aqueous medium was studied under batch equilibrium and dynamic column flow experimental conditions. The binding capacity of the biosorbent was studied as a function of initial pH, contact time, initial concentration of adsorbate and amount of biomass. The data were fitted to pseudo-first-order, pseudo-second-order, and Weber–Morris models and found that the adsorption process followed pseudo-first-order kinetics. Further, the equilibrium data were fitted to Freundlich, Langmiur, and Dubinin–Radushkevich (D–R) adsorption isotherms and the isotherm constants were evaluated for adsorption of pCP. The maximum monolayer adsorption capacity of CS/CA beads was found to be 127 mg g?1. Column flow results were used to generate breakthrough curves. The experimental results suggested that the chitosan–calcium alginate blended biosorbent was effective for the removal of pCP from aqueous medium.  相似文献   

3.
This study provides an electrocoagulation process for the removal of metals such as cobalt, copper, and chromium from water using magnesium as anode and galvanized iron as cathode. The various parameters like pH, current density, temperature, and inter electrode distance on the removal efficiency of metals were studied. The results showed that maximum removal efficiency was achieved for cobalt, copper, and chromium with magnesium as anode and galvanized iron as cathode at a current density of 0.025?A?dm?2 at pH 7.0. First- and second-order rate equations were applied to study adsorption kinetics. The adsorption process follows second-order kinetics model with good correlation. The Langmuir and Freundlich adsorption isotherm models were studied using the experimental data. The Langmuir adsorption isotherm favors monolayer coverage of adsorbed molecules for the adsorption of cobalt, copper, and chromium. Temperature studies showed that adsorption was endothermic and spontaneous in nature.  相似文献   

4.
Sulphidic mine tailings characterised by high concentrations of heavy metals (Pb 3532?±?97?mg/kg, Zn 8450?±?154?mg/kg, Cu 239?±?18?mg/kg and Cd 14.1?±?0.3?mg/kg) and abundant carbonate (17%) were subjected to eight lab-scale electrodialytic remediation (EDR) experiments to investigate the influence of current density, treatment time and particle size on removal efficiency. Pb and Cu removal improved when increasing current density, while Zn and Cd removal did not. In contrast Zn and Cd removal improved by grinding the tailings, while Pb and Cu removal did not. At the highest current density (1.2?mA/cm2), 94%, 75%, 71% and 67% removal of Pb, Zn, Cu and Cd could be achieved, respectively, on grinded tailings in 28 days. Sequential chemical extraction made before and after EDR revealed larger oxidisable fractions of Zn, Cu and Cd, representing large fractions of sulphides, which was likely to be the main barrier to be removed as efficiently as Pb. This was in accordance with acid/base extraction tests in which Pb showed high solubility at both high and low pH (up to 65% and 86% of extraction, respectively), while considerable extraction of Zn (55%) happened only at low pH; and very limited extraction (<20%) of Cu and Cd occurred at any pH.  相似文献   

5.
The adsorption potential of FMBO, FeOOH, MnO2 for the removal of Cd2+, Cu2+ and Pb2+ in aqueous systems was investigated in this study. Comparing to FMBO and FeOOH, MnO2 offered a much higher removal capacity towards the three metal ions. The maximal adsorption capacity of MnO2 for Cd2+, Cu2+ and Pb2+ were 1.23, 2.25 and 2.60 mmol·g-1, respectively. And that for FMBO were 0.37, 1.13, and 1.18 mmol·g-1 and for FeOOH were 0.11, 0.86 and 0.48 mmol·g-1, respectively. The adsorption behaviors of the three metal ions on the three adsorbents were all significantly affected by pH values and heavy metal removal efficiency increased with pH increased. The Langmuir and Freundlich adsorption models were used to describe the adsorption equilibrium of the three metal ions onto the three adsorbents. Results showed that the adsorption equilibrium data fitted well to Langmuir isotherm and this indicated that adsorption of metal ions occurred on the three metal oxides adsorbents limited to the formation of a monolayer. More negative charged of MnO2 surface than that of FMBO and FeOOH could be ascribed by lower pHiep of MnO2 than that of FMBO and FeOOH and this could contribute to more binding sites on MnO2 surface than that of FMBO and FeOOH. The higher metal ions uptake by MnO2 than FMBO and FeOOH could be well explained by the surface charge mechanism.  相似文献   

