首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The paucity of data on air pollution indices in Nigeria prompted us to commence a national screening exercise regarding particulate matter loads. Six potential megacities (Aba, Abuja, Lagos, Kano, Maiduguri, and Port-Harcourt) representing the six geographical zones in Nigeria were chosen for the study. Sampling was achieved using a ‘Gent’ stacked filter unit sampler capable of collecting fractions of particulate matter with sizes of <10-μm and <2.5-μm simultaneously. The mean values for PM10 are 550, 35, 87, 340, 246 and 130 μg m?3 while for PM2.5 the mean values are 100, 14, 25, 67, 20 and 30 μg m?3 respectively for Aba, Abuja, Lagos, Kano, Maiduguri, and Port-Harcourt. Except for Abuja, the daily PM10 mass loads exceeded the World Health Organization (WHO) guidelines daily limit where as the PM2.5 values were within the WHO guideline limit. Their correlation matrix result indicates that some PM2.5 fractions mass fractions were strongly correlated than the PM10 fractions probably due to their long range transport potentials. Further work is in progress to determine the elemental profiles of both particulate fractions collected.  相似文献   

2.
Niu  Honghong  Wang  Baoqing  Liu  Bowei  Liu  Yuhong  Liu  Jianfeng  Wang  Zebei 《Environmental Fluid Mechanics》2018,18(4):829-847

To explore the effect of traffic emissions on air quality within street canyon, the wind flow and pollutant dispersion distribution in urban street canyons of different H/W, building gap and wind direction are studied and discussed by 3D computational fluid dynamics simulations. The largest PM2.5 concentrations are 46.4, 37.5, 28.4 µg/m3 when x = ? 88, ? 19.3, ? 19.3 m in 1.5 m above the ground level and the ratio of H/W is 1:1, 1:2 and 2:1, respectively. The flow around the top of the building and clearance flow between the buildings in street canyon influence by different H/W, which affected the diffusion of fine particulate matters. The largest PM2.5 concentrations are 88.1, 31.6 and 33.7 µg/m3 when x = 148.0, ? 92.3 and ? 186.7 m above the ground level of 1.5 m height and the building gap of 0, 20 and 40%, respectively. The air flows are cut by the clearance in the street canyons, and present the segmental characteristics. The largest PM2.5 concentrations are 10.6, 11.2 and 16.0 µg/m3 when x = 165.3 m, x = 58.0 and 1.5 m above the ground level of 1.5 m height and wind direction of the parallel to the street, perpendicular to the street and southwest, respectively. Modelled PM2.5 concentrations are basic agreement with measured PM2.5 concentrations for southwest wind direction. These results can help analyze the difussion of PM2.5 concentration in street canyons and urban planning.

  相似文献   

3.
Exposure to airborne particulate matter results in the deposition of millions of particle in the lung; consequently, there is need for monitoring them particularly in indoor environments. Case study was conducted in three different microenvironments, i.e., urban, rural and roadside to examine the elemental bioavailability in fine particulate matter and its potential health risk. The samples were collected on polytetrafluoroethylene filter paper with the help of fine particulate sampler during August–September, 2012. The average mass concentration of PM2.5 was 71.23 µg m?3 (rural), 45.33 µg m?3 (urban) and 36.71 µg m?3 (roadside). Elements in PM2.5 were analyzed by inductively coupled plasma atomic emission spectroscopy. Percentage bioavailability was determined to know the amount of soluble fraction that is actually taken across the cell membrane through inhalation pathway. Cadmium and lead were found to have cancer risk in a risk evaluation using an Integrated Risk Information system.  相似文献   

4.
The concentrations of suspended particulate matter in the air of the Orissa Sand Complex had an average value of 128 ± 10 µg m?3 in residential areas and 170 ± 8 µg m?3 in mining areas. PM10 levels in residential areas were found to have an average of 35 ± 10 µg m?3, in mining areas 45 ± 10 µg m?3. The distribution of some elements is also discussed here. Inhalation doses were observed to be higher in summer than in winter and the rainy season. The highest dose rate was for the age group of 1 year, and health risks were found to be highest for the same. For adults, inhalation dose and health risk are 1.3 times higher in mining than in residential areas.  相似文献   