6.
The adsorption of copper, zinc, cobalt, lead and cadmium ions onto Colpomenia sinuosa was studied as a function of contact time, initial metal ion concentration and initial pH. In addition, desorption studies were performed. Characterisation of this adsorbent was also confirmed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) analysis. Batch adsorption experimental data were analysed using Langmuir, Freundlich and Dubinin–Raduschkevich (D–R) adsorption isotherms. The results indicated that the biosorption equilibrium was well described by both the Freudlich and D–R isotherms. Moreover, sorption kinetics was performed and it was observed that equilibrium was reached in<60 min, which could be described by the pseudo-second-order kinetic model for all heavy metals. The sorption of heavy metals onto the biomass was largely dependent on the initial solution pH. The elution efficiency for heavy metal ions desorption from C. sinuosa was determined for 0.1 M HCl, 1.0 M HCl and 1.0 M HNO3. Desorption efficiency and also adsorption capacity were highest for Pb(II). The results indicate that C. sinuosa has great potential for the removal of heavy metals in an ecofriendly process.  相似文献   

7.
Humic acid (HA) was impregnated onto powdered activated carbon to improve its Cu(II) adsorption capability. The optimum pH value for Cu(II) removal was 6. The maximum adsorption capacity of HAimpregnated activated carbon was up to 5.98mg.g-1, which is five times the capacity of virgin activated carbon. The adsorption processes were rapid and accompanied by changes in pH. In using a linear method, it was determined that the equilibrium experimental data were better represented by the Langmuir isotherm than by the Freundlich isotherm. Surface charges and surface functional groups were studied through zeta potential and FTIR measurements to explain the mechanism behind the humicacid modification that enhanced the Cu(II) adsorption capacity of activated carbon.  相似文献   

8.
The adsorption of Sb(V) ions from aqueous solutions onto commercially available activated alumina (AA) was investigated. AA has a much higher adsorption capacity than presently used adsorbents. Sb(V) ions are likely adsorbed through electrostatic attraction and/or specific adsorption mechanism, while the optimum pH is found in the range of 2.8–4.3. The Sb(V) ions adsorption capacities increase with increasing temperature. The addition of nitrate, acetate, arsenite, chloride, and silicate ions affected Sb(V) ions adsorption only slightly, while the coexisting ascorbate, arsenate, phosphate, sulfate, EDTA, tartrate, and citrate ions substantially depressed Sb(V) ions adsorption.  相似文献   

9.
Biochar, is a low-cost material that can be used as an alternative adsorbent for the removal of heavy metals. In this study, a low-cost and efficient adsorbent synthesised from Jatropha curcas seeds was used for the uptake of Cu2+ from aqueous solutions. The as-prepared adsorbent was characterised by scanning electron microscopy and Brunauer–Emmett–Teller analysis post calcination at 500 °C, its BET surface area and total pore volume were 39.62?m2?g?1 and 0.049?m3?g?1, respectively. Subsequently, the effects of initial pH of the solution, contact time, and adsorbent material dosage on the adsorption of Cu2+ by the prepared adsorbent were investigated. The as-prepared adsorbent exhibited a high performance, with a maximum adsorption amount of 32.895?mg?g?1 for Cu2+ at pH 5.0 and 25 °C, owing to the presence of ?OH, C=O, C–O, Si-O-Si, and O-Si-O on its surface. The predominant Cu2+ adsorption mechanism was assumed to be ion exchange. Notably, the Cu2+ adsorption could attain equilibrium within 90?min. In addition, the fact that the Langmuir model was a better fit than the Freundlich model for the isotherm data of Cu2+ adsorption by the as-prepared adsorbent suggested that the adsorption of Cu2+ was a monolayer adsorption process.  相似文献   