5.
The pollution characteristics of PM2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers’ Meeting were investigated. During the whole meeting, nine PM2.5 samples were collected at a suburban site of Xinxiang, and the average concentration of PM2.5 was 122.28 μg m?3. NO3 ?, NH4 +, SO4 2? accounted for 56.8% of the total water-soluble ions. In addition, with an exception of Cl?, all of water-soluble ions decreased during the meeting. Total concentrations of crustal elements ranged from 6.53 to 185.86 μg m?3, with an average concentration of 52.51 μg m?3, which accounted for 82.5% of total elements. The concentrations of organic carbon and elemental carbon were 7.71 and 1.52 μg m?3, respectively, lower than those before and after the meeting. It is indicated that during the meeting, limiting motor vehicles is to reduce exhaust emissions, delay heating is to reduce the fossil fuel combustion, and other measures are to reduce the concentration of PM2.5. The directly dispersing by mixing layerheight increase and the indirectly reducing the formation of secondary aerosol by low relative humidity, andthese are the only two key removing mechanisms of PM2.5 in Xinxiang during the meeting.  相似文献   

6.

The Angouran Mine, located in northwest Iran, is the largest Zn–Pb producer in the Middle East. This study was designed to investigate the distribution, geochemistry, and mineralogy of the aerosols in the mining area and to assess their likely health impacts on the local residents. For this purpose, 36 aerosol samples were collected from 2014 to 2015 at nine sites located in mine district and upwind and downwind directions. The concentration of potentially toxic elements in the aerosols was determined using AAS instrument. Size, morphology, and mineralogy of the particles were studied using SEM and EDX spectra. The results indicate that the amount of total suspended particles in upwind, mine district, and downwind sites is 95.5, 463.4 and 287.5 µg/m3, respectively. The concentrations of PM2.5 in the three locations are 8.9, 134.7, and 51.8 µg/m3, whereas the PM10 contents are 2.9, 74.4, and 15.5 µg/m3, respectively. These observations point to the impact of mining activities on the concentration of aerosols in the local atmosphere. The values of air quality index also show the probable effects of the mining activities on the health of the local populations, especially for allergic peoples. The average concentration of Zn in the samples collected from the mining district (290 µg/kg) is much higher than its value in the upwind sites (27 µg/kg). The highest concentration of As (70 µg/kg), Cd (10 µg/kg), and Pb (3 µg/kg) is in downwind sites, which shows the negative impact of mining activities on the local air quality. Temporally, the highest concentration of the studied elements is recorded in spring season, especially for PM2.5 collected in downwind stations. Based on the results of SEM and EDX spectra, three groups of minerals, i.e., carbonates, silicates, and sulfides, are present in the aerosol particles, confirming the local source for the aerosols. SEM analyses showed that the aerosol particles with dissimilar chemical composition have different morphologies such as irregular, rounded, elongated, and angular. On the basis of the results, the mining activities in the Angouran Zn–Pb Mine may have various short- and long-term consequences on the public health, especially due to high amount of the finer particles (PM2.5) and the higher concentration of the potentially toxic elements in PM2.5 which can penetrate into the lungs.

  相似文献   

7.
PM2.5 has become an important environmental issue in Taiwan during the past few years. Moreover, electricity increased significantly during the summertime and TTPP generated by coal burning base is the main electricity provider in central Taiwan. Therefore, summer season has become the main research target in this study. The ambient air concentrations of particulate matter PM2.5 and PM10 collected by using VAPS at a mixed characteristic sampling site were studied in central Taiwan. The results indicated that the average daytime PM2.5 and PM10 particulate concentrations were occurred in May and they were 44.75 and 57.77 µg/m3 in this study. The results also indicated that the average nighttime PM2.5 and PM10 particulate concentrations were occurred in June and they were 38.19 and 45.79 µg/m3 in this study. The average PM2.5/PM10 ratios were 0.7 for daytime, nighttime and 24-h sampling periods in the summer for this study. This value was ranked as the lowest ratios when compared to the other seasons in previous study. Noteworthy, the results further indicated that the metallic element Pb has the mean highest concentrations for 24-h, daytime and nighttime sampling periods when compared to those of the other metallic elements (Ni, Cu, Zn and Cd). The average mean highest metallic Pb concentrations in PM10 were 110.7, 203.0 and 207.2 ng/m3 for 24-h, daytime and nighttime sampling periods in this study. And there were 59.53, 105.2 and 106.6 ng/m3 for Pb in PM2.5 for 24-h, daytime and nighttime sampling periods, respectively. Moreover, the results further indicated that mean metallic element Pb concentrations on PM2.5 and PM10 were all higher than those of the other elements for 24 h, day and nighttime.  相似文献   