10.
The synthesis of 1,3,5-triazine-triethylenetetramine (TATETA), its characterization by infrared spectroscopy and elemental analysis, and its application for removal of Cr(VI) ions from aqueous solution is reported. The effects of pH, contact time, initial concentration of Cr(VI), sorbent dose, and temperature on adsorption were investigated and optimized by batch adsorption experiments. Adsorption was highest at acidic conditions with an equilibration time of 25 min. The adsorption followed a Langmuir model, with an adsorption capacity of 303 mg g?1, was second order in its kinetics, and exothermic and thus spontaneous.  相似文献   

11.
In the present study, a novel approach was used to control zero valent iron aggregation and separation problems by fixing zero valent iron (ZVI) on bentonite-fly ash pellets. For this purpose, porous low cost bentonite-fly ash (BFA) pellets with size of 2.00 cm in length and 0.35 cm in diameter were prepared and fixed with ZVI to manufacture zero valent iron bentonite-fly ash (ZVI-BFA) pellets. Importantly, unlike powdered adsorbents, ZVI-BFA can easily be separated from final effluents when exhausted without any disintegration. The performance of the developed novel adsorbent was investigated for the removal of Pb2+ and Cd2+ from aqueous media. At 100 mg·L–1 and 1 g adsorbent, a maximum of 89.5% of Cd2+ and 95.6% of Pb2+ was removed by ZVI-BFA as compared to 56% and 95% removal by BFA. At 200 mg·L–1, Cd2+ and Pb2+ removal by ZVI-BFA was 56% and 99.8% respectively as compared to only 28% and 96% by BFA. Further, the removal kinetics was best fitted for pseudo-second order model. The study provides the basis for improving the removal capacity of porous materials by iron fixation while taking separation ability into consideration.
  相似文献   

12.
Land utilization of sewage sludge has become one of the major issues in environmental mitigation in China. This is particularly important in the Loess Plateau of Northwest China. Sludge enriched with organic matter and nutrients might effectively help to resolve the problems of silty loess soils as evidenced by porosity defect, structural alterations and absence of fertility. After sludge flows into the loess, irrigation water contains heavy metals that leach and migrate into sludge and consequently related human health risks may occur that raise concerns; and this situation needs to be rectified. The characteristics of the vertical migration and composition form change of Cu, Zn, and Cd from composted sludge to loess, and corresponding influencing factors, were investigated by performing a soil column simulation test under the leaching treatment of a one-year irrigation water capacity. Results demonstrated that: (1) composted sludge significantly improved loess fertility, and irrigation leaching transported only a small quantity of organic matter in sludge in the plough layer; (2) although some of the Cu, Zn, and Cd in composted sludge migrated to and concentrated in the middle and upper layers of the soil column during leaching, these metals were mostly retained in the plough layer; and (3) after the leaching treatment of the one-year irrigation water capacity, the compositions of Cu, Zn, and Cd (particularly Cu and Zn) in both plough layer and loess began to stabilize with low concentrations in the exudate. These findings confirmed the applicability of composted sludge in loess regions. This study provided a new insight into the sludge reuse in alkaline soils in arid and semi-arid region.  相似文献   

13.
耕地土壤铜、镉、锌形态及生物有效性研究   总被引:12,自引:0,他引:12  
土壤重金属总量常被用来评估土壤质量安全,但是大量事实说明单纯用土壤重金属总量并不能完全说明土壤重金属的生物有效性及其环境风险。相对于国内外常用的Tessier的五态方法,欧共体标准物质局提出的三步提取法(BCR法),中国地质调查局地质连续提取法的七态标准少见报道。本研究选取河南平原耕地样品,采用中国地质调查局地质连续提取法(DD2005-03)进行耕地中重金属元素(Cu、Cd、Zn)的形态分布,结果表明:Cu、Zn主要以残渣态存在,其残渣态分别占全量的55.80%和67.35%。Cd以离子交换态为主,占全量的27.30%。Cu、Cd、Zn各态含量占全量比例的顺序是,Cu:残渣态弱有机结合交换态铁锰氧化态碳酸盐结合态强有机结合态水溶态离子交换态。Cd:离子交换态弱有机结合交换态强有机结合态残渣态碳酸盐结合态铁锰氧化态水溶态。Zn:残渣态铁锰氧化态弱有机盐结合态离子交换态强有机结合态碳酸盐态水溶态。从生物可利用性系数k来看,Cd主要以活动性较大的状态存在,很容易被作物吸收。  相似文献   