8.
The Niah Great Cave contains important archaeological artefacts immersed in massive guano deposits. The exposure of such artefacts, together with general movement through the cave, results in an enhanced atmospheric particulate pollution. Values, as a consequence of disturbance, are as high as 1300?µg/m3; alarming PM10 values of 1051?µg/m3 are reported and potential human health effects in terms of particulate lung penetration, enhanced asthma susceptibility, heart disease and mortality are reviewed and discussed.  相似文献   

9.
In this work, the airborne particulate matter with an aerodynamic diameter less than 10 µm (PM10) was fractionated in a six-stage high-volume cascade impactor to identify particulate size distribution in Tehran atmosphere. The study was conducted at 15 sites located in the north, south, east, west, and central parts of Tehran in 2005. Air samples were analyzed for 16 polycyclic aromatic hydrocarbons (PAHs) by HPLC. The daily PM10 concentrations at the peak of traffic in roadside areas were found to be 106–560 µg m?3. The cumulated concentration sum of PAHs, based on 16 species, was found to have an average concentration of 380 ng m?3. Furthermore, it was found that more than 60% of PAHs belonged to the small particulate size range, having sizes of less than 0.49 µm, some containing benzo(ghi)perylene and indeno(123cd)pyrene (high molecular weight) with average concentrations of 8 and 6 ng m?3 and fluorene, phenanthrene, and fluoranthene (low molecular weight) with average concentrations of 14, 13, and 19 ng m?3, respectively. In addition, the results revealed that the lighter three- and four-ring PAH compounds were the most abundant pollutants in the air collected at all the sampling sites.  相似文献   

10.
The increase in platinum (Pt) in the airborne particulate matter with size ≤2.5 µm (PM2.5) in urban environments may be interpreted as result of the abrasion and deterioration of automobile catalyst. Nowadays, about four million vehicles in Mexico City use catalytic converters, which means that their impact should be considered. In order to evaluate the contribution of Pt to environmental pollution of the metropolitan area of Mexico City (MAMC), airborne PM2.5 was collected at five different sites in the urban area (NW, NE, C, SW, SE) in 2011 during April (dry-warm season), August (rainy season) and December (dry-cold season). Analytical determinations were carried out using a ICP-MS with a collision cell and kinetic energy discrimination. The analytical and instrument performance was evaluated with standard road dust reference material (BCR-723). Median Pt concentration in the analyzed particulate was is 38.4 pg m?3 (minimal value 1 pg m?3 maximal value 79 pg m?3). Obtained Pt concentrations are higher than those reported for other urban areas. Spatial variation shows that SW had Pt concentration significantly higher than NW and C only. Seasonal variation shows that Pt median was higher in rainy season than in both dry seasons. A comparison of these results with previously reported data of PM10 from 1991 and 2003 in the same studied area shows a worrying increase in the concentration of Pt in the air environment of MAMC.  相似文献   

11.
Twenty trace elements in fine particulate matters (i.e., PM2.5) at urban Chengdu, a southwest megacity of China, were determined to study the characteristics, sources and human health risk of particulate toxic heavy metals. This work mainly focused on eight toxic heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The average concentration of PM2.5 was 165.1 ± 84.7 µg m?3 during the study period, significantly exceeding the National Ambient Air Quality Standard (35 µg m?3 in annual average). The particulate heavy metal pollution was very serious in which Cd and As concentrations in PM2.5 significantly surpassed the WHO standard. The enrichment factor values of heavy metals were typically higher than 10, suggesting that they were mainly influenced by anthropogenic sources. More specifically, the Cr, Mn and Ni were slightly enriched, Cu was highly enriched, while As, Cd, Pb and Zn were severely enriched. The results of correlation analysis showed that Cd may come from metallurgy and mechanical manufacturing emissions, and the other metals were predominately influenced by traffic emissions and coal combustion. The results of health risk assessment indicated that As, Mn and Cd would pose a significant non-carcinogenic health risk to both children and adults, while Cr would cause carcinogenic risk. Other toxic heavy metals were within a safe level.  相似文献   

12.
A sampling campaign including summer, autumn and winter of 2014 and spring of 2015 was accomplished to obtain the characteristic of chemical components in PM2.5 at three sites of Kunming, a plateau city in South-west China. Nine kinds of water-soluble inorganic ions (WSI), organic and element carbon (OC and EC) in PM2.5 were analyzed by ion chromatography and thermal optical reflectance method, respectively. Results showed that the average concentrations of total WSI, OC and EC were 22.85±10.95 µg·m-3, 17.83±9.57 µg·m-3 and 5.11±4.29 µg·m-3, respectively. They totally accounted for 53.0% of PM2.5. Secondary organic and inorganic aerosols (SOA and SIA) were also assessed by the minimum ratio of OC/EC, nitrogen and sulfur oxidation ratios. The annual average concentrations of SOA and SIA totally accounted for 28.3% of the PM2.5 concentration. The low proportion suggested the primary emission was the main source of PM2.5 in Kunming. However, secondary pollution in the plateau city should also not be ignorable, due to the appropriate temperature and strong solar radiation, which can promote the atmospheric photochemical reactions.
  相似文献   