14.
耕地土壤铜、镉、锌形态及生物有效性研究   总被引:1,自引:0,他引:1  
土壤重金属总量常被用来评估土壤质量安全,但是大量事实说明单纯用土壤重金属总量并不能完全说明土壤重金属的生物有效性及其环境风险。相对于国内外常用的Tessier的五态方法,欧共体标准物质局提出的三步提取法(BCR法1,中国地质调查局地质连续提取法的七态标准少见报道。本研究选取河南平原耕地样品,采用中国地质调查局地质连续提取法(DD2005.03)进行耕地中重金属元素(Cu、Cd、Zn)的形态分布,结果表明:Cu、Zn主要以残渣态存在,其残渣态分别占全量的55.80%和67.35%。Cd以离子交换态为主,占全量的27.30%。Cu、Cd、Zn各态含量占全量比例的顺序是,Cu:残渣态〉弱有机结合交换态〉铁锰氧化态〉碳酸盐结合态〉强有机结合态〉水溶态〉离子交换态。Cd:离子交换态〉弱有机结合交换态〉强有机结合态〉残渣态〉碳酸盐结合态〉铁锰氧化态〉水溶态。Zn:残渣态〉铁锰氧化态〉弱有机盐结合态〉离子交换态〉强有机结合态〉碳酸盐态〉水溶态。从生物可利用性系数k来看,Cd主要以活动性较大的状态存在,很容易被作物吸收。  相似文献   

15.
水/沉积物界面是有机和无机污染物的物理、化学等过程的重要载体和场所。为了探究溴代阻燃剂与重金属在水/沉积物体系的分布规律,以电子垃圾拆解地水体中常见的溴代阻燃剂十溴联苯醚(BDE209)和重金属Pb、Cd为目标污染物,考察了腐殖质对BDE209、Pb和Cd在水/沉积物界面吸附行为的影响。红外光谱分析表明沉积物腐殖质活性基团包括醇、酚和羧基类等官能团;1H核磁共振分析显示沉积物腐殖质主要由碳水化合物与脂肪族类化合物组成。吸附试验结果表明,水体中腐殖质能够促进沉积物表面BDE209、Pb和Cd的释放,BDE209在水/沉积物体系的吸附行为主要受水溶性腐殖质的影响,而对Pb、Cd而言,负载于沉积物表面的碱溶性腐殖质比水溶性腐殖质对其分配行为的作用更显著。此外,沉积物组分对BDE209在水/沉积物体系的分配行为无显著影响;粘土组分对Pb、Cd的富集能力高于砂粒,并且对Pb的富集能力比Cd更为突出。  相似文献   

16.
A heteropolyacid Zr(IV) tungstate-based cation exchanger has been synthesized. An amorphous sample, prepared at pH 1.2 and having a Na+ ion exchange capacity of 0.92?meq?g?1, was selected for further studies. Its physicochemical properties were determined using Fourier transform infrared spectrometer, X-ray diffraction, thermogravimetric, and scanning electron studies. To understand the cation exchange behavior of the material, distribution coefficients (K d) for metal ions in various solvent systems were determined. Some important binary separations of metal ions, namely Mg2+–Bi3+, Cd2+–Bi3+, Fe3+–Bi3+, Th4+–Bi3+, and Fe3+–Zn2+, were achieved on such columns. The practical utility of these separations was demonstrated by separating Fe3+ and Zn2+ ions quantitatively in commercial pharmaceutical formulation. The cation exchanger has been successfully applied also for the treatment of industrial wastewater and a synthetic mixture. All the results suggests that Zr(IV) tungstate has excellent potential for the removal of metals from aqueous systems using packed columns of this material.  相似文献   

17.
重金属Cu,Pb,Zn,Cr,Cd在水稻植株中的富集和分布   总被引:103,自引:0,他引:103  
研究了外源可溶性重金属进入水稻土环境后,在水稻植株中的迁移、在水稻植株不同部位的分布及其分布随时间的变化。在水稻生长季节,重金属在水稻植株中迁移能力的大小依次为:Cd,Cr>Zn,Cu>Pb。重金属在水稻植株不同部位的积累分布是:根部>根基茎>主茎>穗>籽实>叶部。水稻分蘖期重金属在根部、茎干部和叶片的积累量达到最大,随着时间的延长,在根部积累的重金属愈来愈少;在茎干部积累的重金属在拔节期降至最小,随后含量又稍微上升;叶片上的重金属含量在拔节期迅速下降,随后趋于稳定。  相似文献   