13.
Ambient concentrations of PM10 (x?≤?10?µm) and PM2.5 (x?≤?2.5?µm) particulate fractions collected from Ikoyi Lagos, Nigeria, as well as their elemental compositions are presented in this study. Both size-segregated fractions were collected using a double staged ‘Gent’ stack filter unit sampler. Elemental characterizations of dust laden filters were carried out using proton-induced X-ray emission (PIXE) technique. Twenty-two elements (Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb, Br, Rb, Sr, Zr, Ag, Cd, and Ta) were detected as well as their concentrations and correlations were determined for both particulate size fractions. Their correlation matrix result indicates that some of the trace elements detected could have common source origins or similar chemical properties. The results were similar to the levels observed in moderately polluted urban areas and there is need for source identification and apportionment using receptor models in future studies.  相似文献   

14.
Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.  相似文献   

15.
To assess the exposure doses of PM2.5 and to investigate its chemical components for the subpopulation (i.e., school children and industrial downwind residents), simultaneous sampling of indoor and outdoor PM2.5 was conducted at an elementary school close to traffic arteries and a residence located in the downwind area of a steel plant in metropolitan Guangzhou in 2010. Chemical components, i.e., organic carbon, elemental carbon and 6 water soluble ions were analyzed in PM2.5. A survey was also conducted to investigate the time-activity patterns of the school children and the industrial downwind residents. Indoor and outdoor PM2.5 were 63.2 ± 20.1 and (76.7 ± 35.8) μg/m3 at the school, and 118.8 ± 44.7 and 125.7 ± 57.1 μg/m3 in the community, respectively. Indoor PM2.5 was found to be highly related to outdoor sources, and stationary sources were the significant contributors to PM2.5 at both sites. The daily average doses of PM2.5 for the school children at the school (D children) and the industrial downwind residents in the community (D residents) were (7.6 ± 1.9) and (36.1 ± 36.8) μg/kg-day, respectively. The daily average doses of particulate organic mass and SO4 2? were the two most abundant chemical components in PM2.5. PM2.5 exposure for the school children was contributed by indoor and outdoor environments by 48.8 and 51.2 %, respectively; for the industrial downwind residents, the contributions were 66.0 and 34.0 %, respectively. Age and body weight were significantly and negatively correlated with D children, while age, body weight and education level were significantly and negatively correlated with D residents; gender was not a significant factor at both cases.  相似文献   

16.
In this study, we collected particles with aerodynamic diameter ?2.5 μm (PM2.5) from three different public indoor places (a supermarket, a commercial office, and a university dining hall) in Jinan, a medium-sized city located in northern China. Water-soluble inorganic ions of PM2.5 and particle size distributions were also measured. Both indoor and outdoor PM2.5 levels (102.3–143.8 μg·m?3 and 160.2–301.3 μg·m?3, respectively) were substantially higher than the value recommended by the World Health Organization (25 μg·m?3), and outdoor sources were found to be the major contributors to indoor pollutants. Diurnal particle number size distributions were different, while the maximum volume concentrations all appeared to be approximately 300 nm in the three indoor locations. Concentrations of indoor and outdoor PM2.5 were shown to exhibit the same variation trends for the supermarket and dining hall. For the office, PM2.5 concentrations during nighttime were observed to decrease sharply. Among others, SO 4 2? , NH 4 + and NO 3 ? were found to be the dominant water-soluble ions of both indoor and outdoor particles. Concentrations of NO 3 ? in the supermarket and office during the daytime were observed to decrease sharply, which might be attributed to the fact that the indoor temperature was much higher than the outdoor temperature. In addition, domestic activities such as cleaning, water usage, cooking, and smoking also played roles in degraded indoor air quality. However, the results obtained here might be negatively impacted by the small number of samples and short sampling durations.  相似文献   