18.
在广东茂名地区油页岩矿渣土的小区试验表明 :香根草、杂交狼尾草、百喜草、钝叶草中铅、镉的浓度与分布均不相同 ,一般为根系浓度大于茎叶。施肥能使植物体内重金属元素浓度下降 ,但由于生物量增加 ,单位面积吸收量反而可能增大。因此 ,在选择净化土壤重金属的植物时 ,不仅要考虑吸收能力强弱 ,而且更要考虑生物量大小。  相似文献   

19.
新乡市郊区大棚菜地土壤重金属Pb、Cd、Cr和Hg污染评价   总被引:1,自引:0,他引:1  
周凯  王智芳  马玲玲  周丹  姚连芳 《生态环境》2013,(12):1962-1968
科学评估菜地土壤重金属污染对保障食品安全和公众身体健康具有重要的现实意义。采用原子吸收光谱法和冷原子吸收光谱法,研究了新乡市郊区菜地土壤重金属Pb、Cd、Cr和Hg的质量分数,并参照HJ 333-2006《温室蔬菜产地环境质量评价标准》,对土壤重金属污染进行评价。结果表明:菜地土壤重金属Cd、Pb、Cr、Hg的平均质量分数分别为25.64、156.18、992.38、0.316 mg·kg-1。东黑堆、前河头、后河头和东水东菜地土壤重金属Cd、Pb、Cr均全部超标,其中以Cd污染最为严重,后河头土壤重金属Cd的质量分数达到33.78 mg·kg-1,超过土壤环境质量评价指标限值的111.6倍,东水东采样点次之,也超标66倍。除了前辛庄Hg污染超标127%以外,其他采样点重金属Hg均不超标。表层(0~10 cm)土壤重金属Hg质量分数高于耕层(10~20 cm),其他重金属没有表现出明显的规律性。在不同季节,Cr质量分数随着季节变化逐渐递增,Hg质量分数则呈递减的趋势;Cd和Pb质量分数没有明显规律性。不同采样点综合污染指数以后河头的为最高,达到了82.49,其他依次为前河头、前辛庄、东黑堆、东水东。总体上讲,新乡市近郊菜地土壤重金属综合污染指数远远超过Ⅴ级的限值3.0,前河头、后河头和前辛庄菜地土壤都处于极高风险的重金属污染状态;东黑堆和东水东菜地土壤也处于高风险状态。  相似文献   

20.
为探讨生物配体模型(BLM)对金属混合物的适用性,以莱茵衣藻(Chlamydomonas reinhardtii)为研究对象,以藻体内短时间(≤60 min)生物积累量为指标,研究了Pb和Cd对莱茵衣藻的联合毒性作用。结果表明:Pb和Cd单独暴露下,藻体内生物积累过程可用米门方程(Michaelis-Menten equation)来描述。计算得到Cd传输位点的最大吸收通量Jmax为(8.312±0.034)×10-12mol·cm-2·s-1,该位点的半饱和系数(米门系数)KM=(1.012±0.032)×10-6mol·L-1,稳定常数KCd=0.988×106(mol·L-1)-1;Pb传输位点的Jmax为(1.28±0.039)×10-11mol·cm-2·s-1,该位点的KM=(3.56±0.34)×10-7mol·L-1,KPb为2.81×106(mol·L-1)-1。Cd和Pb的竞争实验中,当固定Cd的浓度,其吸收通量随Pb的增加而显著降低;固定Pb的浓度,其吸收通量随Cd的增加略有降低。这表明Pb和Cd可能存在相同的传输位点,且Pb对传输位点的结合能力要远大于Cd。在低浓度Pb和Cd的混合暴露溶液中,短时间内绿藻对Pb的生物积累量会远大于Cd。研究结果表明BLM可用于描述低浓度下Cd和Pb的竞争关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号