17.
We investigated the leaching characteristics of bisphenol A (BPA) from two kinds of epoxy-resin pavement materials, one containing epoxy resins (EPs) and the other containing epoxy-acrylate resins (EPAs). Both samples contained residual BPA monomer, at levels of 9.0?µg?g?1 for the EP resin sample and 4.4?µg?g?1 for the EPA resin sample. These amounts were larger than amounts previously measured for polycarbonate samples. The amount of BPA leached from the samples increased with temperature. The leaching of BPA from EP was more strongly affected by temperature than the leaching from EPA. The pH also affected the amount of leached BPA. The maximum leached amount was observed under alkaline conditions (pH 10.8) for both sample types. The amounts of BPA that might leach from pavement materials during 1?h of heavy rain were estimated to be 0.9?µg?m?2 for EP and 3.5?µg?m?2 for EPA. Our results indicate that EPs disposed of in waste landfills without any treatment may be a source of BPA in leachate at landfill sites.  相似文献   

18.
Trace metal concentrations were determined in particulate matter (PM10) in ambient air of four purposively selected residential areas in Ibadan, Nigeria namely Bodija market (BM), Ojo Park (OP), Oluyole Estate (OE) and University of Ibadan (UI). PM10 was determined in the morning (7–10 a.m.) and afternoon (2–5 p.m.) for 12 weeks in the dry season months of January–March using a volumetric sampler following standard procedures and levels compared with WHO guideline limits. Glass-fibre filter papers exposed to the particulate matter were digested using appropriate acid mixtures, and the digest analysed for trace metals including Ni, Cr, Mn, Zn, and Pb using ICPMS method and levels compared with WHO limits. Data was analysed using ANOVA and Pearson correlation test at 5 % level of significance. The highest mean PM10 concentrations 502.3 ± 39.9 μg/m3 were recorded in the afternoon period at BM, while the lowest concentration 220.6 ± 69.9 μg/m3 was observed in the morning hours at UI. There was a significant difference between the PM10 levels across the various locations (p < 0.05), and all the levels were higher than WHO limit of 50 μg/m3. The highest levels of Ni, Zn and Pb were recorded at BM, which also had the highest PM10 burden. The trend in Pb levels across the locations was BM > UI > OP > OE with the highest level 5.70 μg/m3 in BM nearly fourfolds WHO limits of 1.5 μg/m3. There was a significant correlation between PM10 and Ni (p < 0.05).Urban communities with increased human activities especially motor traffic recorded both higher levels of PM10 and toxic trace metals. There is need to carry out source apportionment to establish the origin of these trace metals in future studies.  相似文献   

19.
Total mercury (HgTOT) concentrations were determined by inductively coupled plasma mass spectrometry (ICP MS) for South African Highveld coals. The distribution of Hg in coals was investigated using a four-stage sequential leaching protocol and isotope dilution/gas chromatography coupled to ICP MS (ID-GC-ICP MS). The results show that HgTOT ranged from 144 to 303?µg?kg?1 with a mean of 199?±?26?µg?kg?1, while HgTOT leached from coals using different solvents ranged between 103 and 310?µg?kg?1 (mean: 218?±?60?µg?kg?1). Hg leaching rates of 53–78% were achieved in crushed coals. Hg0, Hg2+, and CH3Hg+ were identified in all coals. CH3Hg+ in studied coals ranged between 0.1 and 0.4 (mean: 0.2) µg?kg?1. GC ICP MS chromatograms also showed unknown Hg peaks which were identified as other organomercury species such as ethylmercury. Modes of occurrence of Hg in coals were variable with the organic-bound (37–40%) and the sulfide-bound (37–39%) being the dominant mercury forms. Increasing the HCl concentration in the used protocol increased the amount of Hg leached (16%) during this step.  相似文献   

20.
Elemental composition of particulate matters around Urmia Lake,Iran   总被引:1,自引:0,他引:1  
Atmospheric particulate matters and their elements were concurrently measured at two sites located in the north and southeast parts of Urmia Lake from January to September 2013. At both sampling sites, average concentrations of total suspended particulate, particles with the aerodynamic diameter of smaller than 10 µm, smaller than 2.5 µm, and smaller than 1 µm were 260 ± 106, 180 ± 73, 30 ± 8, and 25 ± 7 µg m?3, respectively. The analyzed water soluble ions accounted for approximately 11%–13% mass concentrations of total suspended particulate and 8%–9% of particles smaller than 10 µm, and the sum of the concentrations of the analyzed elements associated with both ranged from 9 to 41 µg m?3 (6.5%–9.6% in mass) and 7 to 26 µg m?3 (5.5%–11.3% in mass), respectively. Thus, particulate matter was composed of a complex mixture of minerals such as halite, quartz, gypsum, hexahydrite, and Bassanite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号